目录
引理证明:一颗有n个内部结点的红黑树的高度至多为2lg(n+1)
情况二:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的右子节点
情况三:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的左子节点
情况二:如果要删除的节点 a 有两个非空子节点,并且它的后继节点就是节点 a 的右子节点 c
情况三:如果要删除的是节点 a,它有两个非空子节点,并且节点 a 的后继节点不是右子节点
情况二:如果关注节点是 a,它的兄弟节点 c 是黑色的,并且节点 c 的左右子节点 d、e 都是黑色的
情况三:如果关注节点是 a,它的兄弟节点 c 是黑色,c 的左子节点 d 是红色,c 的右子节点 e 是黑色
情况四:如果关注节点 a 的兄弟节点 c 是黑色的,并且 c 的右子节点是红色的
干货分享,感谢您的阅读!引荐:互联网高频面试题基本总结回顾
红黑树作为一种自平衡的二叉搜索树,广泛应用于现代计算机科学的各个领域,尤其是在需要频繁执行查找、插入和删除操作的场景中。它的平衡性和高效性使其成为了许多标准库和开源项目的核心数据结构,例如 C++ 的 std::map
和 Java 的 TreeMap
。尽管红黑树已经在多个编程语言中得到了实现,但其内部的平衡机制、旋转操作以及应用场景往往让很多开发者感到困惑。
本文旨在通过对红黑树的全面总结,帮助读者从基础概念到实际应用深入理解这一数据结构的核心原理。首先,我们将介绍红黑树的基本性质、平衡特性以及它与其他自平衡树(如 AVL 树)的比较。然后,我们将分析红黑树在实际框架中的应用,探讨它在大规模数据处理中的优势。接着,文章会进一步深入红黑树的实现,详细解释插入、删除等操作的具体流程,并通过源码展示加深理解。
无论你是刚接触红黑树的新手,还是希望优化已有代码的开发者