blob: f2591f600f07ff072382b2e5b270cec28a435813 [file] [log] [blame]
// Copyright (c) 2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/common/ipc_channel_posix.h"
#include <errno.h>
#include <fcntl.h>
#include <stddef.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#if defined(OS_LINUX)
#include <linux/un.h>
#elif defined(OS_MACOSX)
#include <sys/un.h>
#endif
#include "base/logging.h"
#include "base/process_util.h"
#include "base/scoped_ptr.h"
#include "base/string_util.h"
#include "chrome/common/chrome_counters.h"
#include "chrome/common/ipc_message_utils.h"
namespace IPC {
//------------------------------------------------------------------------------
// TODO(playmobil): Only use FIFOs for debugging, for real work, use a
// socketpair.
namespace {
// The -1 is to take the NULL terminator into account.
#if defined(OS_LINUX)
const size_t kMaxPipeNameLength = UNIX_PATH_MAX - 1;
#elif defined(OS_MACOSX)
// OS X doesn't define UNIX_PATH_MAX
// Per the size specified for the sun_path structure of sockaddr_un in sys/un.h.
const size_t kMaxPipeNameLength = 104 - 1;
#endif
// Creates a Fifo with the specified name ready to listen on.
bool CreateServerFifo(const std::string &pipe_name, int* server_listen_fd) {
DCHECK(server_listen_fd);
DCHECK(pipe_name.length() > 0);
DCHECK(pipe_name.length() < kMaxPipeNameLength);
if (pipe_name.length() == 0 || pipe_name.length() > kMaxPipeNameLength) {
return false;
}
// Create socket.
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0) {
return false;
}
// Make socket non-blocking
if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) {
close(fd);
return false;
}
// Delete any old FS instances.
unlink(pipe_name.c_str());
// Create unix_addr structure
struct sockaddr_un unix_addr;
memset(&unix_addr, 0, sizeof(unix_addr));
unix_addr.sun_family = AF_UNIX;
snprintf(unix_addr.sun_path, kMaxPipeNameLength + 1, "%s", pipe_name.c_str());
size_t unix_addr_len = offsetof(struct sockaddr_un, sun_path) +
strlen(unix_addr.sun_path) + 1;
// Bind the socket.
if (bind(fd, reinterpret_cast<const sockaddr*>(&unix_addr),
unix_addr_len) != 0) {
close(fd);
return false;
}
// Start listening on the socket.
const int listen_queue_length = 1;
if (listen(fd, listen_queue_length) != 0) {
close(fd);
return false;
}
*server_listen_fd = fd;
return true;
}
// Accept a connection on a fifo.
bool ServerAcceptFifoConnection(int server_listen_fd, int* server_socket) {
DCHECK(server_socket);
int accept_fd = accept(server_listen_fd, NULL, 0);
if (accept_fd < 0)
return false;
*server_socket = accept_fd;
return true;
}
bool ClientConnectToFifo(const std::string &pipe_name, int* client_socket) {
DCHECK(client_socket);
DCHECK(pipe_name.length() < kMaxPipeNameLength);
// Create socket.
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0) {
LOG(ERROR) << "fd is invalid";
return false;
}
// Make socket non-blocking
if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) {
LOG(ERROR) << "fcnt failed";
close(fd);
return false;
}
// Create server side of socket.
struct sockaddr_un server_unix_addr;
memset(&server_unix_addr, 0, sizeof(server_unix_addr));
server_unix_addr.sun_family = AF_UNIX;
snprintf(server_unix_addr.sun_path, kMaxPipeNameLength + 1, "%s",
pipe_name.c_str());
size_t server_unix_addr_len = offsetof(struct sockaddr_un, sun_path) +
strlen(server_unix_addr.sun_path) + 1;
int ret_val = -1;
do {
ret_val = connect(fd, reinterpret_cast<sockaddr*>(&server_unix_addr),
server_unix_addr_len);
} while (ret_val == -1 && errno == EINTR);
if (ret_val != 0) {
close(fd);
return false;
}
*client_socket = fd;
return true;
}
} // namespace
//------------------------------------------------------------------------------
Channel::ChannelImpl::ChannelImpl(const std::wstring& channel_id, Mode mode,
Listener* listener)
: mode_(mode),
is_blocked_on_write_(false),
message_send_bytes_written_(0),
server_listen_pipe_(-1),
pipe_(-1),
listener_(listener),
waiting_connect_(true),
processing_incoming_(false),
factory_(this) {
if (!CreatePipe(channel_id, mode)) {
// The pipe may have been closed already.
LOG(WARNING) << "Unable to create pipe named \"" << channel_id <<
"\" in " << (mode == MODE_SERVER ? "server" : "client") <<
" mode error(" << strerror(errno) << ").";
}
}
const std::wstring Channel::ChannelImpl::PipeName(
const std::wstring& channel_id) const {
std::wostringstream ss;
// TODO(playmobil): This should live in the Chrome user data directory.
// TODO(playmobil): Cleanup any stale fifos.
ss << L"/var/tmp/chrome_" << channel_id;
return ss.str();
}
bool Channel::ChannelImpl::CreatePipe(const std::wstring& channel_id,
Mode mode) {
DCHECK(server_listen_pipe_ == -1 && pipe_ == -1);
// TODO(playmobil): Should we just change pipe_name to be a normal string
// everywhere?
pipe_name_ = WideToUTF8(PipeName(channel_id));
if (mode == MODE_SERVER) {
if (!CreateServerFifo(pipe_name_, &server_listen_pipe_)) {
return false;
}
} else {
if (!ClientConnectToFifo(pipe_name_, &pipe_)) {
return false;
}
waiting_connect_ = false;
}
// Create the Hello message to be sent when Connect is called
scoped_ptr<Message> msg(new Message(MSG_ROUTING_NONE,
HELLO_MESSAGE_TYPE,
IPC::Message::PRIORITY_NORMAL));
if (!msg->WriteInt(base::GetCurrentProcId())) {
Close();
return false;
}
output_queue_.push(msg.release());
return true;
}
bool Channel::ChannelImpl::Connect() {
if (mode_ == MODE_SERVER) {
if (server_listen_pipe_ == -1) {
return false;
}
MessageLoopForIO::current()->WatchFileDescriptor(
server_listen_pipe_,
true,
MessageLoopForIO::WATCH_READ,
&server_listen_connection_watcher_,
this);
} else {
if (pipe_ == -1) {
return false;
}
MessageLoopForIO::current()->WatchFileDescriptor(
pipe_,
true,
MessageLoopForIO::WATCH_READ,
&read_watcher_,
this);
waiting_connect_ = false;
}
if (!waiting_connect_)
return ProcessOutgoingMessages();
return true;
}
bool Channel::ChannelImpl::ProcessIncomingMessages() {
ssize_t bytes_read = 0;
for (;;) {
if (bytes_read == 0) {
if (pipe_ == -1)
return false;
// Read from pipe.
// recv() returns 0 if the connection has closed or EAGAIN if no data is
// waiting on the pipe.
do {
bytes_read = read(pipe_, input_buf_, Channel::kReadBufferSize);
} while (bytes_read == -1 && errno == EINTR);
if (bytes_read < 0) {
if (errno == EAGAIN) {
return true;
} else {
LOG(ERROR) << "pipe error: " << strerror(errno);
return false;
}
} else if (bytes_read == 0) {
// The pipe has closed...
Close();
return true;
}
}
DCHECK(bytes_read);
// Process messages from input buffer.
const char *p;
const char *end;
if (input_overflow_buf_.empty()) {
p = input_buf_;
end = p + bytes_read;
} else {
if (input_overflow_buf_.size() >
static_cast<size_t>(kMaximumMessageSize - bytes_read)) {
input_overflow_buf_.clear();
LOG(ERROR) << "IPC message is too big";
return false;
}
input_overflow_buf_.append(input_buf_, bytes_read);
p = input_overflow_buf_.data();
end = p + input_overflow_buf_.size();
}
while (p < end) {
const char* message_tail = Message::FindNext(p, end);
if (message_tail) {
int len = static_cast<int>(message_tail - p);
const Message m(p, len);
#ifdef IPC_MESSAGE_DEBUG_EXTRA
DLOG(INFO) << "received message on channel @" << this <<
" with type " << m.type();
#endif
if (m.routing_id() == MSG_ROUTING_NONE &&
m.type() == HELLO_MESSAGE_TYPE) {
// The Hello message contains only the process id.
listener_->OnChannelConnected(MessageIterator(m).NextInt());
} else {
listener_->OnMessageReceived(m);
}
p = message_tail;
} else {
// Last message is partial.
break;
}
}
input_overflow_buf_.assign(p, end - p);
bytes_read = 0; // Get more data.
}
return true;
}
bool Channel::ChannelImpl::ProcessOutgoingMessages() {
DCHECK(!waiting_connect_); // Why are we trying to send messages if there's
// no connection?
is_blocked_on_write_ = false;
if (output_queue_.empty())
return true;
if (pipe_ == -1)
return false;
// Write out all the messages we can till the write blocks or there are no
// more outgoing messages.
while (!output_queue_.empty()) {
Message* msg = output_queue_.front();
size_t amt_to_write = msg->size() - message_send_bytes_written_;
const char *out_bytes = reinterpret_cast<const char*>(msg->data()) +
message_send_bytes_written_;
ssize_t bytes_written = -1;
do {
bytes_written = write(pipe_, out_bytes, amt_to_write);
} while (bytes_written == -1 && errno == EINTR);
if (bytes_written < 0) {
LOG(ERROR) << "pipe error: " << strerror(errno);
return false;
}
if (static_cast<size_t>(bytes_written) != amt_to_write) {
message_send_bytes_written_ += bytes_written;
// Tell libevent to call us back once things are unblocked.
is_blocked_on_write_ = true;
MessageLoopForIO::current()->WatchFileDescriptor(
pipe_,
false, // One shot
MessageLoopForIO::WATCH_WRITE,
&write_watcher_,
this);
} else {
message_send_bytes_written_ = 0;
// Message sent OK!
#ifdef IPC_MESSAGE_DEBUG_EXTRA
DLOG(INFO) << "sent message @" << msg << " on channel @" << this <<
" with type " << msg->type();
#endif
output_queue_.pop();
delete msg;
}
}
return true;
}
bool Channel::ChannelImpl::Send(Message* message) {
chrome::Counters::ipc_send_counter().Increment();
#ifdef IPC_MESSAGE_DEBUG_EXTRA
DLOG(INFO) << "sending message @" << message << " on channel @" << this
<< " with type " << message->type()
<< " (" << output_queue_.size() << " in queue)";
#endif
// TODO(playmobil): implement
// #ifdef IPC_MESSAGE_LOG_ENABLED
// Logging::current()->OnSendMessage(message, L"");
// #endif
output_queue_.push(message);
if (!waiting_connect_) {
if (!is_blocked_on_write_) {
if (!ProcessOutgoingMessages())
return false;
}
}
return true;
}
// Called by libevent when we can read from th pipe without blocking.
void Channel::ChannelImpl::OnFileCanReadWithoutBlocking(int fd) {
bool send_server_hello_msg = false;
if (waiting_connect_ && mode_ == MODE_SERVER) {
if (!ServerAcceptFifoConnection(server_listen_pipe_, &pipe_)) {
Close();
}
// No need to watch the listening socket any longer since only one client
// can connect. So unregister with libevent.
server_listen_connection_watcher_.StopWatchingFileDescriptor();
// Start watching our end of the socket.
MessageLoopForIO::current()->WatchFileDescriptor(
pipe_,
true,
MessageLoopForIO::WATCH_READ,
&read_watcher_,
this);
waiting_connect_ = false;
send_server_hello_msg = true;
}
if (!waiting_connect_ && fd == pipe_) {
if (!ProcessIncomingMessages()) {
Close();
listener_->OnChannelError();
}
}
// If we're a server and handshaking, then we want to make sure that we
// only send our handshake message after we've processed the client's.
// This gives us a chance to kill the client if the incoming handshake
// is invalid.
if (send_server_hello_msg) {
// This should be our first write so there' sno chance we can block here...
DCHECK(is_blocked_on_write_ == false);
ProcessOutgoingMessages();
}
}
// Called by libevent when we can write to the pipe without blocking.
void Channel::ChannelImpl::OnFileCanWriteWithoutBlocking(int fd) {
if (!ProcessOutgoingMessages()) {
Close();
listener_->OnChannelError();
}
}
void Channel::ChannelImpl::Close() {
// Close can be called multiple time, so we need to make sure we're
// idempotent.
// Unregister libevent for the listening socket and close it.
server_listen_connection_watcher_.StopWatchingFileDescriptor();
if (server_listen_pipe_ != -1) {
close(server_listen_pipe_);
server_listen_pipe_ = -1;
}
// Unregister libevent for the FIFO and close it.
read_watcher_.StopWatchingFileDescriptor();
write_watcher_.StopWatchingFileDescriptor();
if (pipe_ != -1) {
close(pipe_);
pipe_ = -1;
}
// Unlink the FIFO
unlink(pipe_name_.c_str());
while (!output_queue_.empty()) {
Message* m = output_queue_.front();
output_queue_.pop();
delete m;
}
}
//------------------------------------------------------------------------------
// Channel's methods simply call through to ChannelImpl.
Channel::Channel(const std::wstring& channel_id, Mode mode,
Listener* listener)
: channel_impl_(new ChannelImpl(channel_id, mode, listener)) {
}
Channel::~Channel() {
delete channel_impl_;
}
bool Channel::Connect() {
return channel_impl_->Connect();
}
void Channel::Close() {
channel_impl_->Close();
}
void Channel::set_listener(Listener* listener) {
channel_impl_->set_listener(listener);
}
bool Channel::Send(Message* message) {
return channel_impl_->Send(message);
}
} // namespace IPC