| // Copyright 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cc/math_util.h" |
| |
| #include <cmath> |
| |
| #include "cc/test/geometry_test_utils.h" |
| #include "testing/gmock/include/gmock/gmock.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "ui/gfx/rect.h" |
| #include "ui/gfx/rect_f.h" |
| #include <public/WebTransformationMatrix.h> |
| |
| using WebKit::WebTransformationMatrix; |
| |
| namespace cc { |
| namespace { |
| |
| TEST(MathUtilTest, verifyBackfaceVisibilityBasicCases) |
| { |
| WebTransformationMatrix transform; |
| |
| transform.makeIdentity(); |
| EXPECT_FALSE(transform.isBackFaceVisible()); |
| |
| transform.makeIdentity(); |
| transform.rotate3d(0, 80, 0); |
| EXPECT_FALSE(transform.isBackFaceVisible()); |
| |
| transform.makeIdentity(); |
| transform.rotate3d(0, 100, 0); |
| EXPECT_TRUE(transform.isBackFaceVisible()); |
| |
| // Edge case, 90 degree rotation should return false. |
| transform.makeIdentity(); |
| transform.rotate3d(0, 90, 0); |
| EXPECT_FALSE(transform.isBackFaceVisible()); |
| } |
| |
| TEST(MathUtilTest, verifyBackfaceVisibilityForPerspective) |
| { |
| WebTransformationMatrix layerSpaceToProjectionPlane; |
| |
| // This tests if isBackFaceVisible works properly under perspective transforms. |
| // Specifically, layers that may have their back face visible in orthographic |
| // projection, may not actually have back face visible under perspective projection. |
| |
| // Case 1: Layer is rotated by slightly more than 90 degrees, at the center of the |
| // prespective projection. In this case, the layer's back-side is visible to |
| // the camera. |
| layerSpaceToProjectionPlane.makeIdentity(); |
| layerSpaceToProjectionPlane.applyPerspective(1); |
| layerSpaceToProjectionPlane.translate3d(0, 0, 0); |
| layerSpaceToProjectionPlane.rotate3d(0, 100, 0); |
| EXPECT_TRUE(layerSpaceToProjectionPlane.isBackFaceVisible()); |
| |
| // Case 2: Layer is rotated by slightly more than 90 degrees, but shifted off to the |
| // side of the camera. Because of the wide field-of-view, the layer's front |
| // side is still visible. |
| // |
| // |<-- front side of layer is visible to perspective camera |
| // \ | / |
| // \ | / |
| // \| / |
| // | / |
| // |\ /<-- camera field of view |
| // | \ / |
| // back side of layer -->| \ / |
| // \./ <-- camera origin |
| // |
| layerSpaceToProjectionPlane.makeIdentity(); |
| layerSpaceToProjectionPlane.applyPerspective(1); |
| layerSpaceToProjectionPlane.translate3d(-10, 0, 0); |
| layerSpaceToProjectionPlane.rotate3d(0, 100, 0); |
| EXPECT_FALSE(layerSpaceToProjectionPlane.isBackFaceVisible()); |
| |
| // Case 3: Additionally rotating the layer by 180 degrees should of course show the |
| // opposite result of case 2. |
| layerSpaceToProjectionPlane.rotate3d(0, 180, 0); |
| EXPECT_TRUE(layerSpaceToProjectionPlane.isBackFaceVisible()); |
| } |
| |
| TEST(MathUtilTest, verifyProjectionOfPerpendicularPlane) |
| { |
| // In this case, the m33() element of the transform becomes zero, which could cause a |
| // divide-by-zero when projecting points/quads. |
| |
| WebTransformationMatrix transform; |
| transform.makeIdentity(); |
| transform.setM33(0); |
| |
| gfx::RectF rect = gfx::RectF(0, 0, 1, 1); |
| gfx::RectF projectedRect = MathUtil::projectClippedRect(transform, rect); |
| |
| EXPECT_EQ(0, projectedRect.x()); |
| EXPECT_EQ(0, projectedRect.y()); |
| EXPECT_TRUE(projectedRect.IsEmpty()); |
| } |
| |
| TEST(MathUtilTest, verifyEnclosingClippedRectUsesCorrectInitialBounds) |
| { |
| HomogeneousCoordinate h1(-100, -100, 0, 1); |
| HomogeneousCoordinate h2(-10, -10, 0, 1); |
| HomogeneousCoordinate h3(10, 10, 0, -1); |
| HomogeneousCoordinate h4(100, 100, 0, -1); |
| |
| // The bounds of the enclosing clipped rect should be -100 to -10 for both x and y. |
| // However, if there is a bug where the initial xmin/xmax/ymin/ymax are initialized to |
| // numeric_limits<float>::min() (which is zero, not -flt_max) then the enclosing |
| // clipped rect will be computed incorrectly. |
| gfx::RectF result = MathUtil::computeEnclosingClippedRect(h1, h2, h3, h4); |
| |
| EXPECT_FLOAT_RECT_EQ(gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)), result); |
| } |
| |
| TEST(MathUtilTest, verifyEnclosingRectOfVerticesUsesCorrectInitialBounds) |
| { |
| gfx::PointF vertices[3]; |
| int numVertices = 3; |
| |
| vertices[0] = gfx::PointF(-10, -100); |
| vertices[1] = gfx::PointF(-100, -10); |
| vertices[2] = gfx::PointF(-30, -30); |
| |
| // The bounds of the enclosing rect should be -100 to -10 for both x and y. However, |
| // if there is a bug where the initial xmin/xmax/ymin/ymax are initialized to |
| // numeric_limits<float>::min() (which is zero, not -flt_max) then the enclosing |
| // clipped rect will be computed incorrectly. |
| gfx::RectF result = MathUtil::computeEnclosingRectOfVertices(vertices, numVertices); |
| |
| EXPECT_FLOAT_RECT_EQ(gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)), result); |
| } |
| |
| TEST(MathUtilTest, smallestAngleBetweenVectors) |
| { |
| gfx::Vector2dF x(1, 0); |
| gfx::Vector2dF y(0, 1); |
| gfx::Vector2dF testVector(0.5, 0.5); |
| |
| // Orthogonal vectors are at an angle of 90 degress. |
| EXPECT_EQ(90, MathUtil::smallestAngleBetweenVectors(x, y)); |
| |
| // A vector makes a zero angle with itself. |
| EXPECT_EQ(0, MathUtil::smallestAngleBetweenVectors(x, x)); |
| EXPECT_EQ(0, MathUtil::smallestAngleBetweenVectors(y, y)); |
| EXPECT_EQ(0, MathUtil::smallestAngleBetweenVectors(testVector, testVector)); |
| |
| // Parallel but reversed vectors are at 180 degrees. |
| EXPECT_FLOAT_EQ(180, MathUtil::smallestAngleBetweenVectors(x, -x)); |
| EXPECT_FLOAT_EQ(180, MathUtil::smallestAngleBetweenVectors(y, -y)); |
| EXPECT_FLOAT_EQ(180, MathUtil::smallestAngleBetweenVectors(testVector, -testVector)); |
| |
| // The test vector is at a known angle. |
| EXPECT_FLOAT_EQ(45, std::floor(MathUtil::smallestAngleBetweenVectors(testVector, x))); |
| EXPECT_FLOAT_EQ(45, std::floor(MathUtil::smallestAngleBetweenVectors(testVector, y))); |
| } |
| |
| TEST(MathUtilTest, vectorProjection) |
| { |
| gfx::Vector2dF x(1, 0); |
| gfx::Vector2dF y(0, 1); |
| gfx::Vector2dF testVector(0.3f, 0.7f); |
| |
| // Orthogonal vectors project to a zero vector. |
| EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::projectVector(x, y)); |
| EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::projectVector(y, x)); |
| |
| // Projecting a vector onto the orthonormal basis gives the corresponding component of the |
| // vector. |
| EXPECT_VECTOR_EQ(gfx::Vector2dF(testVector.x(), 0), MathUtil::projectVector(testVector, x)); |
| EXPECT_VECTOR_EQ(gfx::Vector2dF(0, testVector.y()), MathUtil::projectVector(testVector, y)); |
| |
| // Finally check than an arbitrary vector projected to another one gives a vector parallel to |
| // the second vector. |
| gfx::Vector2dF targetVector(0.5, 0.2f); |
| gfx::Vector2dF projectedVector = MathUtil::projectVector(testVector, targetVector); |
| EXPECT_EQ(projectedVector.x() / targetVector.x(), |
| projectedVector.y() / targetVector.y()); |
| } |
| |
| } // namespace |
| } // namespace cc |