blob: 86ac8729d22ad34d313b9a7419f38dce6d63a305 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/renderer/media/rtc_video_decoder.h"
#include "base/bind.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/metrics/histogram.h"
#include "base/numerics/safe_conversions.h"
#include "base/stl_util.h"
#include "base/synchronization/waitable_event.h"
#include "base/task_runner_util.h"
#include "content/renderer/media/webrtc/webrtc_video_frame_adapter.h"
#include "gpu/command_buffer/common/mailbox_holder.h"
#include "media/base/bind_to_current_loop.h"
#include "media/renderers/gpu_video_accelerator_factories.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/webrtc/base/bind.h"
#include "third_party/webrtc/system_wrappers/include/ref_count.h"
#include "third_party/webrtc/video_frame.h"
namespace content {
const int32 RTCVideoDecoder::ID_LAST = 0x3FFFFFFF;
const int32 RTCVideoDecoder::ID_HALF = 0x20000000;
const int32 RTCVideoDecoder::ID_INVALID = -1;
// Maximum number of concurrent VDA::Decode() operations RVD will maintain.
// Higher values allow better pipelining in the GPU, but also require more
// resources.
static const size_t kMaxInFlightDecodes = 8;
// Number of allocated shared memory segments.
static const size_t kNumSharedMemorySegments = 16;
// Maximum number of pending WebRTC buffers that are waiting for shared memory.
static const size_t kMaxNumOfPendingBuffers = 8;
RTCVideoDecoder::BufferData::BufferData(int32 bitstream_buffer_id,
uint32_t timestamp,
size_t size,
const gfx::Rect& visible_rect)
: bitstream_buffer_id(bitstream_buffer_id),
timestamp(timestamp),
size(size),
visible_rect(visible_rect) {}
RTCVideoDecoder::BufferData::BufferData() {}
RTCVideoDecoder::BufferData::~BufferData() {}
RTCVideoDecoder::RTCVideoDecoder(webrtc::VideoCodecType type,
media::GpuVideoAcceleratorFactories* factories)
: video_codec_type_(type),
factories_(factories),
decoder_texture_target_(0),
next_picture_buffer_id_(0),
state_(UNINITIALIZED),
decode_complete_callback_(nullptr),
num_shm_buffers_(0),
next_bitstream_buffer_id_(0),
reset_bitstream_buffer_id_(ID_INVALID),
weak_factory_(this) {
DCHECK(!factories_->GetTaskRunner()->BelongsToCurrentThread());
}
RTCVideoDecoder::~RTCVideoDecoder() {
DVLOG(2) << "~RTCVideoDecoder";
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DestroyVDA();
// Delete all shared memories.
STLDeleteElements(&available_shm_segments_);
STLDeleteValues(&bitstream_buffers_in_decoder_);
STLDeleteContainerPairFirstPointers(decode_buffers_.begin(),
decode_buffers_.end());
decode_buffers_.clear();
ClearPendingBuffers();
}
// static
scoped_ptr<RTCVideoDecoder> RTCVideoDecoder::Create(
webrtc::VideoCodecType type,
media::GpuVideoAcceleratorFactories* factories) {
scoped_ptr<RTCVideoDecoder> decoder;
// Convert WebRTC codec type to media codec profile.
media::VideoCodecProfile profile;
switch (type) {
case webrtc::kVideoCodecVP8:
profile = media::VP8PROFILE_ANY;
break;
case webrtc::kVideoCodecH264:
profile = media::H264PROFILE_MAIN;
break;
default:
DVLOG(2) << "Video codec not supported:" << type;
return decoder.Pass();
}
base::WaitableEvent waiter(true, false);
decoder.reset(new RTCVideoDecoder(type, factories));
decoder->factories_->GetTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RTCVideoDecoder::CreateVDA,
base::Unretained(decoder.get()),
profile,
&waiter));
waiter.Wait();
// |decoder->vda_| is nullptr if the codec is not supported.
if (decoder->vda_)
decoder->state_ = INITIALIZED;
else
factories->GetTaskRunner()->DeleteSoon(FROM_HERE, decoder.release());
return decoder.Pass();
}
// static
void RTCVideoDecoder::Destroy(webrtc::VideoDecoder* decoder,
media::GpuVideoAcceleratorFactories* factories) {
factories->GetTaskRunner()->DeleteSoon(FROM_HERE, decoder);
}
int32_t RTCVideoDecoder::InitDecode(const webrtc::VideoCodec* codecSettings,
int32_t /*numberOfCores*/) {
DVLOG(2) << "InitDecode";
DCHECK_EQ(video_codec_type_, codecSettings->codecType);
if (codecSettings->codecType == webrtc::kVideoCodecVP8 &&
codecSettings->codecSpecific.VP8.feedbackModeOn) {
LOG(ERROR) << "Feedback mode not supported";
return RecordInitDecodeUMA(WEBRTC_VIDEO_CODEC_ERROR);
}
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED || state_ == DECODE_ERROR) {
LOG(ERROR) << "VDA is not initialized. state=" << state_;
return RecordInitDecodeUMA(WEBRTC_VIDEO_CODEC_UNINITIALIZED);
}
return RecordInitDecodeUMA(WEBRTC_VIDEO_CODEC_OK);
}
int32_t RTCVideoDecoder::Decode(
const webrtc::EncodedImage& inputImage,
bool missingFrames,
const webrtc::RTPFragmentationHeader* /*fragmentation*/,
const webrtc::CodecSpecificInfo* /*codecSpecificInfo*/,
int64_t /*renderTimeMs*/) {
DVLOG(3) << "Decode";
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED || !decode_complete_callback_) {
LOG(ERROR) << "The decoder has not initialized.";
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (state_ == DECODE_ERROR) {
LOG(ERROR) << "Decoding error occurred.";
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (missingFrames || !inputImage._completeFrame) {
DLOG(ERROR) << "Missing or incomplete frames.";
// Unlike the SW decoder in libvpx, hw decoder cannot handle broken frames.
// Return an error to request a key frame.
return WEBRTC_VIDEO_CODEC_ERROR;
}
// Most platforms' VDA implementations support mid-stream resolution change
// internally. Platforms whose VDAs fail to support mid-stream resolution
// change gracefully need to have their clients cover for them, and we do that
// here.
#ifdef ANDROID
const bool kVDACanHandleMidstreamResize = false;
#else
const bool kVDACanHandleMidstreamResize = true;
#endif
bool need_to_reset_for_midstream_resize = false;
if (inputImage._frameType == webrtc::kVideoFrameKey) {
const gfx::Size new_frame_size(inputImage._encodedWidth,
inputImage._encodedHeight);
DVLOG(2) << "Got key frame. size=" << new_frame_size.ToString();
if (new_frame_size.width() > max_resolution_.width() ||
new_frame_size.width() < min_resolution_.width() ||
new_frame_size.height() > max_resolution_.height() ||
new_frame_size.height() < min_resolution_.height()) {
DVLOG(1) << "Resolution unsupported, falling back to software decode";
return WEBRTC_VIDEO_CODEC_FALLBACK_SOFTWARE;
}
gfx::Size prev_frame_size = frame_size_;
frame_size_ = new_frame_size;
if (!kVDACanHandleMidstreamResize && !prev_frame_size.IsEmpty() &&
prev_frame_size != frame_size_) {
need_to_reset_for_midstream_resize = true;
}
} else if (IsFirstBufferAfterReset(next_bitstream_buffer_id_,
reset_bitstream_buffer_id_)) {
// TODO(wuchengli): VDA should handle it. Remove this when
// http://crosbug.com/p/21913 is fixed.
DVLOG(1) << "The first frame should be a key frame. Drop this.";
return WEBRTC_VIDEO_CODEC_ERROR;
}
// Create buffer metadata.
BufferData buffer_data(next_bitstream_buffer_id_,
inputImage._timeStamp,
inputImage._length,
gfx::Rect(frame_size_));
// Mask against 30 bits, to avoid (undefined) wraparound on signed integer.
next_bitstream_buffer_id_ = (next_bitstream_buffer_id_ + 1) & ID_LAST;
// If a shared memory segment is available, there are no pending buffers, and
// this isn't a mid-stream resolution change, then send the buffer for decode
// immediately. Otherwise, save the buffer in the queue for later decode.
scoped_ptr<base::SharedMemory> shm_buffer;
if (!need_to_reset_for_midstream_resize && pending_buffers_.empty())
shm_buffer = GetSHM_Locked(inputImage._length);
if (!shm_buffer) {
if (!SaveToPendingBuffers_Locked(inputImage, buffer_data)) {
// We have exceeded the pending buffers count, we are severely behind.
// Since we are returning ERROR, WebRTC will not be interested in the
// remaining buffers, and will provide us with a new keyframe instead.
// Better to drop any pending buffers and start afresh to catch up faster.
DVLOG(1) << "Exceeded maximum pending buffer count, dropping";
ClearPendingBuffers();
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (need_to_reset_for_midstream_resize) {
base::AutoUnlock auto_unlock(lock_);
Reset();
}
return WEBRTC_VIDEO_CODEC_OK;
}
SaveToDecodeBuffers_Locked(inputImage, shm_buffer.Pass(), buffer_data);
factories_->GetTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RTCVideoDecoder::RequestBufferDecode,
weak_factory_.GetWeakPtr()));
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t RTCVideoDecoder::RegisterDecodeCompleteCallback(
webrtc::DecodedImageCallback* callback) {
DVLOG(2) << "RegisterDecodeCompleteCallback";
DCHECK(callback);
base::AutoLock auto_lock(lock_);
decode_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t RTCVideoDecoder::Release() {
DVLOG(2) << "Release";
// Do not destroy VDA because WebRTC can call InitDecode and start decoding
// again.
return Reset();
}
int32_t RTCVideoDecoder::Reset() {
DVLOG(2) << "Reset";
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED) {
LOG(ERROR) << "Decoder not initialized.";
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (next_bitstream_buffer_id_ != 0)
reset_bitstream_buffer_id_ = next_bitstream_buffer_id_ - 1;
else
reset_bitstream_buffer_id_ = ID_LAST;
// If VDA is already resetting, no need to request the reset again.
if (state_ != RESETTING) {
state_ = RESETTING;
factories_->GetTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RTCVideoDecoder::ResetInternal,
weak_factory_.GetWeakPtr()));
}
return WEBRTC_VIDEO_CODEC_OK;
}
void RTCVideoDecoder::ProvidePictureBuffers(uint32 count,
const gfx::Size& size,
uint32 texture_target) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(3) << "ProvidePictureBuffers. texture_target=" << texture_target;
if (!vda_)
return;
std::vector<uint32> texture_ids;
std::vector<gpu::Mailbox> texture_mailboxes;
decoder_texture_target_ = texture_target;
if (!factories_->CreateTextures(count,
size,
&texture_ids,
&texture_mailboxes,
decoder_texture_target_)) {
NotifyError(media::VideoDecodeAccelerator::PLATFORM_FAILURE);
return;
}
DCHECK_EQ(count, texture_ids.size());
DCHECK_EQ(count, texture_mailboxes.size());
std::vector<media::PictureBuffer> picture_buffers;
for (size_t i = 0; i < texture_ids.size(); ++i) {
picture_buffers.push_back(media::PictureBuffer(
next_picture_buffer_id_++, size, texture_ids[i], texture_mailboxes[i]));
bool inserted = assigned_picture_buffers_.insert(std::make_pair(
picture_buffers.back().id(), picture_buffers.back())).second;
DCHECK(inserted);
}
vda_->AssignPictureBuffers(picture_buffers);
}
void RTCVideoDecoder::DismissPictureBuffer(int32 id) {
DVLOG(3) << "DismissPictureBuffer. id=" << id;
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
std::map<int32, media::PictureBuffer>::iterator it =
assigned_picture_buffers_.find(id);
if (it == assigned_picture_buffers_.end()) {
NOTREACHED() << "Missing picture buffer: " << id;
return;
}
media::PictureBuffer buffer_to_dismiss = it->second;
assigned_picture_buffers_.erase(it);
if (!picture_buffers_at_display_.count(id)) {
// We can delete the texture immediately as it's not being displayed.
factories_->DeleteTexture(buffer_to_dismiss.texture_id());
return;
}
// Not destroying a texture in display in |picture_buffers_at_display_|.
// Postpone deletion until after it's returned to us.
}
void RTCVideoDecoder::PictureReady(const media::Picture& picture) {
DVLOG(3) << "PictureReady";
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
std::map<int32, media::PictureBuffer>::iterator it =
assigned_picture_buffers_.find(picture.picture_buffer_id());
if (it == assigned_picture_buffers_.end()) {
NOTREACHED() << "Missing picture buffer: " << picture.picture_buffer_id();
NotifyError(media::VideoDecodeAccelerator::PLATFORM_FAILURE);
return;
}
uint32_t timestamp = 0;
gfx::Rect visible_rect;
GetBufferData(picture.bitstream_buffer_id(), &timestamp, &visible_rect);
if (!picture.visible_rect().IsEmpty())
visible_rect = picture.visible_rect();
const media::PictureBuffer& pb = it->second;
if (visible_rect.IsEmpty() || !gfx::Rect(pb.size()).Contains(visible_rect)) {
LOG(ERROR) << "Invalid picture size: " << visible_rect.ToString()
<< " should fit in " << pb.size().ToString();
NotifyError(media::VideoDecodeAccelerator::PLATFORM_FAILURE);
return;
}
scoped_refptr<media::VideoFrame> frame =
CreateVideoFrame(picture, pb, timestamp, visible_rect);
bool inserted =
picture_buffers_at_display_.insert(std::make_pair(
picture.picture_buffer_id(),
pb.texture_id())).second;
DCHECK(inserted);
// Create a WebRTC video frame.
webrtc::VideoFrame decoded_image(
new rtc::RefCountedObject<WebRtcVideoFrameAdapter>(frame), timestamp, 0,
webrtc::kVideoRotation_0);
// Invoke decode callback. WebRTC expects no callback after Reset or Release.
{
base::AutoLock auto_lock(lock_);
DCHECK(decode_complete_callback_);
if (IsBufferAfterReset(picture.bitstream_buffer_id(),
reset_bitstream_buffer_id_)) {
decode_complete_callback_->Decoded(decoded_image);
}
}
}
scoped_refptr<media::VideoFrame> RTCVideoDecoder::CreateVideoFrame(
const media::Picture& picture,
const media::PictureBuffer& pb,
uint32_t timestamp,
const gfx::Rect& visible_rect) {
DCHECK(decoder_texture_target_);
// Convert timestamp from 90KHz to ms.
base::TimeDelta timestamp_ms = base::TimeDelta::FromInternalValue(
base::checked_cast<uint64_t>(timestamp) * 1000 / 90);
// TODO(mcasas): The incoming data is actually a YUV format, but is labelled
// as ARGB. This prevents the compositor from messing with it, since the
// underlying platform can handle the former format natively. Make sure the
// correct format is used and everyone down the line understands it.
scoped_refptr<media::VideoFrame> frame(media::VideoFrame::WrapNativeTexture(
media::PIXEL_FORMAT_ARGB,
gpu::MailboxHolder(pb.texture_mailbox(), gpu::SyncToken(),
decoder_texture_target_),
media::BindToCurrentLoop(base::Bind(
&RTCVideoDecoder::ReleaseMailbox, weak_factory_.GetWeakPtr(),
factories_, picture.picture_buffer_id(), pb.texture_id())),
pb.size(), visible_rect, visible_rect.size(), timestamp_ms));
if (picture.allow_overlay()) {
frame->metadata()->SetBoolean(media::VideoFrameMetadata::ALLOW_OVERLAY,
true);
}
return frame;
}
void RTCVideoDecoder::NotifyEndOfBitstreamBuffer(int32 id) {
DVLOG(3) << "NotifyEndOfBitstreamBuffer. id=" << id;
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
std::map<int32, base::SharedMemory*>::iterator it =
bitstream_buffers_in_decoder_.find(id);
if (it == bitstream_buffers_in_decoder_.end()) {
NotifyError(media::VideoDecodeAccelerator::PLATFORM_FAILURE);
NOTREACHED() << "Missing bitstream buffer: " << id;
return;
}
{
base::AutoLock auto_lock(lock_);
PutSHM_Locked(scoped_ptr<base::SharedMemory>(it->second));
}
bitstream_buffers_in_decoder_.erase(it);
RequestBufferDecode();
}
void RTCVideoDecoder::NotifyFlushDone() {
DVLOG(3) << "NotifyFlushDone";
NOTREACHED() << "Unexpected flush done notification.";
}
void RTCVideoDecoder::NotifyResetDone() {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(3) << "NotifyResetDone";
if (!vda_)
return;
input_buffer_data_.clear();
{
base::AutoLock auto_lock(lock_);
state_ = INITIALIZED;
}
// Send the pending buffers for decoding.
RequestBufferDecode();
}
void RTCVideoDecoder::NotifyError(media::VideoDecodeAccelerator::Error error) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
if (!vda_)
return;
LOG(ERROR) << "VDA Error:" << error;
UMA_HISTOGRAM_ENUMERATION("Media.RTCVideoDecoderError",
error,
media::VideoDecodeAccelerator::LARGEST_ERROR_ENUM);
DestroyVDA();
base::AutoLock auto_lock(lock_);
state_ = DECODE_ERROR;
}
void RTCVideoDecoder::RequestBufferDecode() {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
if (!vda_)
return;
MovePendingBuffersToDecodeBuffers();
while (CanMoreDecodeWorkBeDone()) {
// Get a buffer and data from the queue.
scoped_ptr<base::SharedMemory> shm_buffer;
BufferData buffer_data;
{
base::AutoLock auto_lock(lock_);
// Do not request decode if VDA is resetting.
if (decode_buffers_.empty() || state_ == RESETTING)
return;
shm_buffer.reset(decode_buffers_.front().first);
buffer_data = decode_buffers_.front().second;
decode_buffers_.pop_front();
// Drop the buffers before Reset or Release is called.
if (!IsBufferAfterReset(buffer_data.bitstream_buffer_id,
reset_bitstream_buffer_id_)) {
PutSHM_Locked(shm_buffer.Pass());
continue;
}
}
// Create a BitstreamBuffer and send to VDA to decode.
media::BitstreamBuffer bitstream_buffer(
buffer_data.bitstream_buffer_id, shm_buffer->handle(), buffer_data.size,
base::TimeDelta::FromInternalValue(buffer_data.timestamp));
const bool inserted =
bitstream_buffers_in_decoder_.insert(
std::make_pair(bitstream_buffer.id(), shm_buffer.release())).second;
DCHECK(inserted) << "bitstream_buffer_id " << bitstream_buffer.id()
<< " existed already in bitstream_buffers_in_decoder_";
RecordBufferData(buffer_data);
vda_->Decode(bitstream_buffer);
}
}
bool RTCVideoDecoder::CanMoreDecodeWorkBeDone() {
return bitstream_buffers_in_decoder_.size() < kMaxInFlightDecodes;
}
bool RTCVideoDecoder::IsBufferAfterReset(int32 id_buffer, int32 id_reset) {
if (id_reset == ID_INVALID)
return true;
int32 diff = id_buffer - id_reset;
if (diff <= 0)
diff += ID_LAST + 1;
return diff < ID_HALF;
}
bool RTCVideoDecoder::IsFirstBufferAfterReset(int32 id_buffer, int32 id_reset) {
if (id_reset == ID_INVALID)
return id_buffer == 0;
return id_buffer == ((id_reset + 1) & ID_LAST);
}
void RTCVideoDecoder::SaveToDecodeBuffers_Locked(
const webrtc::EncodedImage& input_image,
scoped_ptr<base::SharedMemory> shm_buffer,
const BufferData& buffer_data) {
memcpy(shm_buffer->memory(), input_image._buffer, input_image._length);
std::pair<base::SharedMemory*, BufferData> buffer_pair =
std::make_pair(shm_buffer.release(), buffer_data);
// Store the buffer and the metadata to the queue.
decode_buffers_.push_back(buffer_pair);
}
bool RTCVideoDecoder::SaveToPendingBuffers_Locked(
const webrtc::EncodedImage& input_image,
const BufferData& buffer_data) {
DVLOG(2) << "SaveToPendingBuffers_Locked"
<< ". pending_buffers size=" << pending_buffers_.size()
<< ". decode_buffers_ size=" << decode_buffers_.size()
<< ". available_shm size=" << available_shm_segments_.size();
// Queued too many buffers. Something goes wrong.
if (pending_buffers_.size() >= kMaxNumOfPendingBuffers) {
LOG(WARNING) << "Too many pending buffers!";
return false;
}
// Clone the input image and save it to the queue.
uint8_t* buffer = new uint8_t[input_image._length];
// TODO(wuchengli): avoid memcpy. Extend webrtc::VideoDecoder::Decode()
// interface to take a non-const ptr to the frame and add a method to the
// frame that will swap buffers with another.
memcpy(buffer, input_image._buffer, input_image._length);
webrtc::EncodedImage encoded_image(
buffer, input_image._length, input_image._length);
std::pair<webrtc::EncodedImage, BufferData> buffer_pair =
std::make_pair(encoded_image, buffer_data);
pending_buffers_.push_back(buffer_pair);
return true;
}
void RTCVideoDecoder::MovePendingBuffersToDecodeBuffers() {
base::AutoLock auto_lock(lock_);
while (pending_buffers_.size() > 0) {
// Get a pending buffer from the queue.
const webrtc::EncodedImage& input_image = pending_buffers_.front().first;
const BufferData& buffer_data = pending_buffers_.front().second;
// Drop the frame if it comes before Reset or Release.
if (!IsBufferAfterReset(buffer_data.bitstream_buffer_id,
reset_bitstream_buffer_id_)) {
delete[] input_image._buffer;
pending_buffers_.pop_front();
continue;
}
// Get shared memory and save it to decode buffers.
scoped_ptr<base::SharedMemory> shm_buffer =
GetSHM_Locked(input_image._length);
if (!shm_buffer)
return;
SaveToDecodeBuffers_Locked(input_image, shm_buffer.Pass(), buffer_data);
delete[] input_image._buffer;
pending_buffers_.pop_front();
}
}
void RTCVideoDecoder::ResetInternal() {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(2) << "ResetInternal";
if (vda_)
vda_->Reset();
}
// static
void RTCVideoDecoder::ReleaseMailbox(
base::WeakPtr<RTCVideoDecoder> decoder,
media::GpuVideoAcceleratorFactories* factories,
int64 picture_buffer_id,
uint32 texture_id,
const gpu::SyncToken& release_sync_token) {
DCHECK(factories->GetTaskRunner()->BelongsToCurrentThread());
factories->WaitSyncToken(release_sync_token);
if (decoder) {
decoder->ReusePictureBuffer(picture_buffer_id);
return;
}
// It's the last chance to delete the texture after display,
// because RTCVideoDecoder was destructed.
factories->DeleteTexture(texture_id);
}
void RTCVideoDecoder::ReusePictureBuffer(int64 picture_buffer_id) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(3) << "ReusePictureBuffer. id=" << picture_buffer_id;
DCHECK(!picture_buffers_at_display_.empty());
PictureBufferTextureMap::iterator display_iterator =
picture_buffers_at_display_.find(picture_buffer_id);
uint32 texture_id = display_iterator->second;
DCHECK(display_iterator != picture_buffers_at_display_.end());
picture_buffers_at_display_.erase(display_iterator);
if (!assigned_picture_buffers_.count(picture_buffer_id)) {
// This picture was dismissed while in display, so we postponed deletion.
factories_->DeleteTexture(texture_id);
return;
}
// DestroyVDA() might already have been called.
if (vda_)
vda_->ReusePictureBuffer(picture_buffer_id);
}
bool RTCVideoDecoder::IsProfileSupported(media::VideoCodecProfile profile) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
media::VideoDecodeAccelerator::Capabilities capabilities =
factories_->GetVideoDecodeAcceleratorCapabilities();
for (const auto& supported_profile : capabilities.supported_profiles) {
if (profile == supported_profile.profile) {
min_resolution_ = supported_profile.min_resolution;
max_resolution_ = supported_profile.max_resolution;
return true;
}
}
return false;
}
void RTCVideoDecoder::CreateVDA(media::VideoCodecProfile profile,
base::WaitableEvent* waiter) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
if (!IsProfileSupported(profile)) {
DVLOG(1) << "Unsupported profile " << profile;
} else {
vda_ = factories_->CreateVideoDecodeAccelerator();
media::VideoDecodeAccelerator::Config config(profile);
if (vda_ && !vda_->Initialize(config, this))
vda_.release()->Destroy();
}
waiter->Signal();
}
void RTCVideoDecoder::DestroyTextures() {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
// Not destroying PictureBuffers in |picture_buffers_at_display_| yet, since
// their textures may still be in use by the user of this RTCVideoDecoder.
for (const auto& picture_buffer_at_display : picture_buffers_at_display_)
assigned_picture_buffers_.erase(picture_buffer_at_display.first);
for (const auto& assigned_picture_buffer : assigned_picture_buffers_)
factories_->DeleteTexture(assigned_picture_buffer.second.texture_id());
assigned_picture_buffers_.clear();
}
void RTCVideoDecoder::DestroyVDA() {
DVLOG(2) << "DestroyVDA";
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
if (vda_)
vda_.release()->Destroy();
DestroyTextures();
base::AutoLock auto_lock(lock_);
state_ = UNINITIALIZED;
}
scoped_ptr<base::SharedMemory> RTCVideoDecoder::GetSHM_Locked(size_t min_size) {
// Reuse a SHM if possible.
if (!available_shm_segments_.empty() &&
available_shm_segments_.back()->mapped_size() >= min_size) {
scoped_ptr<base::SharedMemory> buffer(available_shm_segments_.back());
available_shm_segments_.pop_back();
return buffer;
}
if (available_shm_segments_.size() != num_shm_buffers_) {
// Either available_shm_segments_ is empty (and we already have some SHM
// buffers allocated), or the size of available segments is not large
// enough. In the former case we need to wait for buffers to be returned,
// in the latter we need to wait for all buffers to be returned to drop
// them and reallocate with a new size.
return NULL;
}
if (num_shm_buffers_ != 0) {
STLDeleteElements(&available_shm_segments_);
num_shm_buffers_ = 0;
}
// Create twice as large buffers as required, to avoid frequent reallocation.
factories_->GetTaskRunner()->PostTask(
FROM_HERE,
base::Bind(&RTCVideoDecoder::CreateSHM, weak_factory_.GetWeakPtr(),
kNumSharedMemorySegments, min_size * 2));
// We'll be called again after the shared memory is created.
return NULL;
}
void RTCVideoDecoder::PutSHM_Locked(scoped_ptr<base::SharedMemory> shm_buffer) {
lock_.AssertAcquired();
available_shm_segments_.push_back(shm_buffer.release());
}
void RTCVideoDecoder::CreateSHM(size_t count, size_t size) {
DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent();
DVLOG(2) << "CreateSHM. count=" << count << ", size=" << size;
for (size_t i = 0; i < count; i++) {
scoped_ptr<base::SharedMemory> shm = factories_->CreateSharedMemory(size);
if (!shm) {
LOG(ERROR) << "Failed allocating shared memory of size=" << size;
NotifyError(media::VideoDecodeAccelerator::PLATFORM_FAILURE);
return;
}
base::AutoLock auto_lock(lock_);
PutSHM_Locked(shm.Pass());
++num_shm_buffers_;
}
// Kick off the decoding.
RequestBufferDecode();
}
void RTCVideoDecoder::RecordBufferData(const BufferData& buffer_data) {
input_buffer_data_.push_front(buffer_data);
// Why this value? Because why not. avformat.h:MAX_REORDER_DELAY is 16, but
// that's too small for some pathological B-frame test videos. The cost of
// using too-high a value is low (192 bits per extra slot).
static const size_t kMaxInputBufferDataSize = 128;
// Pop from the back of the list, because that's the oldest and least likely
// to be useful in the future data.
if (input_buffer_data_.size() > kMaxInputBufferDataSize)
input_buffer_data_.pop_back();
}
void RTCVideoDecoder::GetBufferData(int32 bitstream_buffer_id,
uint32_t* timestamp,
gfx::Rect* visible_rect) {
for (const auto& buffer_data : input_buffer_data_) {
if (buffer_data.bitstream_buffer_id != bitstream_buffer_id)
continue;
*timestamp = buffer_data.timestamp;
*visible_rect = buffer_data.visible_rect;
return;
}
NOTREACHED() << "Missing bitstream buffer id: " << bitstream_buffer_id;
}
int32_t RTCVideoDecoder::RecordInitDecodeUMA(int32_t status) {
// Logging boolean is enough to know if HW decoding has been used. Also,
// InitDecode is less likely to return an error so enum is not used here.
bool sample = (status == WEBRTC_VIDEO_CODEC_OK) ? true : false;
UMA_HISTOGRAM_BOOLEAN("Media.RTCVideoDecoderInitDecodeSuccess", sample);
return status;
}
void RTCVideoDecoder::DCheckGpuVideoAcceleratorFactoriesTaskRunnerIsCurrent()
const {
DCHECK(factories_->GetTaskRunner()->BelongsToCurrentThread());
}
void RTCVideoDecoder::ClearPendingBuffers() {
// Delete WebRTC input buffers.
for (const auto& pending_buffer : pending_buffers_)
delete[] pending_buffer.first._buffer;
pending_buffers_.clear();
}
} // namespace content