红黑树精通指南:面试、实战与源码分析

本文深入解析红黑树的核心概念、性质与操作,包括插入、删除的调整策略,以及在C++ STL、Java TreeMap和Linux内核中的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、对红黑树的理解

(一)基本理解

(二)红黑树与AVL树的比较

二、在实际框架中的应用分析

三、开始深入红黑树

(一)红黑树的基本概念和性质

1、红黑树的基本定义

2、红黑性质的五个要点

引理证明:一颗有n个内部结点的红黑树的高度至多为2lg(n+1)

(二)对旋转的基本理解

1、左旋(Left Rotation)

2、右旋(Right Rotation)

3、代码展示

(三)插入操作基本理解

1、以图形方式进行初步理解

情况一:如果关注节点是 a,它的叔叔节点 d 是红色

情况二:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的右子节点

情况三:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的左子节点

2、详细步骤分析总结

3、代码展示说明

(四)删除操作基本理解

1、以图形方式进行初步理解

第一步:针对删除节点初步调整

情况一:如果要删除的节点是 a,它只有一个子节点 b

情况二:如果要删除的节点 a 有两个非空子节点,并且它的后继节点就是节点 a 的右子节点 c

情况三:如果要删除的是节点 a,它有两个非空子节点,并且节点 a 的后继节点不是右子节点

第二步:针对关注节点进行二次调整

情况一:如果关注节点是 a,它的兄弟节点 c 是红色的

情况二:如果关注节点是 a,它的兄弟节点 c 是黑色的,并且节点 c 的左右子节点 d、e 都是黑色的

情况三:如果关注节点是 a,它的兄弟节点 c 是黑色,c 的左子节点 d 是红色,c 的右子节点 e 是黑色

情况四:如果关注节点 a 的兄弟节点 c 是黑色的,并且 c 的右子节点是红色的

2、详细步骤分析总结

3、具体代码展示

四、源码上的分析

(一)TreeMap源码简单总结

红黑树操作的主要源码部分

注意事项

(二)Linux 内核红黑树

五、总结

参考文献与链接:


干货分享,感谢您的阅读!引荐:互联网高频面试题基本总结回顾

红黑树作为一种自平衡的二叉搜索树,广泛应用于现代计算机科学的各个领域,尤其是在需要频繁执行查找、插入和删除操作的场景中。它的平衡性和高效性使其成为了许多标准库和开源项目的核心数据结构,例如 C++ 的 std::map 和 Java 的 TreeMap。尽管红黑树已经在多个编程语言中得到了实现,但其内部的平衡机制、旋转操作以及应用场景往往让很多开发者感到困惑。

本文旨在通过对红黑树的全面总结,帮助读者从基础概念到实际应用深入理解这一数据结构的核心原理。首先,我们将介绍红黑树的基本性质、平衡特性以及它与其他自平衡树(如 AVL 树)的比较。然后,我们将分析红黑树在实际框架中的应用,探讨它在大规模数据处理中的优势。接着,文章会进一步深入红黑树的实现,详细解释插入、删除等操作的具体流程,并通过源码展示加深理解。

无论你是刚接触红黑树的新手,还是希望优化已有代码的开发者

评论 1493
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张彦峰ZYF

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值