提速YOLOv7:用MobileNetV3更换骨干网络加速目标检测

本文探讨如何用MobileNetV3替换YOLOv7的骨干网络以提高目标检测速度和精度。介绍了MobileNetV3的原理和特点,包括其高效和精确的特性,以及YOLOv7的结构和性能。详细阐述了替换过程,包括调整neck部分和微调模型。实验结果显示,这种替换提高了YOLOv7的运行速度,同时保持了较好的检测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

目标检测是计算机视觉领域的一个重要任务,它可以在图像中定位并识别感兴趣的物体,应用广泛,例如智能安防、自动驾驶、医学图像识别等等。目前,基于深度学习的目标检测算法已经取得了很大的进展,其中一种比较流行的算法是YOLO系列。它通过单个神经网络实现端到端的检测,并且具有速度快、准确率高的优点。

MobileNetV3是一种轻量级的神经网络结构,它具有高效率和精度的优点。本文将介绍如何使用MobileNetV3替换YOLOv7的骨干网络,从而提高YOLOv7的速度和精度。本文将首先介绍MobileNetV3的原理和特点,然后介绍YOLOv7的结构和流程,接着详细介绍MobileNetV3替换YOLOv7的骨干网络的步骤和方法,以及实现代码的解析。最后,将通过实验结果和分析来证明使用MobileNetV3替换YOLOv7的骨干网络的效果。

一、MobileNetV3的介绍

1、MobileNetV3的原理和特点

MobileNetV3是由Google在2019年提出的一种轻量级的神经网络结构,它在保持高精度的前提下,大大降低了模型大小和计算量。MobileNetV3的设计思想是结合了分类和检测的任务,利用NAS(Neural Architecture Search)自动化

### 结合YOLOv5和MobileNetV3目标检测模型构建 #### 1. 准备工作环境 为了成功集成 MobileNetV3YOLOv5 中,需先设置好开发环境。确保安装了必要的依赖库并下载了最新的 YOLOv5 源码。 ```bash git clone https://github.com/ultralytics/yolov5.git cd yolov5 pip install -r requirements.txt ``` #### 2. 导入MobileNetV3模块 接下来,在 `models` 文件夹内创建一个新的 Python 脚本文件用于定义基于 MobileNetV3 的骨干网架构[^1]。 ```python from torchvision.models import mobilenet_v3_large, MobileNet_V3_Large_Weights import torch.nn as nn class CustomMobileNetV3(nn.Module): def __init__(self, pretrained=True): super(CustomMobileNetV3, self).__init__() backbone = mobilenet_v3_large(weights=MobileNet_V3_Large_Weights.IMAGENET1K_V1 if pretrained else None) # 移除分类器层保留特征提取部分 layers = list(backbone.children())[:-1] self.backbone = nn.Sequential(*layers) def forward(self, x): return self.backbone(x) ``` #### 3. 修改YOLOv5配置文件 编辑位于 `yolov5/models` 下的 `.yaml` 配置文件来指定新的主干网络为刚刚定义好的 `CustomMobileNetV3` 类型,并调整其他参数使之适应新骨架的要求[^2]。 ```yaml # yolov5m-mobilenetv3.yaml nc: 80 # number of classes depth_multiple: 0.67 width_multiple: 0.75 backbone: - [CustomMobileNetV3]: pretrained: true ... ``` #### 4. 替换默认主干网络 打开 `models/common.py` 或者相应版本下的同名文件,找到负责加载预训练权重的地方,替换原有的 ResNet 或 CSPDarknet 实现为上面编写的 `CustomMobileNetV3`[^3]。 #### 5. 训练与评估 完成以上修改之后就可以按照官方教程准备数据集、设定超参并启动训练过程了。记得定期保存 checkpoint 并测试验证集上的表现情况以监控学习进度。 ```bash python train.py --img 640 --batch 16 --epochs 50 --data coco128.yaml --weights '' --cfg yolov5m-mobilenetv3.yaml ``` 通过上述步骤可以有效地将 MobileNetV3 整合成 YOLOv5 的一部分,从而获得更高效的计算性能以及更好的移动端部署能力。
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哪 吒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值