| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/quic/quic_connection.h" |
| |
| #include "base/basictypes.h" |
| #include "base/bind.h" |
| #include "net/base/net_errors.h" |
| #include "net/quic/congestion_control/receive_algorithm_interface.h" |
| #include "net/quic/congestion_control/send_algorithm_interface.h" |
| #include "net/quic/crypto/null_encrypter.h" |
| #include "net/quic/crypto/quic_decrypter.h" |
| #include "net/quic/crypto/quic_encrypter.h" |
| #include "net/quic/crypto/quic_random.h" |
| #include "net/quic/quic_protocol.h" |
| #include "net/quic/quic_utils.h" |
| #include "net/quic/test_tools/mock_clock.h" |
| #include "net/quic/test_tools/mock_random.h" |
| #include "net/quic/test_tools/quic_connection_peer.h" |
| #include "net/quic/test_tools/quic_framer_peer.h" |
| #include "net/quic/test_tools/quic_packet_creator_peer.h" |
| #include "net/quic/test_tools/quic_test_utils.h" |
| #include "testing/gmock/include/gmock/gmock.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using base::StringPiece; |
| using std::map; |
| using std::vector; |
| using testing::_; |
| using testing::AnyNumber; |
| using testing::ContainerEq; |
| using testing::DoAll; |
| using testing::InSequence; |
| using testing::InvokeWithoutArgs; |
| using testing::Ref; |
| using testing::Return; |
| using testing::SaveArg; |
| using testing::StrictMock; |
| |
| namespace net { |
| namespace test { |
| namespace { |
| |
| const char data1[] = "foo"; |
| const char data2[] = "bar"; |
| |
| const bool kFin = true; |
| const bool kEntropyFlag = true; |
| |
| const QuicPacketEntropyHash kTestEntropyHash = 76; |
| |
| const int kDefaultRetransmissionTimeMs = 500; |
| |
| // Used by TestConnection::SendStreamData3. |
| const QuicStreamId kStreamId3 = 3; |
| // Used by TestConnection::SendStreamData5. |
| const QuicStreamId kStreamId5 = 5; |
| |
| class TestReceiveAlgorithm : public ReceiveAlgorithmInterface { |
| public: |
| explicit TestReceiveAlgorithm(QuicCongestionFeedbackFrame* feedback) |
| : feedback_(feedback) { |
| } |
| |
| bool GenerateCongestionFeedback( |
| QuicCongestionFeedbackFrame* congestion_feedback) { |
| if (feedback_ == NULL) { |
| return false; |
| } |
| *congestion_feedback = *feedback_; |
| return true; |
| } |
| |
| MOCK_METHOD4(RecordIncomingPacket, |
| void(QuicByteCount, QuicPacketSequenceNumber, QuicTime, bool)); |
| |
| private: |
| QuicCongestionFeedbackFrame* feedback_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TestReceiveAlgorithm); |
| }; |
| |
| // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message. |
| class TaggingEncrypter : public QuicEncrypter { |
| public: |
| explicit TaggingEncrypter(uint8 tag) |
| : tag_(tag) { |
| } |
| |
| virtual ~TaggingEncrypter() {} |
| |
| // QuicEncrypter interface. |
| virtual bool SetKey(StringPiece key) OVERRIDE { return true; } |
| virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE { |
| return true; |
| } |
| |
| virtual bool Encrypt(StringPiece nonce, |
| StringPiece associated_data, |
| StringPiece plaintext, |
| unsigned char* output) OVERRIDE { |
| memcpy(output, plaintext.data(), plaintext.size()); |
| output += plaintext.size(); |
| memset(output, tag_, kTagSize); |
| return true; |
| } |
| |
| virtual QuicData* EncryptPacket(QuicPacketSequenceNumber sequence_number, |
| StringPiece associated_data, |
| StringPiece plaintext) OVERRIDE { |
| const size_t len = plaintext.size() + kTagSize; |
| uint8* buffer = new uint8[len]; |
| Encrypt(StringPiece(), associated_data, plaintext, buffer); |
| return new QuicData(reinterpret_cast<char*>(buffer), len, true); |
| } |
| |
| virtual size_t GetKeySize() const OVERRIDE { return 0; } |
| virtual size_t GetNoncePrefixSize() const OVERRIDE { return 0; } |
| |
| virtual size_t GetMaxPlaintextSize(size_t ciphertext_size) const OVERRIDE { |
| return ciphertext_size - kTagSize; |
| } |
| |
| virtual size_t GetCiphertextSize(size_t plaintext_size) const OVERRIDE { |
| return plaintext_size + kTagSize; |
| } |
| |
| virtual StringPiece GetKey() const OVERRIDE { |
| return StringPiece(); |
| } |
| |
| virtual StringPiece GetNoncePrefix() const OVERRIDE { |
| return StringPiece(); |
| } |
| |
| private: |
| enum { |
| kTagSize = 12, |
| }; |
| |
| const uint8 tag_; |
| }; |
| |
| // TaggingDecrypter ensures that the final kTagSize bytes of the message all |
| // have the same value and then removes them. |
| class TaggingDecrypter : public QuicDecrypter { |
| public: |
| virtual ~TaggingDecrypter() {} |
| |
| // QuicDecrypter interface |
| virtual bool SetKey(StringPiece key) OVERRIDE { return true; } |
| virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE { |
| return true; |
| } |
| |
| virtual bool Decrypt(StringPiece nonce, |
| StringPiece associated_data, |
| StringPiece ciphertext, |
| unsigned char* output, |
| size_t* output_length) OVERRIDE { |
| if (ciphertext.size() < kTagSize) { |
| return false; |
| } |
| if (!CheckTag(ciphertext, GetTag(ciphertext))) { |
| return false; |
| } |
| *output_length = ciphertext.size() - kTagSize; |
| memcpy(output, ciphertext.data(), *output_length); |
| return true; |
| } |
| |
| virtual QuicData* DecryptPacket(QuicPacketSequenceNumber sequence_number, |
| StringPiece associated_data, |
| StringPiece ciphertext) OVERRIDE { |
| if (ciphertext.size() < kTagSize) { |
| return NULL; |
| } |
| if (!CheckTag(ciphertext, GetTag(ciphertext))) { |
| return NULL; |
| } |
| const size_t len = ciphertext.size() - kTagSize; |
| uint8* buf = new uint8[len]; |
| memcpy(buf, ciphertext.data(), len); |
| return new QuicData(reinterpret_cast<char*>(buf), len, |
| true /* owns buffer */); |
| } |
| |
| virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); } |
| virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); } |
| |
| protected: |
| virtual uint8 GetTag(StringPiece ciphertext) { |
| return ciphertext.data()[ciphertext.size()-1]; |
| } |
| |
| private: |
| enum { |
| kTagSize = 12, |
| }; |
| |
| bool CheckTag(StringPiece ciphertext, uint8 tag) { |
| for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) { |
| if (ciphertext.data()[i] != tag) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| }; |
| |
| // StringTaggingDecrypter ensures that the final kTagSize bytes of the message |
| // match the expected value. |
| class StrictTaggingDecrypter : public TaggingDecrypter { |
| public: |
| explicit StrictTaggingDecrypter(uint8 tag) : tag_(tag) {} |
| virtual ~StrictTaggingDecrypter() {} |
| |
| // TaggingQuicDecrypter |
| virtual uint8 GetTag(StringPiece ciphertext) OVERRIDE { |
| return tag_; |
| } |
| |
| private: |
| const uint8 tag_; |
| }; |
| |
| class TestConnectionHelper : public QuicConnectionHelperInterface { |
| public: |
| class TestAlarm : public QuicAlarm { |
| public: |
| explicit TestAlarm(QuicAlarm::Delegate* delegate) |
| : QuicAlarm(delegate) { |
| } |
| |
| virtual void SetImpl() OVERRIDE {} |
| virtual void CancelImpl() OVERRIDE {} |
| using QuicAlarm::Fire; |
| }; |
| |
| TestConnectionHelper(MockClock* clock, MockRandom* random_generator) |
| : clock_(clock), |
| random_generator_(random_generator), |
| blocked_(false), |
| is_server_(true), |
| use_tagging_decrypter_(false), |
| packets_write_attempts_(0) { |
| clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); |
| } |
| |
| // QuicConnectionHelperInterface |
| virtual void SetConnection(QuicConnection* connection) OVERRIDE {} |
| |
| virtual const QuicClock* GetClock() const OVERRIDE { |
| return clock_; |
| } |
| |
| virtual QuicRandom* GetRandomGenerator() OVERRIDE { |
| return random_generator_; |
| } |
| |
| virtual int WritePacketToWire(const QuicEncryptedPacket& packet, |
| int* error) OVERRIDE { |
| ++packets_write_attempts_; |
| |
| if (packet.length() >= sizeof(final_bytes_of_last_packet_)) { |
| memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4, |
| sizeof(final_bytes_of_last_packet_)); |
| } |
| |
| QuicFramer framer(QuicVersionMax(), QuicTime::Zero(), is_server_); |
| if (use_tagging_decrypter_) { |
| framer.SetDecrypter(new TaggingDecrypter); |
| } |
| FramerVisitorCapturingFrames visitor; |
| framer.set_visitor(&visitor); |
| EXPECT_TRUE(framer.ProcessPacket(packet)); |
| header_ = *visitor.header(); |
| frame_count_ = visitor.frame_count(); |
| if (visitor.ack()) { |
| ack_.reset(new QuicAckFrame(*visitor.ack())); |
| } |
| if (visitor.feedback()) { |
| feedback_.reset(new QuicCongestionFeedbackFrame(*visitor.feedback())); |
| } |
| if (visitor.stream_frames() != NULL && !visitor.stream_frames()->empty()) { |
| stream_frames_ = *visitor.stream_frames(); |
| } |
| if (visitor.version_negotiation_packet() != NULL) { |
| version_negotiation_packet_.reset(new QuicVersionNegotiationPacket( |
| *visitor.version_negotiation_packet())); |
| } |
| if (blocked_) { |
| *error = ERR_IO_PENDING; |
| return -1; |
| } |
| *error = 0; |
| last_packet_size_ = packet.length(); |
| return last_packet_size_; |
| } |
| |
| virtual bool IsWriteBlockedDataBuffered() OVERRIDE { |
| return false; |
| } |
| |
| virtual bool IsWriteBlocked(int error) OVERRIDE { |
| return error == ERR_IO_PENDING; |
| } |
| |
| virtual QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) OVERRIDE { |
| return new TestAlarm(delegate); |
| } |
| |
| QuicPacketHeader* header() { return &header_; } |
| |
| size_t frame_count() const { return frame_count_; } |
| |
| QuicAckFrame* ack() { return ack_.get(); } |
| |
| QuicCongestionFeedbackFrame* feedback() { return feedback_.get(); } |
| |
| const vector<QuicStreamFrame>* stream_frames() const { |
| return &stream_frames_; |
| } |
| |
| size_t last_packet_size() { |
| return last_packet_size_; |
| } |
| |
| QuicVersionNegotiationPacket* version_negotiation_packet() { |
| return version_negotiation_packet_.get(); |
| } |
| |
| void set_blocked(bool blocked) { blocked_ = blocked; } |
| |
| void set_is_server(bool is_server) { is_server_ = is_server; } |
| |
| // final_bytes_of_last_packet_ returns the last four bytes of the previous |
| // packet as a little-endian, uint32. This is intended to be used with a |
| // TaggingEncrypter so that tests can determine which encrypter was used for |
| // a given packet. |
| uint32 final_bytes_of_last_packet() { return final_bytes_of_last_packet_; } |
| |
| void use_tagging_decrypter() { |
| use_tagging_decrypter_ = true; |
| } |
| |
| uint32 packets_write_attempts() { return packets_write_attempts_; } |
| |
| private: |
| MockClock* clock_; |
| MockRandom* random_generator_; |
| QuicPacketHeader header_; |
| size_t frame_count_; |
| scoped_ptr<QuicAckFrame> ack_; |
| scoped_ptr<QuicCongestionFeedbackFrame> feedback_; |
| vector<QuicStreamFrame> stream_frames_; |
| scoped_ptr<QuicVersionNegotiationPacket> version_negotiation_packet_; |
| size_t last_packet_size_; |
| bool blocked_; |
| bool is_server_; |
| uint32 final_bytes_of_last_packet_; |
| bool use_tagging_decrypter_; |
| uint32 packets_write_attempts_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper); |
| }; |
| |
| class TestConnection : public QuicConnection { |
| public: |
| TestConnection(QuicGuid guid, |
| IPEndPoint address, |
| TestConnectionHelper* helper, |
| bool is_server) |
| : QuicConnection(guid, address, helper, is_server, QuicVersionMax()), |
| helper_(helper) { |
| helper_->set_is_server(!is_server); |
| } |
| |
| void SendAck() { |
| QuicConnectionPeer::SendAck(this); |
| } |
| |
| void SetReceiveAlgorithm(TestReceiveAlgorithm* receive_algorithm) { |
| QuicConnectionPeer::SetReceiveAlgorithm(this, receive_algorithm); |
| } |
| |
| void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) { |
| QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm); |
| } |
| |
| void SendPacket(EncryptionLevel level, |
| QuicPacketSequenceNumber sequence_number, |
| QuicPacket* packet, |
| QuicPacketEntropyHash entropy_hash, |
| HasRetransmittableData retransmittable) { |
| RetransmittableFrames* retransmittable_frames = |
| retransmittable == HAS_RETRANSMITTABLE_DATA ? |
| new RetransmittableFrames() : NULL; |
| OnSerializedPacket( |
| SerializedPacket(sequence_number, PACKET_6BYTE_SEQUENCE_NUMBER, |
| packet, entropy_hash, retransmittable_frames)); |
| } |
| |
| QuicConsumedData SendStreamData(QuicStreamId id, |
| StringPiece data, |
| QuicStreamOffset offset, |
| bool fin) { |
| struct iovec iov = {const_cast<char*>(data.data()), |
| static_cast<size_t>(data.size())}; |
| return SendvStreamData(id, &iov, 1, offset, fin); |
| } |
| |
| QuicConsumedData SendStreamDataAndNotifyWhenAcked( |
| QuicStreamId id, |
| StringPiece data, |
| QuicStreamOffset offset, |
| bool fin, |
| QuicAckNotifier::DelegateInterface* delegate) { |
| struct iovec iov = {const_cast<char*>(data.data()), |
| static_cast<size_t>(data.size())}; |
| return SendvStreamDataAndNotifyWhenAcked(id, &iov, 1, offset, fin, |
| delegate); |
| } |
| |
| QuicConsumedData SendStreamData3() { |
| return SendStreamData(kStreamId3, "food", 0, !kFin); |
| } |
| |
| QuicConsumedData SendStreamData5() { |
| return SendStreamData(kStreamId5, "food2", 0, !kFin); |
| } |
| |
| // The crypto stream has special semantics so that it is not blocked by a |
| // congestion window limitation, and also so that it gets put into a separate |
| // packet (so that it is easier to reason about a crypto frame not being |
| // split needlessly across packet boundaries). As a result, we have separate |
| // tests for some cases for this stream. |
| QuicConsumedData SendCryptoStreamData() { |
| this->Flush(); |
| QuicConsumedData consumed = |
| SendStreamData(kCryptoStreamId, "chlo", 0, !kFin); |
| this->Flush(); |
| return consumed; |
| } |
| |
| bool is_server() { |
| return QuicConnectionPeer::IsServer(this); |
| } |
| |
| void set_version(QuicVersion version) { |
| framer_.set_version(version); |
| } |
| |
| void set_is_server(bool is_server) { |
| helper_->set_is_server(!is_server); |
| QuicPacketCreatorPeer::SetIsServer( |
| QuicConnectionPeer::GetPacketCreator(this), is_server); |
| QuicConnectionPeer::SetIsServer(this, is_server); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetAckAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetAckAlarm(this)); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetRetransmissionAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetRetransmissionAlarm(this)); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetSendAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetSendAlarm(this)); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetTimeoutAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetTimeoutAlarm(this)); |
| } |
| |
| using QuicConnection::SelectMutualVersion; |
| |
| private: |
| TestConnectionHelper* helper_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TestConnection); |
| }; |
| |
| class QuicConnectionTest : public ::testing::Test { |
| protected: |
| QuicConnectionTest() |
| : guid_(42), |
| framer_(QuicVersionMax(), QuicTime::Zero(), false), |
| creator_(guid_, &framer_, QuicRandom::GetInstance(), false), |
| send_algorithm_(new StrictMock<MockSendAlgorithm>), |
| helper_(new TestConnectionHelper(&clock_, &random_generator_)), |
| connection_(guid_, IPEndPoint(), helper_, false), |
| frame1_(1, false, 0, data1), |
| frame2_(1, false, 3, data2), |
| accept_packet_(true) { |
| // TODO(rtenneti): remove g_* flags. |
| QuicConnection::g_acks_do_not_instigate_acks = true; |
| FLAGS_track_retransmission_history = true; |
| connection_.set_visitor(&visitor_); |
| connection_.SetSendAlgorithm(send_algorithm_); |
| // Simplify tests by not sending feedback unless specifically configured. |
| SetFeedback(NULL); |
| EXPECT_CALL( |
| *send_algorithm_, TimeUntilSend(_, _, _, _)).WillRepeatedly(Return( |
| QuicTime::Delta::Zero())); |
| EXPECT_CALL(*receive_algorithm_, |
| RecordIncomingPacket(_, _, _, _)).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, RetransmissionDelay()).WillRepeatedly( |
| Return(QuicTime::Delta::Zero())); |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillRepeatedly(Return( |
| QuicBandwidth::FromKBitsPerSecond(100))); |
| EXPECT_CALL(*send_algorithm_, SmoothedRtt()).WillRepeatedly(Return( |
| QuicTime::Delta::FromMilliseconds(100))); |
| ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillByDefault(Return(true)); |
| EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber()); |
| } |
| |
| ~QuicConnectionTest() { |
| // TODO(rch): remove this. |
| QuicConnection::g_acks_do_not_instigate_acks = false; |
| } |
| |
| QuicAckFrame* outgoing_ack() { |
| outgoing_ack_.reset(QuicConnectionPeer::CreateAckFrame(&connection_)); |
| return outgoing_ack_.get(); |
| } |
| |
| QuicAckFrame* last_ack() { |
| return helper_->ack(); |
| } |
| |
| QuicCongestionFeedbackFrame* last_feedback() { |
| return helper_->feedback(); |
| } |
| |
| QuicPacketHeader* last_header() { |
| return helper_->header(); |
| } |
| |
| size_t last_sent_packet_size() { |
| return helper_->last_packet_size(); |
| } |
| |
| uint32 final_bytes_of_last_packet() { |
| return helper_->final_bytes_of_last_packet(); |
| } |
| |
| void use_tagging_decrypter() { |
| helper_->use_tagging_decrypter(); |
| } |
| |
| void ProcessPacket(QuicPacketSequenceNumber number) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(accept_packet_)); |
| ProcessDataPacket(number, 0, !kEntropyFlag); |
| } |
| |
| QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) { |
| QuicFrames frames; |
| frames.push_back(QuicFrame(frame)); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(&creator_, |
| connection_.is_server()); |
| SerializedPacket serialized_packet = creator_.SerializeAllFrames(frames); |
| scoped_ptr<QuicPacket> packet(serialized_packet.packet); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.EncryptPacket(ENCRYPTION_NONE, |
| serialized_packet.sequence_number, *packet)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| return serialized_packet.entropy_hash; |
| } |
| |
| size_t ProcessDataPacket(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group, |
| bool entropy_flag) { |
| return ProcessDataPacketAtLevel(number, fec_group, entropy_flag, |
| ENCRYPTION_NONE); |
| } |
| |
| size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group, |
| bool entropy_flag, |
| EncryptionLevel level) { |
| scoped_ptr<QuicPacket> packet(ConstructDataPacket(number, fec_group, |
| entropy_flag)); |
| scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( |
| level, number, *packet)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| return encrypted->length(); |
| } |
| |
| void ProcessClosePacket(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group) { |
| scoped_ptr<QuicPacket> packet(ConstructClosePacket(number, fec_group)); |
| scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( |
| ENCRYPTION_NONE, number, *packet)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| } |
| |
| size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number, |
| bool expect_revival, bool entropy_flag) { |
| if (expect_revival) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(accept_packet_)); |
| } |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(accept_packet_)) |
| .RetiresOnSaturation(); |
| return ProcessDataPacket(number, 1, entropy_flag); |
| } |
| |
| // Processes an FEC packet that covers the packets that would have been |
| // received. |
| size_t ProcessFecPacket(QuicPacketSequenceNumber number, |
| QuicPacketSequenceNumber min_protected_packet, |
| bool expect_revival, |
| bool entropy_flag, |
| QuicPacket* packet) { |
| if (expect_revival) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(accept_packet_)); |
| } |
| |
| // Construct the decrypted data packet so we can compute the correct |
| // redundancy. If |packet| has been provided then use that, otherwise |
| // construct a default data packet. |
| scoped_ptr<QuicPacket> data_packet; |
| if (packet) { |
| data_packet.reset(packet); |
| } else { |
| data_packet.reset(ConstructDataPacket(number, 1, !kEntropyFlag)); |
| } |
| |
| header_.public_header.guid = guid_; |
| header_.public_header.reset_flag = false; |
| header_.public_header.version_flag = false; |
| header_.entropy_flag = entropy_flag; |
| header_.fec_flag = true; |
| header_.packet_sequence_number = number; |
| header_.is_in_fec_group = IN_FEC_GROUP; |
| header_.fec_group = min_protected_packet; |
| QuicFecData fec_data; |
| fec_data.fec_group = header_.fec_group; |
| |
| // Since all data packets in this test have the same payload, the |
| // redundancy is either equal to that payload or the xor of that payload |
| // with itself, depending on the number of packets. |
| if (((number - min_protected_packet) % 2) == 0) { |
| for (size_t i = GetStartOfFecProtectedData( |
| header_.public_header.guid_length, |
| header_.public_header.version_flag, |
| header_.public_header.sequence_number_length); |
| i < data_packet->length(); ++i) { |
| data_packet->mutable_data()[i] ^= data_packet->data()[i]; |
| } |
| } |
| fec_data.redundancy = data_packet->FecProtectedData(); |
| |
| scoped_ptr<QuicPacket> fec_packet( |
| framer_.BuildFecPacket(header_, fec_data).packet); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.EncryptPacket(ENCRYPTION_NONE, number, *fec_packet)); |
| |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| return encrypted->length(); |
| } |
| |
| QuicByteCount SendStreamDataToPeer(QuicStreamId id, StringPiece data, |
| QuicStreamOffset offset, bool fin, |
| QuicPacketSequenceNumber* last_packet) { |
| QuicByteCount packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<2>(&packet_size), Return(true))); |
| connection_.SendStreamData(id, data, offset, fin); |
| if (last_packet != NULL) { |
| *last_packet = |
| QuicConnectionPeer::GetPacketCreator(&connection_)->sequence_number(); |
| } |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| return packet_size; |
| } |
| |
| void SendAckPacketToPeer() { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendAck(); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| } |
| |
| QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame, |
| bool expect_writes) { |
| if (expect_writes) { |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(1).WillOnce(Return(true)); |
| } |
| return ProcessFramePacket(QuicFrame(frame)); |
| } |
| |
| QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) { |
| return ProcessFramePacket(QuicFrame(frame)); |
| } |
| |
| bool IsMissing(QuicPacketSequenceNumber number) { |
| return IsAwaitingPacket(outgoing_ack()->received_info, number); |
| } |
| |
| QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group, |
| bool entropy_flag) { |
| header_.public_header.guid = guid_; |
| header_.public_header.reset_flag = false; |
| header_.public_header.version_flag = false; |
| header_.entropy_flag = entropy_flag; |
| header_.fec_flag = false; |
| header_.packet_sequence_number = number; |
| header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; |
| header_.fec_group = fec_group; |
| |
| QuicFrames frames; |
| QuicFrame frame(&frame1_); |
| frames.push_back(frame); |
| QuicPacket* packet = |
| framer_.BuildUnsizedDataPacket(header_, frames).packet; |
| EXPECT_TRUE(packet != NULL); |
| return packet; |
| } |
| |
| QuicPacket* ConstructClosePacket(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group) { |
| header_.public_header.guid = guid_; |
| header_.packet_sequence_number = number; |
| header_.public_header.reset_flag = false; |
| header_.public_header.version_flag = false; |
| header_.entropy_flag = false; |
| header_.fec_flag = false; |
| header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; |
| header_.fec_group = fec_group; |
| |
| QuicConnectionCloseFrame qccf; |
| qccf.error_code = QUIC_PEER_GOING_AWAY; |
| qccf.ack_frame = QuicAckFrame(0, QuicTime::Zero(), 1); |
| |
| QuicFrames frames; |
| QuicFrame frame(&qccf); |
| frames.push_back(frame); |
| QuicPacket* packet = |
| framer_.BuildUnsizedDataPacket(header_, frames).packet; |
| EXPECT_TRUE(packet != NULL); |
| return packet; |
| } |
| |
| void SetFeedback(QuicCongestionFeedbackFrame* feedback) { |
| receive_algorithm_ = new TestReceiveAlgorithm(feedback); |
| connection_.SetReceiveAlgorithm(receive_algorithm_); |
| } |
| |
| QuicTime::Delta DefaultRetransmissionTime() { |
| return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); |
| } |
| |
| QuicGuid guid_; |
| QuicFramer framer_; |
| QuicPacketCreator creator_; |
| |
| MockSendAlgorithm* send_algorithm_; |
| TestReceiveAlgorithm* receive_algorithm_; |
| MockClock clock_; |
| MockRandom random_generator_; |
| TestConnectionHelper* helper_; |
| TestConnection connection_; |
| StrictMock<MockConnectionVisitor> visitor_; |
| |
| QuicPacketHeader header_; |
| QuicStreamFrame frame1_; |
| QuicStreamFrame frame2_; |
| scoped_ptr<QuicAckFrame> outgoing_ack_; |
| bool accept_packet_; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest); |
| }; |
| |
| TEST_F(QuicConnectionTest, PacketsInOrder) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(1); |
| EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(2u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); |
| } |
| |
| TEST_F(QuicConnectionTest, PacketsRejected) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(1); |
| EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); |
| |
| accept_packet_ = false; |
| ProcessPacket(2); |
| // We should not have an ack for two. |
| EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size()); |
| } |
| |
| TEST_F(QuicConnectionTest, PacketsOutOfOrder) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_FALSE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(1); |
| EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_FALSE(IsMissing(2)); |
| EXPECT_FALSE(IsMissing(1)); |
| } |
| |
| TEST_F(QuicConnectionTest, DuplicatePacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| // Send packet 3 again, but do not set the expectation that |
| // the visitor OnStreamFrames() will be called. |
| ProcessDataPacket(3, 0, !kEntropyFlag); |
| EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| } |
| |
| TEST_F(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(5); |
| EXPECT_EQ(5u, outgoing_ack()->received_info.largest_observed); |
| EXPECT_TRUE(IsMissing(1)); |
| EXPECT_TRUE(IsMissing(4)); |
| |
| // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a |
| // packet the peer will not retransmit. It indicates this by sending 'least |
| // awaiting' is 4. The connection should then realize 1 will not be |
| // retransmitted, and will remove it from the missing list. |
| creator_.set_sequence_number(5); |
| QuicAckFrame frame(0, QuicTime::Zero(), 4); |
| ProcessAckPacket(&frame, true); |
| |
| // Force an ack to be sent. |
| SendAckPacketToPeer(); |
| EXPECT_TRUE(IsMissing(4)); |
| } |
| |
| TEST_F(QuicConnectionTest, RejectPacketTooFarOut) { |
| // Call ProcessDataPacket rather than ProcessPacket, as we should not get a |
| // packet call to the visitor. |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_PACKET_HEADER, false)); |
| ProcessDataPacket(6000, 0, !kEntropyFlag); |
| } |
| |
| TEST_F(QuicConnectionTest, TruncatedAck) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(2); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| for (int i = 0; i < 200; ++i) { |
| SendStreamDataToPeer(1, "foo", i * 3, !kFin, NULL); |
| } |
| |
| QuicAckFrame frame(0, QuicTime::Zero(), 1); |
| frame.received_info.largest_observed = 193; |
| InsertMissingPacketsBetween(&frame.received_info, 1, 193); |
| frame.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 193) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 192); |
| |
| ProcessAckPacket(&frame, true); |
| |
| EXPECT_TRUE(QuicConnectionPeer::GetReceivedTruncatedAck(&connection_)); |
| |
| frame.received_info.missing_packets.erase(192); |
| frame.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 193) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 191); |
| |
| ProcessAckPacket(&frame, true); |
| EXPECT_FALSE(QuicConnectionPeer::GetReceivedTruncatedAck(&connection_)); |
| } |
| |
| TEST_F(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(1); |
| // Delay sending, then queue up an ack. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(1))); |
| QuicConnectionPeer::SendAck(&connection_); |
| |
| // Process an ack with a least unacked of the received ack. |
| // This causes an ack to be sent when TimeUntilSend returns 0. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly( |
| testing::Return(QuicTime::Delta::Zero())); |
| // Skip a packet and then record an ack. |
| creator_.set_sequence_number(2); |
| QuicAckFrame frame(0, QuicTime::Zero(), 3); |
| ProcessAckPacket(&frame, true); |
| } |
| |
| TEST_F(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| // Should ack immediately since we have missing packets. |
| EXPECT_EQ(1u, helper_->packets_write_attempts()); |
| |
| ProcessPacket(2); |
| // Should ack immediately since we have missing packets. |
| EXPECT_EQ(2u, helper_->packets_write_attempts()); |
| |
| ProcessPacket(1); |
| // Should ack immediately, since this fills the last hole. |
| EXPECT_EQ(3u, helper_->packets_write_attempts()); |
| |
| ProcessPacket(4); |
| // Should not cause an ack. |
| EXPECT_EQ(3u, helper_->packets_write_attempts()); |
| } |
| |
| TEST_F(QuicConnectionTest, AckReceiptCausesAckSend) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| QuicPacketSequenceNumber original; |
| QuicByteCount packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) |
| .WillOnce(DoAll(SaveArg<1>(&original), SaveArg<2>(&packet_size), |
| Return(true))); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(1, _)).Times(1); |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| QuicAckFrame frame(original, QuicTime::Zero(), 1); |
| frame.received_info.missing_packets.insert(original); |
| frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( |
| &connection_, original - 1); |
| ProcessAckPacket(&frame, true); |
| ProcessAckPacket(&frame, true); |
| // Third nack should retransmit the largest observed packet. |
| QuicPacketSequenceNumber retransmission; |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, packet_size - kQuicVersionSize, |
| NACK_RETRANSMISSION, _)) |
| .WillOnce(DoAll(SaveArg<1>(&retransmission), Return(true))); |
| ProcessAckPacket(&frame, true); |
| |
| QuicAckFrame frame2(retransmission, QuicTime::Zero(), 1); |
| frame2.received_info.missing_packets.insert(original); |
| frame2.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, retransmission) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, original); |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)); |
| |
| ProcessAckPacket(&frame2, true); |
| // Now if the peer sends an ack which still reports the retransmitted packet |
| // as missing, then that will count as a packet which instigates an ack. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); |
| ProcessAckPacket(&frame2, true); |
| ProcessAckPacket(&frame2, true); |
| |
| // But an ack with no missing packets will not send an ack. |
| frame2.received_info.missing_packets.clear(); |
| ProcessAckPacket(&frame2, true); |
| ProcessAckPacket(&frame2, true); |
| } |
| |
| TEST_F(QuicConnectionTest, LeastUnackedLower) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); |
| SendStreamDataToPeer(1, "bar", 3, !kFin, NULL); |
| SendStreamDataToPeer(1, "eep", 6, !kFin, NULL); |
| |
| // Start out saying the least unacked is 2 |
| creator_.set_sequence_number(5); |
| QuicAckFrame frame(0, QuicTime::Zero(), 2); |
| ProcessAckPacket(&frame, true); |
| |
| // Change it to 1, but lower the sequence number to fake out-of-order packets. |
| // This should be fine. |
| creator_.set_sequence_number(1); |
| QuicAckFrame frame2(0, QuicTime::Zero(), 1); |
| // The scheduler will not process out of order acks. |
| ProcessAckPacket(&frame2, false); |
| |
| // Now claim it's one, but set the ordering so it was sent "after" the first |
| // one. This should cause a connection error. |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| creator_.set_sequence_number(7); |
| ProcessAckPacket(&frame2, false); |
| } |
| |
| TEST_F(QuicConnectionTest, LargestObservedLower) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); |
| SendStreamDataToPeer(1, "bar", 3, !kFin, NULL); |
| SendStreamDataToPeer(1, "eep", 6, !kFin, NULL); |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(2); |
| |
| // Start out saying the largest observed is 2. |
| QuicAckFrame frame(2, QuicTime::Zero(), 0); |
| frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( |
| &connection_, 2); |
| ProcessAckPacket(&frame, true); |
| |
| // Now change it to 1, and it should cause a connection error. |
| QuicAckFrame frame2(1, QuicTime::Zero(), 0); |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false)); |
| ProcessAckPacket(&frame2, false); |
| } |
| |
| TEST_F(QuicConnectionTest, LeastUnackedGreaterThanPacketSequenceNumber) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| // Create an ack with least_unacked is 2 in packet number 1. |
| creator_.set_sequence_number(0); |
| QuicAckFrame frame(0, QuicTime::Zero(), 2); |
| ProcessAckPacket(&frame, false); |
| } |
| |
| TEST_F(QuicConnectionTest, |
| NackSequenceNumberGreaterThanLargestReceived) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); |
| SendStreamDataToPeer(1, "bar", 3, !kFin, NULL); |
| SendStreamDataToPeer(1, "eep", 6, !kFin, NULL); |
| |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| QuicAckFrame frame(0, QuicTime::Zero(), 1); |
| frame.received_info.missing_packets.insert(3); |
| ProcessAckPacket(&frame, false); |
| } |
| |
| TEST_F(QuicConnectionTest, AckUnsentData) { |
| // Ack a packet which has not been sent. |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| QuicAckFrame frame(1, QuicTime::Zero(), 0); |
| ProcessAckPacket(&frame, false); |
| } |
| |
| TEST_F(QuicConnectionTest, AckAll) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| |
| creator_.set_sequence_number(1); |
| QuicAckFrame frame1(0, QuicTime::Zero(), 1); |
| ProcessAckPacket(&frame1, true); |
| } |
| |
| TEST_F(QuicConnectionTest, SendingDifferentSequenceNumberLengthsBandwidth) { |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( |
| QuicBandwidth::FromKBitsPerSecond(1000))); |
| |
| QuicPacketSequenceNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); |
| EXPECT_EQ(1u, last_packet); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( |
| QuicBandwidth::FromKBitsPerSecond(1000 * 256))); |
| |
| SendStreamDataToPeer(1u, "bar", 3, !kFin, &last_packet); |
| EXPECT_EQ(2u, last_packet); |
| EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| // The 1 packet lag is due to the sequence number length being recalculated in |
| // QuicConnection after a packet is sent. |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( |
| QuicBandwidth::FromKBitsPerSecond(1000 * 256 * 256))); |
| |
| SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); |
| EXPECT_EQ(3u, last_packet); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( |
| QuicBandwidth::FromKBitsPerSecond(1000ll * 256 * 256 * 256))); |
| |
| SendStreamDataToPeer(1u, "bar", 9, !kFin, &last_packet); |
| EXPECT_EQ(4u, last_packet); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(Return( |
| QuicBandwidth::FromKBitsPerSecond(1000ll * 256 * 256 * 256 * 256))); |
| |
| SendStreamDataToPeer(1u, "foo", 12, !kFin, &last_packet); |
| EXPECT_EQ(5u, last_packet); |
| EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| } |
| |
| TEST_F(QuicConnectionTest, SendingDifferentSequenceNumberLengthsUnackedDelta) { |
| QuicPacketSequenceNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); |
| EXPECT_EQ(1u, last_packet); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| |
| QuicConnectionPeer::GetPacketCreator(&connection_)->set_sequence_number(100); |
| |
| SendStreamDataToPeer(1u, "bar", 3, !kFin, &last_packet); |
| EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| |
| QuicConnectionPeer::GetPacketCreator(&connection_)->set_sequence_number( |
| 100 * 256); |
| |
| SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| |
| QuicConnectionPeer::GetPacketCreator(&connection_)->set_sequence_number( |
| 100 * 256 * 256); |
| |
| SendStreamDataToPeer(1u, "bar", 9, !kFin, &last_packet); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| |
| QuicConnectionPeer::GetPacketCreator(&connection_)->set_sequence_number( |
| 100 * 256 * 256 * 256); |
| |
| SendStreamDataToPeer(1u, "foo", 12, !kFin, &last_packet); |
| EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, |
| connection_.options()->send_sequence_number_length); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| last_header()->public_header.sequence_number_length); |
| } |
| |
| TEST_F(QuicConnectionTest, BasicSending) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(6); |
| QuicPacketSequenceNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 |
| EXPECT_EQ(1u, last_packet); |
| SendAckPacketToPeer(); // Packet 2 |
| |
| EXPECT_EQ(1u, last_ack()->sent_info.least_unacked); |
| |
| SendAckPacketToPeer(); // Packet 3 |
| EXPECT_EQ(1u, last_ack()->sent_info.least_unacked); |
| |
| SendStreamDataToPeer(1u, "bar", 3, !kFin, &last_packet); // Packet 4 |
| EXPECT_EQ(4u, last_packet); |
| SendAckPacketToPeer(); // Packet 5 |
| EXPECT_EQ(1u, last_ack()->sent_info.least_unacked); |
| |
| // Peer acks up to packet 3. |
| QuicAckFrame frame(3, QuicTime::Zero(), 0); |
| frame.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 3); |
| ProcessAckPacket(&frame, true); |
| SendAckPacketToPeer(); // Packet 6 |
| |
| // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of |
| // ack for 4. |
| EXPECT_EQ(4u, last_ack()->sent_info.least_unacked); |
| |
| // Peer acks up to packet 4, the last packet. |
| QuicAckFrame frame2(6, QuicTime::Zero(), 0); |
| frame2.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 6); |
| ProcessAckPacket(&frame2, true); // Acks don't instigate acks. |
| |
| // Verify that we did not send an ack. |
| EXPECT_EQ(6u, last_header()->packet_sequence_number); |
| |
| // So the last ack has not changed. |
| EXPECT_EQ(4u, last_ack()->sent_info.least_unacked); |
| |
| // If we force an ack, we shouldn't change our retransmit state. |
| SendAckPacketToPeer(); // Packet 7 |
| EXPECT_EQ(7u, last_ack()->sent_info.least_unacked); |
| |
| // But if we send more data it should. |
| SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8 |
| EXPECT_EQ(8u, last_packet); |
| SendAckPacketToPeer(); // Packet 9 |
| EXPECT_EQ(8u, last_ack()->sent_info.least_unacked); |
| } |
| |
| TEST_F(QuicConnectionTest, FECSending) { |
| // All packets carry version info till version is negotiated. |
| size_t payload_length; |
| connection_.options()->max_packet_length = |
| GetPacketLengthForOneStream( |
| connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, |
| IN_FEC_GROUP, &payload_length); |
| // And send FEC every two packets. |
| connection_.options()->max_packets_per_fec_group = 2; |
| |
| // Send 4 data packets and 2 FEC packets. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6); |
| // The first stream frame will consume 2 fewer bytes than the other three. |
| const string payload(payload_length * 4 - 6, 'a'); |
| connection_.SendStreamData(1, payload, 0, !kFin); |
| // Expect the FEC group to be closed after SendStreamData. |
| EXPECT_FALSE(creator_.ShouldSendFec(true)); |
| } |
| |
| TEST_F(QuicConnectionTest, FECQueueing) { |
| // All packets carry version info till version is negotiated. |
| size_t payload_length; |
| connection_.options()->max_packet_length = |
| GetPacketLengthForOneStream( |
| connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, |
| IN_FEC_GROUP, &payload_length); |
| // And send FEC every two packets. |
| connection_.options()->max_packets_per_fec_group = 2; |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| helper_->set_blocked(true); |
| const string payload(payload_length, 'a'); |
| connection_.SendStreamData(1, payload, 0, !kFin); |
| EXPECT_FALSE(creator_.ShouldSendFec(true)); |
| // Expect the first data packet and the fec packet to be queued. |
| EXPECT_EQ(2u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, AbandonFECFromCongestionWindow) { |
| connection_.options()->max_packets_per_fec_group = 1; |
| // 1 Data and 1 FEC packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| |
| const QuicTime::Delta retransmission_time = |
| QuicTime::Delta::FromMilliseconds(5000); |
| clock_.AdvanceTime(retransmission_time); |
| |
| // Abandon FEC packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(1); |
| |
| connection_.OnAbandonFecTimeout(); |
| } |
| |
| TEST_F(QuicConnectionTest, DontAbandonAckedFEC) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.options()->max_packets_per_fec_group = 1; |
| const QuicPacketSequenceNumber sequence_number = |
| QuicConnectionPeer::GetPacketCreator(&connection_)->sequence_number() + 1; |
| |
| // 1 Data and 1 FEC packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| |
| QuicAckFrame ack_fec(2, QuicTime::Zero(), 1); |
| // Data packet missing. |
| ack_fec.received_info.missing_packets.insert(1); |
| ack_fec.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); |
| |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| |
| ProcessAckPacket(&ack_fec, true); |
| |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| |
| // Abandon only data packet, FEC has been acked. |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(sequence_number, _)).Times(1); |
| // Send only data packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| } |
| |
| TEST_F(QuicConnectionTest, FramePacking) { |
| // Block the connection. |
| connection_.GetSendAlarm()->Set( |
| clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1))); |
| |
| // Send an ack and two stream frames in 1 packet by queueing them. |
| connection_.SendAck(); |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData5)), |
| Return(true))); |
| |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) |
| .Times(1); |
| // Unblock the connection. |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's an ack and two stream frames from |
| // two different streams. |
| EXPECT_EQ(3u, helper_->frame_count()); |
| EXPECT_TRUE(helper_->ack()); |
| EXPECT_EQ(2u, helper_->stream_frames()->size()); |
| EXPECT_EQ(kStreamId3, (*helper_->stream_frames())[0].stream_id); |
| EXPECT_EQ(kStreamId5, (*helper_->stream_frames())[1].stream_id); |
| } |
| |
| TEST_F(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { |
| // Block the connection. |
| connection_.GetSendAlarm()->Set( |
| clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1))); |
| |
| // Send an ack and two stream frames (one non-crypto, then one crypto) in 2 |
| // packets by queueing them. |
| connection_.SendAck(); |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendCryptoStreamData)), |
| Return(true))); |
| |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) |
| .Times(2); |
| // Unblock the connection. |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's the crypto stream frame. |
| EXPECT_EQ(1u, helper_->frame_count()); |
| EXPECT_TRUE(helper_->ack()); |
| EXPECT_EQ(1u, helper_->stream_frames()->size()); |
| EXPECT_EQ(kCryptoStreamId, (*helper_->stream_frames())[0].stream_id); |
| } |
| |
| TEST_F(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { |
| // Block the connection. |
| connection_.GetSendAlarm()->Set( |
| clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1))); |
| |
| // Send an ack and two stream frames (one crypto, then one non-crypto) in 3 |
| // packets by queueing them. |
| connection_.SendAck(); |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendCryptoStreamData)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)), |
| Return(true))); |
| |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) |
| .Times(3); |
| // Unblock the connection. |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's the stream frame from stream 3. |
| EXPECT_EQ(1u, helper_->frame_count()); |
| EXPECT_TRUE(helper_->ack()); |
| EXPECT_EQ(1u, helper_->stream_frames()->size()); |
| EXPECT_EQ(kStreamId3, (*helper_->stream_frames())[0].stream_id); |
| } |
| |
| TEST_F(QuicConnectionTest, FramePackingFEC) { |
| // Enable fec. |
| connection_.options()->max_packets_per_fec_group = 6; |
| // Block the connection. |
| connection_.GetSendAlarm()->Set( |
| clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1))); |
| |
| // Send an ack and two stream frames in 1 packet by queueing them. |
| connection_.SendAck(); |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData5)), |
| Return(true))); |
| |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)).Times(2); |
| // Unblock the connection. |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's in an fec group. |
| EXPECT_EQ(1u, helper_->header()->fec_group); |
| EXPECT_EQ(0u, helper_->frame_count()); |
| } |
| |
| TEST_F(QuicConnectionTest, FramePackingSendv) { |
| // Send two stream frames in 1 packet by using writev. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); |
| |
| char data[] = "ABCD"; |
| iovec iov[2] = { {static_cast<void*>(data), 2}, |
| {static_cast<void*>(data + 2), 2} }; |
| connection_.SendvStreamData(1, iov, 2, 0, !kFin); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's two stream frames from one stream. |
| // TODO(ianswett): Ideally this would arrive in one frame in the future. |
| EXPECT_EQ(2u, helper_->frame_count()); |
| EXPECT_EQ(2u, helper_->stream_frames()->size()); |
| EXPECT_EQ(1u, (*helper_->stream_frames())[0].stream_id); |
| EXPECT_EQ(1u, (*helper_->stream_frames())[1].stream_id); |
| } |
| |
| TEST_F(QuicConnectionTest, FramePackingSendvQueued) { |
| // Try to send two stream frames in 1 packet by using writev. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); |
| |
| helper_->set_blocked(true); |
| char data[] = "ABCD"; |
| iovec iov[2] = { {static_cast<void*>(data), 2}, |
| {static_cast<void*>(data + 2), 2} }; |
| connection_.SendvStreamData(1, iov, 2, 0, !kFin); |
| |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| EXPECT_TRUE(connection_.HasQueuedData()); |
| |
| // Attempt to send all packets, but since we're actually still |
| // blocked, they should all remain queued. |
| EXPECT_FALSE(connection_.OnCanWrite()); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Unblock the writes and actually send. |
| helper_->set_blocked(false); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| EXPECT_TRUE(connection_.OnCanWrite()); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| |
| // Parse the last packet and ensure it's two stream frames from one stream. |
| // TODO(ianswett): Ideally this would arrive in one frame in the future. |
| EXPECT_EQ(2u, helper_->frame_count()); |
| EXPECT_EQ(2u, helper_->stream_frames()->size()); |
| EXPECT_EQ(1u, (*helper_->stream_frames())[0].stream_id); |
| EXPECT_EQ(1u, (*helper_->stream_frames())[1].stream_id); |
| } |
| |
| TEST_F(QuicConnectionTest, SendingZeroBytes) { |
| // Send a zero byte write with a fin using writev. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); |
| |
| iovec iov[1]; |
| connection_.SendvStreamData(1, iov, 0, 0, kFin); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's two stream frames from one stream. |
| // TODO(ianswett): Ideally this would arrive in one frame in the future. |
| EXPECT_EQ(1u, helper_->frame_count()); |
| EXPECT_EQ(1u, helper_->stream_frames()->size()); |
| EXPECT_EQ(1u, (*helper_->stream_frames())[0].stream_id); |
| EXPECT_TRUE((*helper_->stream_frames())[0].fin); |
| } |
| |
| TEST_F(QuicConnectionTest, OnCanWrite) { |
| // Visitor's OnCanWill send data, but will return false. |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData5)), |
| Return(false))); |
| |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly( |
| testing::Return(QuicTime::Delta::Zero())); |
| |
| // Unblock the connection. |
| connection_.OnCanWrite(); |
| // Parse the last packet and ensure it's the two stream frames from |
| // two different streams. |
| EXPECT_EQ(2u, helper_->frame_count()); |
| EXPECT_EQ(2u, helper_->stream_frames()->size()); |
| EXPECT_EQ(kStreamId3, (*helper_->stream_frames())[0].stream_id); |
| EXPECT_EQ(kStreamId5, (*helper_->stream_frames())[1].stream_id); |
| } |
| |
| TEST_F(QuicConnectionTest, RetransmitOnNack) { |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(2); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(2, _)).Times(1); |
| QuicPacketSequenceNumber last_packet; |
| QuicByteCount second_packet_size; |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 |
| second_packet_size = |
| SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2 |
| SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3 |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Peer acks one but not two or three. Right now we only retransmit on |
| // explicit nack, so it should not trigger a retransimission. |
| QuicAckFrame ack_one(1, QuicTime::Zero(), 0); |
| ack_one.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); |
| ProcessAckPacket(&ack_one, true); |
| ProcessAckPacket(&ack_one, true); |
| ProcessAckPacket(&ack_one, true); |
| |
| // Peer acks up to 3 with two explicitly missing. Two nacks should cause no |
| // change. |
| QuicAckFrame nack_two(3, QuicTime::Zero(), 0); |
| nack_two.received_info.missing_packets.insert(2); |
| nack_two.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); |
| ProcessAckPacket(&nack_two, true); |
| ProcessAckPacket(&nack_two, true); |
| |
| // The third nack should trigger a retransimission. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, second_packet_size - kQuicVersionSize, |
| NACK_RETRANSMISSION, _)).Times(1); |
| ProcessAckPacket(&nack_two, true); |
| } |
| |
| TEST_F(QuicConnectionTest, DiscardRetransmit) { |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(2); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(2, _)).Times(1); |
| QuicPacketSequenceNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 |
| SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2 |
| SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3 |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Peer acks one but not two or three. Right now we only retransmit on |
| // explicit nack, so it should not trigger a retransimission. |
| QuicAckFrame ack_one(1, QuicTime::Zero(), 0); |
| ack_one.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); |
| ProcessAckPacket(&ack_one, true); |
| ProcessAckPacket(&ack_one, true); |
| ProcessAckPacket(&ack_one, true); |
| |
| // Peer acks up to 3 with two explicitly missing. Two nacks should cause no |
| // change. |
| QuicAckFrame nack_two(3, QuicTime::Zero(), 0); |
| nack_two.received_info.missing_packets.insert(2); |
| nack_two.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); |
| ProcessAckPacket(&nack_two, true); |
| ProcessAckPacket(&nack_two, true); |
| |
| // The third nack should trigger a retransimission, but we'll be |
| // write blocked, so the packet will be queued. |
| helper_->set_blocked(true); |
| |
| ProcessAckPacket(&nack_two, false); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Now, ack the previous transmission. |
| QuicAckFrame ack_all(3, QuicTime::Zero(), 0); |
| nack_two.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 3); |
| ProcessAckPacket(&ack_all, true); |
| |
| // Unblock the socket and attempt to send the queued packets. However, |
| // since the previous transmission has been acked, we will not |
| // send the retransmission. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, _, _)).Times(0); |
| |
| helper_->set_blocked(false); |
| connection_.OnCanWrite(); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, RetransmitNackedLargestObserved) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| QuicPacketSequenceNumber largest_observed; |
| QuicByteCount packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) |
| .WillOnce(DoAll(SaveArg<1>(&largest_observed), SaveArg<2>(&packet_size), |
| Return(true))); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(1, _)).Times(1); |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| QuicAckFrame frame(1, QuicTime::Zero(), largest_observed); |
| frame.received_info.missing_packets.insert(largest_observed); |
| frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( |
| &connection_, largest_observed - 1); |
| ProcessAckPacket(&frame, true); |
| ProcessAckPacket(&frame, true); |
| // Third nack should retransmit the largest observed packet. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, packet_size - kQuicVersionSize, |
| NACK_RETRANSMISSION, _)); |
| ProcessAckPacket(&frame, true); |
| } |
| |
| TEST_F(QuicConnectionTest, QueueAfterTwoRTOs) { |
| for (int i = 0; i < 10; ++i) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendStreamData(1, "foo", i * 3, !kFin); |
| } |
| |
| // Block the congestion window and ensure they're queued. |
| helper_->set_blocked(true); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| // Only one packet should be retransmitted. |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(10); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_TRUE(connection_.HasQueuedData()); |
| |
| // Unblock the congestion window. |
| helper_->set_blocked(false); |
| clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( |
| 2 * DefaultRetransmissionTime().ToMicroseconds())); |
| // Retransmit already retransmitted packets event though the sequence number |
| // greater than the largest observed. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(10); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| connection_.OnCanWrite(); |
| } |
| |
| TEST_F(QuicConnectionTest, LimitPacketsPerNack) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(12, _, _)).Times(1); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(11); |
| int offset = 0; |
| // Send packets 1 to 12 |
| for (int i = 0; i < 12; ++i) { |
| SendStreamDataToPeer(1, "foo", offset, !kFin, NULL); |
| offset += 3; |
| } |
| |
| // Ack 12, nack 1-11 |
| QuicAckFrame nack(12, QuicTime::Zero(), 0); |
| for (int i = 1; i < 12; ++i) { |
| nack.received_info.missing_packets.insert(i); |
| } |
| |
| nack.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 12) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 11); |
| |
| // Nack three times. |
| ProcessAckPacket(&nack, true); |
| ProcessAckPacket(&nack, true); |
| // The third call should trigger retransmitting 10 packets. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(10); |
| ProcessAckPacket(&nack, true); |
| |
| // The fourth call should trigger retransmitting the 11th packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| ProcessAckPacket(&nack, true); |
| } |
| |
| // Test sending multiple acks from the connection to the session. |
| TEST_F(QuicConnectionTest, MultipleAcks) { |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(6); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| QuicPacketSequenceNumber last_packet; |
| SendStreamDataToPeer(1u, "foo", 0, !kFin, &last_packet); // Packet 1 |
| EXPECT_EQ(1u, last_packet); |
| SendStreamDataToPeer(3u, "foo", 0, !kFin, &last_packet); // Packet 2 |
| EXPECT_EQ(2u, last_packet); |
| SendAckPacketToPeer(); // Packet 3 |
| SendStreamDataToPeer(5u, "foo", 0, !kFin, &last_packet); // Packet 4 |
| EXPECT_EQ(4u, last_packet); |
| SendStreamDataToPeer(1u, "foo", 3, !kFin, &last_packet); // Packet 5 |
| EXPECT_EQ(5u, last_packet); |
| SendStreamDataToPeer(3u, "foo", 3, !kFin, &last_packet); // Packet 6 |
| EXPECT_EQ(6u, last_packet); |
| |
| // Client will ack packets 1, [!2], 3, 4, 5 |
| QuicAckFrame frame1(5, QuicTime::Zero(), 0); |
| frame1.received_info.missing_packets.insert(2); |
| frame1.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 5) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessAckPacket(&frame1, true); |
| |
| // Now the client implicitly acks 2, and explicitly acks 6 |
| QuicAckFrame frame2(6, QuicTime::Zero(), 0); |
| frame2.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 6); |
| |
| ProcessAckPacket(&frame2, true); |
| } |
| |
| TEST_F(QuicConnectionTest, DontLatchUnackedPacket) { |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1); |
| SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); // Packet 1; |
| SendAckPacketToPeer(); // Packet 2 |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicAckFrame frame(1, QuicTime::Zero(), 0); |
| frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( |
| &connection_, 1); |
| ProcessAckPacket(&frame, true); |
| |
| // Verify that our internal state has least-unacked as 3. |
| EXPECT_EQ(3u, outgoing_ack()->sent_info.least_unacked); |
| |
| // When we send an ack, we make sure our least-unacked makes sense. In this |
| // case since we're not waiting on an ack for 2 and all packets are acked, we |
| // set it to 3. |
| SendAckPacketToPeer(); // Packet 3 |
| // Since this was an ack packet, we set least_unacked to 4. |
| EXPECT_EQ(4u, outgoing_ack()->sent_info.least_unacked); |
| // Check that the outgoing ack had its sequence number as least_unacked. |
| EXPECT_EQ(3u, last_ack()->sent_info.least_unacked); |
| |
| SendStreamDataToPeer(1, "bar", 3, false, NULL); // Packet 4 |
| EXPECT_EQ(4u, outgoing_ack()->sent_info.least_unacked); |
| SendAckPacketToPeer(); // Packet 5 |
| EXPECT_EQ(4u, last_ack()->sent_info.least_unacked); |
| } |
| |
| TEST_F(QuicConnectionTest, ReviveMissingPacketAfterFecPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Don't send missing packet 1. |
| ProcessFecPacket(2, 1, true, !kEntropyFlag, NULL); |
| // Entropy flag should be false, so entropy should be 0. |
| EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| } |
| |
| TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPacketThenFecPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessFecProtectedPacket(1, false, kEntropyFlag); |
| // Don't send missing packet 2. |
| ProcessFecPacket(3, 1, true, !kEntropyFlag, NULL); |
| // Entropy flag should be true, so entropy should not be 0. |
| EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| } |
| |
| TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPacketsThenFecPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessFecProtectedPacket(1, false, !kEntropyFlag); |
| // Don't send missing packet 2. |
| ProcessFecProtectedPacket(3, false, !kEntropyFlag); |
| ProcessFecPacket(4, 1, true, kEntropyFlag, NULL); |
| // Entropy flag should be true, so entropy should not be 0. |
| EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| } |
| |
| TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Don't send missing packet 1. |
| ProcessFecPacket(3, 1, false, !kEntropyFlag, NULL); |
| // out of order |
| ProcessFecProtectedPacket(2, true, !kEntropyFlag); |
| // Entropy flag should be false, so entropy should be 0. |
| EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| } |
| |
| TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPackets) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessFecProtectedPacket(1, false, !kEntropyFlag); |
| // Don't send missing packet 2. |
| ProcessFecPacket(6, 1, false, kEntropyFlag, NULL); |
| ProcessFecProtectedPacket(3, false, kEntropyFlag); |
| ProcessFecProtectedPacket(4, false, kEntropyFlag); |
| ProcessFecProtectedPacket(5, true, !kEntropyFlag); |
| // Entropy flag should be true, so entropy should be 0. |
| EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| } |
| |
| TEST_F(QuicConnectionTest, TestRetransmit) { |
| QuicTime default_retransmission_time = clock_.ApproximateNow().Add( |
| DefaultRetransmissionTime()); |
| SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); |
| EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked); |
| |
| EXPECT_EQ(1u, last_header()->packet_sequence_number); |
| EXPECT_EQ(default_retransmission_time, |
| connection_.GetRetransmissionAlarm()->deadline()); |
| // Simulate the retransimission alarm firing |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(1, _)).Times(1); |
| connection_.RetransmitPacket(1, RTO_RETRANSMISSION); |
| EXPECT_EQ(2u, last_header()->packet_sequence_number); |
| // We do not raise the high water mark yet. |
| EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked); |
| } |
| |
| TEST_F(QuicConnectionTest, RetransmitWithSameEncryptionLevel) { |
| QuicTime default_retransmission_time = clock_.ApproximateNow().Add( |
| DefaultRetransmissionTime()); |
| use_tagging_decrypter(); |
| |
| // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at |
| // the end of the packet. We can test this to check which encrypter was used. |
| connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); |
| SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); |
| EXPECT_EQ(0x01010101u, final_bytes_of_last_packet()); |
| |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); |
| EXPECT_EQ(0x02020202u, final_bytes_of_last_packet()); |
| |
| EXPECT_EQ(default_retransmission_time, |
| connection_.GetRetransmissionAlarm()->deadline()); |
| // Simulate the retransimission alarm firing |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(2); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.RetransmitPacket(1, RTO_RETRANSMISSION); |
| // Packet should have been sent with ENCRYPTION_NONE. |
| EXPECT_EQ(0x01010101u, final_bytes_of_last_packet()); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.RetransmitPacket(2, RTO_RETRANSMISSION); |
| // Packet should have been sent with ENCRYPTION_INITIAL. |
| EXPECT_EQ(0x02020202u, final_bytes_of_last_packet()); |
| } |
| |
| TEST_F(QuicConnectionTest, |
| DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); |
| QuicPacketSequenceNumber sequence_number; |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &sequence_number); |
| |
| connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| new TaggingEncrypter(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(sequence_number, _)).Times(1); |
| |
| QuicTime default_retransmission_time = clock_.ApproximateNow().Add( |
| DefaultRetransmissionTime()); |
| |
| EXPECT_EQ(default_retransmission_time, |
| connection_.GetRetransmissionAlarm()->deadline()); |
| // Simulate the retransimission alarm firing |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| } |
| |
| TEST_F(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE); |
| |
| SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); |
| |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| |
| SendStreamDataToPeer(2, "bar", 0, !kFin, NULL); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(1); |
| |
| connection_.RetransmitUnackedPackets(QuicConnection::INITIAL_ENCRYPTION_ONLY); |
| } |
| |
| TEST_F(QuicConnectionTest, BufferNonDecryptablePackets) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| use_tagging_decrypter(); |
| |
| const uint8 tag = 0x07; |
| framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); |
| |
| // Process an encrypted packet which can not yet be decrypted |
| // which should result in the packet being buffered. |
| ProcessDataPacketAtLevel(1, false, kEntropyFlag, ENCRYPTION_INITIAL); |
| |
| // Transition to the new encryption state and process another |
| // encrypted packet which should result in the original packet being |
| // processed. |
| connection_.SetDecrypter(new StrictTaggingDecrypter(tag)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(2).WillRepeatedly( |
| Return(true)); |
| ProcessDataPacketAtLevel(2, false, kEntropyFlag, ENCRYPTION_INITIAL); |
| |
| // Finally, process a third packet and note that we do not |
| // reprocess the buffered packet. |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).WillOnce(Return(true)); |
| ProcessDataPacketAtLevel(3, false, kEntropyFlag, ENCRYPTION_INITIAL); |
| } |
| |
| TEST_F(QuicConnectionTest, TestRetransmitOrder) { |
| QuicByteCount first_packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( |
| DoAll(SaveArg<2>(&first_packet_size), Return(true))); |
| |
| connection_.SendStreamData(1, "first_packet", 0, !kFin); |
| QuicByteCount second_packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( |
| DoAll(SaveArg<2>(&second_packet_size), Return(true))); |
| connection_.SendStreamData(1, "second_packet", 12, !kFin); |
| EXPECT_NE(first_packet_size, second_packet_size); |
| // Advance the clock by huge time to make sure packets will be retransmitted. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(2); |
| { |
| InSequence s; |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, first_packet_size, _, _)); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, second_packet_size, _, _)); |
| } |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Advance again and expect the packets to be sent again in the same order. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(2); |
| { |
| InSequence s; |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, first_packet_size, _, _)); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, second_packet_size, _, _)); |
| } |
| connection_.GetRetransmissionAlarm()->Fire(); |
| } |
| |
| TEST_F(QuicConnectionTest, TestRetransmissionCountCalculation) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacketSequenceNumber original_sequence_number; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) |
| .WillOnce(DoAll(SaveArg<1>(&original_sequence_number), Return(true))); |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| |
| EXPECT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, original_sequence_number)); |
| EXPECT_EQ(0u, QuicConnectionPeer::GetRetransmissionCount( |
| &connection_, original_sequence_number)); |
| // Force retransmission due to RTO. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketAbandoned(original_sequence_number, _)).Times(1); |
| QuicPacketSequenceNumber rto_sequence_number; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, RTO_RETRANSMISSION, _)) |
| .WillOnce(DoAll(SaveArg<1>(&rto_sequence_number), Return(true))); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, original_sequence_number)); |
| ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, rto_sequence_number)); |
| EXPECT_EQ(1u, QuicConnectionPeer::GetRetransmissionCount( |
| &connection_, rto_sequence_number)); |
| // Once by explicit nack. |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketAbandoned(rto_sequence_number, _)).Times(1); |
| QuicPacketSequenceNumber nack_sequence_number = 0; |
| // Ack packets might generate some other packets, which are not |
| // retransmissions. (More ack packets). |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) |
| .Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NACK_RETRANSMISSION, _)) |
| .WillOnce(DoAll(SaveArg<1>(&nack_sequence_number), Return(true))); |
| QuicAckFrame ack(rto_sequence_number, QuicTime::Zero(), 0); |
| // Ack the retransmitted packet. |
| ack.received_info.missing_packets.insert(original_sequence_number); |
| ack.received_info.missing_packets.insert(rto_sequence_number); |
| ack.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash( |
| &connection_, rto_sequence_number - 1); |
| for (int i = 0; i < 3; i++) { |
| ProcessAckPacket(&ack, true); |
| } |
| ASSERT_NE(0u, nack_sequence_number); |
| EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, rto_sequence_number)); |
| ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, nack_sequence_number)); |
| EXPECT_EQ(2u, QuicConnectionPeer::GetRetransmissionCount( |
| &connection_, nack_sequence_number)); |
| } |
| |
| TEST_F(QuicConnectionTest, SetRTOAfterWritingToSocket) { |
| helper_->set_blocked(true); |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| // Make sure that RTO is not started when the packet is queued. |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Test that RTO is started once we write to the socket. |
| helper_->set_blocked(false); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| connection_.OnCanWrite(); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| |
| TEST_F(QuicConnectionTest, DelayRTOWithAckReceipt) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)) |
| .Times(2); |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| connection_.SendStreamData(2, "bar", 0, !kFin); |
| QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| |
| // Advance the time right before the RTO, then receive an ack for the first |
| // packet to delay the RTO. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1); |
| QuicAckFrame ack(1, QuicTime::Zero(), 0); |
| ProcessAckPacket(&ack, true); |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| |
| // Move forward past the original RTO and ensure the RTO is still pending. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| |
| // Ensure the second packet gets retransmitted when it finally fires. |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| EXPECT_GE(retransmission_alarm->deadline(), clock_.ApproximateNow()); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_LT(retransmission_alarm->deadline(), clock_.ApproximateNow()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, RTO_RETRANSMISSION, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)); |
| // Manually cancel the alarm to simulate a real test. |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // The new retransmitted sequence number should set the RTO to a larger value |
| // than previously. |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| QuicTime next_rto_time = retransmission_alarm->deadline(); |
| QuicTime::Delta expected_rto = QuicConnectionPeer::GetCongestionManager( |
| &connection_)->GetRetransmissionDelay(1, 1); |
| EXPECT_EQ(next_rto_time, clock_.ApproximateNow().Add(expected_rto)); |
| } |
| |
| TEST_F(QuicConnectionTest, TestQueued) { |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| helper_->set_blocked(true); |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Attempt to send all packets, but since we're actually still |
| // blocked, they should all remain queued. |
| EXPECT_FALSE(connection_.OnCanWrite()); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Unblock the writes and actually send. |
| helper_->set_blocked(false); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| EXPECT_TRUE(connection_.OnCanWrite()); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, CloseFecGroup) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| // Don't send missing packet 1 |
| // Don't send missing packet 2 |
| ProcessFecProtectedPacket(3, false, !kEntropyFlag); |
| // Don't send missing FEC packet 3 |
| ASSERT_EQ(1u, connection_.NumFecGroups()); |
| |
| // Now send non-fec protected ack packet and close the group |
| QuicAckFrame frame(0, QuicTime::Zero(), 5); |
| creator_.set_sequence_number(4); |
| ProcessAckPacket(&frame, true); |
| ASSERT_EQ(0u, connection_.NumFecGroups()); |
| } |
| |
| TEST_F(QuicConnectionTest, NoQuicCongestionFeedbackFrame) { |
| SendAckPacketToPeer(); |
| EXPECT_TRUE(last_feedback() == NULL); |
| } |
| |
| TEST_F(QuicConnectionTest, WithQuicCongestionFeedbackFrame) { |
| QuicCongestionFeedbackFrame info; |
| info.type = kFixRate; |
| info.fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(123); |
| SetFeedback(&info); |
| |
| SendAckPacketToPeer(); |
| EXPECT_EQ(kFixRate, last_feedback()->type); |
| EXPECT_EQ(info.fix_rate.bitrate, last_feedback()->fix_rate.bitrate); |
| } |
| |
| TEST_F(QuicConnectionTest, UpdateQuicCongestionFeedbackFrame) { |
| SendAckPacketToPeer(); |
| EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _, _)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| } |
| |
| TEST_F(QuicConnectionTest, DontUpdateQuicCongestionFeedbackFrameForRevived) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| SendAckPacketToPeer(); |
| // Process an FEC packet, and revive the missing data packet |
| // but only contact the receive_algorithm once. |
| EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _, _)); |
| ProcessFecPacket(2, 1, true, !kEntropyFlag, NULL); |
| } |
| |
| TEST_F(QuicConnectionTest, InitialTimeout) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_CONNECTION_TIMED_OUT, false)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| |
| QuicTime default_timeout = clock_.ApproximateNow().Add( |
| QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // Simulate the timeout alarm firing |
| clock_.AdvanceTime( |
| QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| } |
| |
| TEST_F(QuicConnectionTest, TimeoutAfterSend) { |
| EXPECT_TRUE(connection_.connected()); |
| |
| QuicTime default_timeout = clock_.ApproximateNow().Add( |
| QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs)); |
| |
| // When we send a packet, the timeout will change to 5000 + |
| // kDefaultInitialTimeoutSecs. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| |
| // Send an ack so we don't set the retransimission alarm. |
| SendAckPacketToPeer(); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // The original alarm will fire. We should not time out because we had a |
| // network event at t=5000. The alarm will reregister. |
| clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( |
| kDefaultInitialTimeoutSecs * 1000000 - 5000)); |
| EXPECT_EQ(default_timeout, clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)), |
| connection_.GetTimeoutAlarm()->deadline()); |
| |
| // This time, we should time out. |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_CONNECTION_TIMED_OUT, false)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)), |
| clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| } |
| |
| // TODO(ianswett): Add scheduler tests when should_retransmit is false. |
| TEST_F(QuicConnectionTest, SendScheduler) { |
| // Test that if we send a packet without delay, it is not queued. |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::Zero())); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, SendSchedulerDelay) { |
| // Test that if we send a packet with a delay, it ends up queued. |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(1))); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 1, _, _, _)).Times(0); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, SendSchedulerForce) { |
| // Test that if we force send a packet, it is not queued. |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NACK_RETRANSMISSION, _, _)).Times(0); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| // XXX: fixme. was: connection_.SendPacket(1, packet, kForce); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, SendSchedulerEAGAIN) { |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| helper_->set_blocked(true); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::Zero())); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 1, _, _, _)).Times(0); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, SendSchedulerDelayThenSend) { |
| // Test that if we send a packet with a delay, it ends up queued. |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(1))); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Advance the clock to fire the alarm, and configure the scheduler |
| // to permit the packet to be sent. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly( |
| testing::Return(QuicTime::Delta::Zero())); |
| clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(1)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, SendSchedulerDelayThenRetransmit) { |
| EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _)) |
| .WillRepeatedly(testing::Return(QuicTime::Delta::Zero())); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(1, _)).Times(1); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, 1, _, NOT_RETRANSMISSION, _)); |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| // Advance the time for retransmission of lost packet. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(501)); |
| // Test that if we send a retransmit with a delay, it ends up queued. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, RTO_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(1))); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Advance the clock to fire the alarm, and configure the scheduler |
| // to permit the packet to be sent. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, RTO_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::Zero())); |
| |
| // Ensure the scheduler is notified this is a retransmit. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, RTO_RETRANSMISSION, _)); |
| clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(1)); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, SendSchedulerDelayAndQueue) { |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(1))); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Attempt to send another packet and make sure that it gets queued. |
| packet = ConstructDataPacket(2, 0, !kEntropyFlag); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 2, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(2u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, SendSchedulerDelayThenAckAndSend) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(10))); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Now send non-retransmitting information, that we're not going to |
| // retransmit 3. The far end should stop waiting for it. |
| QuicAckFrame frame(0, QuicTime::Zero(), 1); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly( |
| testing::Return(QuicTime::Delta::Zero())); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, _, _)); |
| ProcessAckPacket(&frame, true); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| // Ensure alarm is not set |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| } |
| |
| TEST_F(QuicConnectionTest, SendSchedulerDelayThenAckAndHold) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(10))); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Now send non-retransmitting information, that we're not going to |
| // retransmit 3. The far end should stop waiting for it. |
| QuicAckFrame frame(0, QuicTime::Zero(), 1); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(1))); |
| ProcessAckPacket(&frame, false); |
| |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, SendSchedulerDelayThenOnCanWrite) { |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(10))); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // OnCanWrite should not send the packet (because of the delay) |
| // but should still return true. |
| EXPECT_TRUE(connection_.OnCanWrite()); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { |
| // All packets carry version info till version is negotiated. |
| size_t payload_length; |
| connection_.options()->max_packet_length = |
| GetPacketLengthForOneStream( |
| connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, |
| NOT_IN_FEC_GROUP, &payload_length); |
| |
| // Queue the first packet. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(10))); |
| const string payload(payload_length, 'a'); |
| EXPECT_EQ(0u, |
| connection_.SendStreamData(1, payload, 0, !kFin).bytes_consumed); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_F(QuicConnectionTest, LoopThroughSendingPackets) { |
| // All packets carry version info till version is negotiated. |
| size_t payload_length; |
| connection_.options()->max_packet_length = |
| GetPacketLengthForOneStream( |
| connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER, |
| NOT_IN_FEC_GROUP, &payload_length); |
| |
| // Queue the first packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7); |
| // The first stream frame will consume 2 fewer bytes than the other six. |
| const string payload(payload_length * 7 - 12, 'a'); |
| EXPECT_EQ(payload.size(), |
| connection_.SendStreamData(1, payload, 0, !kFin).bytes_consumed); |
| } |
| |
| TEST_F(QuicConnectionTest, NoAckForClose) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(0); |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_PEER_GOING_AWAY, true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| ProcessClosePacket(2, 0); |
| } |
| |
| TEST_F(QuicConnectionTest, SendWhenDisconnected) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_PEER_GOING_AWAY, false)); |
| connection_.CloseConnection(QUIC_PEER_GOING_AWAY, false); |
| EXPECT_FALSE(connection_.connected()); |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, 1, _, _, _)).Times(0); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| TEST_F(QuicConnectionTest, PublicReset) { |
| QuicPublicResetPacket header; |
| header.public_header.guid = guid_; |
| header.public_header.reset_flag = true; |
| header.public_header.version_flag = false; |
| header.rejected_sequence_number = 10101; |
| scoped_ptr<QuicEncryptedPacket> packet( |
| framer_.BuildPublicResetPacket(header)); |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_PUBLIC_RESET, true)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet); |
| } |
| |
| TEST_F(QuicConnectionTest, GoAway) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| QuicGoAwayFrame goaway; |
| goaway.last_good_stream_id = 1; |
| goaway.error_code = QUIC_PEER_GOING_AWAY; |
| goaway.reason_phrase = "Going away."; |
| EXPECT_CALL(visitor_, OnGoAway(_)); |
| ProcessGoAwayPacket(&goaway); |
| } |
| |
| TEST_F(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { |
| QuicAckFrame ack(0, QuicTime::Zero(), 4); |
| // Set the sequence number of the ack packet to be least unacked (4) |
| creator_.set_sequence_number(3); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessAckPacket(&ack, true); |
| EXPECT_TRUE(outgoing_ack()->received_info.missing_packets.empty()); |
| } |
| |
| TEST_F(QuicConnectionTest, ReceivedEntropyHashCalculation) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessDataPacket(1, 1, kEntropyFlag); |
| ProcessDataPacket(4, 1, kEntropyFlag); |
| ProcessDataPacket(3, 1, !kEntropyFlag); |
| ProcessDataPacket(7, 1, kEntropyFlag); |
| EXPECT_EQ(146u, outgoing_ack()->received_info.entropy_hash); |
| } |
| |
| TEST_F(QuicConnectionTest, UpdateEntropyForReceivedPackets) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessDataPacket(1, 1, kEntropyFlag); |
| ProcessDataPacket(5, 1, kEntropyFlag); |
| ProcessDataPacket(4, 1, !kEntropyFlag); |
| EXPECT_EQ(34u, outgoing_ack()->received_info.entropy_hash); |
| // Make 4th packet my least unacked, and update entropy for 2, 3 packets. |
| QuicAckFrame ack(0, QuicTime::Zero(), 4); |
| QuicPacketEntropyHash kRandomEntropyHash = 129u; |
| ack.sent_info.entropy_hash = kRandomEntropyHash; |
| creator_.set_sequence_number(5); |
| QuicPacketEntropyHash six_packet_entropy_hash = 0; |
| if (ProcessAckPacket(&ack, true)) { |
| six_packet_entropy_hash = 1 << 6; |
| } |
| |
| EXPECT_EQ((kRandomEntropyHash + (1 << 5) + six_packet_entropy_hash), |
| outgoing_ack()->received_info.entropy_hash); |
| } |
| |
| TEST_F(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessDataPacket(1, 1, kEntropyFlag); |
| ProcessDataPacket(5, 1, !kEntropyFlag); |
| ProcessDataPacket(22, 1, kEntropyFlag); |
| EXPECT_EQ(66u, outgoing_ack()->received_info.entropy_hash); |
| creator_.set_sequence_number(22); |
| QuicPacketEntropyHash kRandomEntropyHash = 85u; |
| // Current packet is the least unacked packet. |
| QuicAckFrame ack(0, QuicTime::Zero(), 23); |
| ack.sent_info.entropy_hash = kRandomEntropyHash; |
| QuicPacketEntropyHash ack_entropy_hash = ProcessAckPacket(&ack, true); |
| EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash), |
| outgoing_ack()->received_info.entropy_hash); |
| ProcessDataPacket(25, 1, kEntropyFlag); |
| EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash + (1 << (25 % 8))), |
| outgoing_ack()->received_info.entropy_hash); |
| } |
| |
| TEST_F(QuicConnectionTest, EntropyCalculationForTruncatedAck) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).WillRepeatedly(Return(true)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacketEntropyHash entropy[51]; |
| entropy[0] = 0; |
| for (int i = 1; i < 51; ++i) { |
| bool should_send = i % 10 != 0; |
| bool entropy_flag = (i & (i - 1)) != 0; |
| if (!should_send) { |
| entropy[i] = entropy[i - 1]; |
| continue; |
| } |
| if (entropy_flag) { |
| entropy[i] = entropy[i - 1] ^ (1 << (i % 8)); |
| } else { |
| entropy[i] = entropy[i - 1]; |
| } |
| ProcessDataPacket(i, 1, entropy_flag); |
| } |
| // Till 50 since 50th packet is not sent. |
| for (int i = 1; i < 50; ++i) { |
| EXPECT_EQ(entropy[i], QuicConnectionPeer::ReceivedEntropyHash( |
| &connection_, i)); |
| } |
| } |
| |
| TEST_F(QuicConnectionTest, CheckSentEntropyHash) { |
| creator_.set_sequence_number(1); |
| SequenceNumberSet missing_packets; |
| QuicPacketEntropyHash entropy_hash = 0; |
| QuicPacketSequenceNumber max_sequence_number = 51; |
| for (QuicPacketSequenceNumber i = 1; i <= max_sequence_number; ++i) { |
| bool is_missing = i % 10 != 0; |
| bool entropy_flag = (i & (i - 1)) != 0; |
| QuicPacketEntropyHash packet_entropy_hash = 0; |
| if (entropy_flag) { |
| packet_entropy_hash = 1 << (i % 8); |
| } |
| QuicPacket* packet = ConstructDataPacket(i, 0, entropy_flag); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, i, packet, packet_entropy_hash, |
| HAS_RETRANSMITTABLE_DATA); |
| |
| if (is_missing) { |
| missing_packets.insert(i); |
| continue; |
| } |
| |
| entropy_hash ^= packet_entropy_hash; |
| } |
| EXPECT_TRUE(QuicConnectionPeer::IsValidEntropy( |
| &connection_, max_sequence_number, missing_packets, entropy_hash)) |
| << ""; |
| } |
| |
| TEST_F(QuicConnectionTest, ServerSendsVersionNegotiationPacket) { |
| framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); |
| |
| QuicPacketHeader header; |
| header.public_header.guid = guid_; |
| header.public_header.reset_flag = false; |
| header.public_header.version_flag = true; |
| header.entropy_flag = false; |
| header.fec_flag = false; |
| header.packet_sequence_number = 12; |
| header.fec_group = 0; |
| |
| QuicFrames frames; |
| QuicFrame frame(&frame1_); |
| frames.push_back(frame); |
| scoped_ptr<QuicPacket> packet( |
| framer_.BuildUnsizedDataPacket(header, frames).packet); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); |
| |
| framer_.set_version(QuicVersionMax()); |
| connection_.set_is_server(true); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| EXPECT_TRUE(helper_->version_negotiation_packet() != NULL); |
| |
| size_t num_versions = arraysize(kSupportedQuicVersions); |
| EXPECT_EQ(num_versions, |
| helper_->version_negotiation_packet()->versions.size()); |
| |
| // We expect all versions in kSupportedQuicVersions to be |
| // included in the packet. |
| for (size_t i = 0; i < num_versions; ++i) { |
| EXPECT_EQ(kSupportedQuicVersions[i], |
| helper_->version_negotiation_packet()->versions[i]); |
| } |
| } |
| |
| TEST_F(QuicConnectionTest, ClientHandlesVersionNegotiation) { |
| // Start out with some unsupported version. |
| QuicConnectionPeer::GetFramer(&connection_)->set_version_for_tests( |
| QUIC_VERSION_UNSUPPORTED); |
| |
| QuicPacketHeader header; |
| header.public_header.guid = guid_; |
| header.public_header.reset_flag = false; |
| header.public_header.version_flag = true; |
| header.entropy_flag = false; |
| header.fec_flag = false; |
| header.packet_sequence_number = 12; |
| header.fec_group = 0; |
| |
| QuicVersionVector supported_versions; |
| for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { |
| supported_versions.push_back(kSupportedQuicVersions[i]); |
| } |
| |
| // Send a version negotiation packet. |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.BuildVersionNegotiationPacket( |
| header.public_header, supported_versions)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| |
| // Now force another packet. The connection should transition into |
| // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion. |
| header.public_header.version_flag = false; |
| QuicFrames frames; |
| QuicFrame frame(&frame1_); |
| frames.push_back(frame); |
| scoped_ptr<QuicPacket> packet( |
| framer_.BuildUnsizedDataPacket(header, frames).packet); |
| encrypted.reset(framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| |
| ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket( |
| QuicConnectionPeer::GetPacketCreator(&connection_))); |
| } |
| |
| TEST_F(QuicConnectionTest, BadVersionNegotiation) { |
| QuicPacketHeader header; |
| header.public_header.guid = guid_; |
| header.public_header.reset_flag = false; |
| header.public_header.version_flag = true; |
| header.entropy_flag = false; |
| header.fec_flag = false; |
| header.packet_sequence_number = 12; |
| header.fec_group = 0; |
| |
| QuicVersionVector supported_versions; |
| for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { |
| supported_versions.push_back(kSupportedQuicVersions[i]); |
| } |
| |
| // Send a version negotiation packet with the version the client started with. |
| // It should be rejected. |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, |
| false)); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.BuildVersionNegotiationPacket( |
| header.public_header, supported_versions)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| } |
| |
| TEST_F(QuicConnectionTest, CheckSendStats) { |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); |
| connection_.SendStreamData(1u, "first", 0, !kFin); |
| size_t first_packet_size = last_sent_packet_size(); |
| |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, NOT_RETRANSMISSION, _)); |
| connection_.SendStreamData(1u, "second", 0, !kFin); |
| size_t second_packet_size = last_sent_packet_size(); |
| |
| // 2 retransmissions due to rto, 1 due to explicit nack. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, RTO_RETRANSMISSION, _)).Times(2); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, NACK_RETRANSMISSION, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(_, _)).Times(3); |
| |
| // Retransmit due to RTO. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Retransmit due to explicit nacks |
| QuicAckFrame nack_three(4, QuicTime::Zero(), 0); |
| nack_three.received_info.missing_packets.insert(3); |
| nack_three.received_info.missing_packets.insert(1); |
| nack_three.received_info.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 4) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^ |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, 1); |
| QuicFrame frame(&nack_three); |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(3).WillRepeatedly(Return(true)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessFramePacket(frame); |
| ProcessFramePacket(frame); |
| ProcessFramePacket(frame); |
| |
| EXPECT_CALL(*send_algorithm_, SmoothedRtt()).WillOnce( |
| Return(QuicTime::Delta::Zero())); |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( |
| Return(QuicBandwidth::Zero())); |
| |
| const QuicConnectionStats& stats = connection_.GetStats(); |
| EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize, |
| stats.bytes_sent); |
| EXPECT_EQ(5u, stats.packets_sent); |
| EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize, |
| stats.bytes_retransmitted); |
| EXPECT_EQ(3u, stats.packets_retransmitted); |
| EXPECT_EQ(1u, stats.rto_count); |
| } |
| |
| TEST_F(QuicConnectionTest, CheckReceiveStats) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| size_t received_bytes = 0; |
| received_bytes += ProcessFecProtectedPacket(1, false, !kEntropyFlag); |
| received_bytes += ProcessFecProtectedPacket(3, false, !kEntropyFlag); |
| // Should be counted against dropped packets. |
| received_bytes += ProcessDataPacket(3, 1, !kEntropyFlag); |
| received_bytes += ProcessFecPacket(4, 1, true, !kEntropyFlag, NULL); |
| |
| EXPECT_CALL(*send_algorithm_, SmoothedRtt()).WillOnce( |
| Return(QuicTime::Delta::Zero())); |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( |
| Return(QuicBandwidth::Zero())); |
| |
| const QuicConnectionStats& stats = connection_.GetStats(); |
| EXPECT_EQ(received_bytes, stats.bytes_received); |
| EXPECT_EQ(4u, stats.packets_received); |
| |
| EXPECT_EQ(1u, stats.packets_revived); |
| EXPECT_EQ(1u, stats.packets_dropped); |
| } |
| |
| TEST_F(QuicConnectionTest, TestFecGroupLimits) { |
| // Create and return a group for 1 |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) != NULL); |
| |
| // Create and return a group for 2 |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL); |
| |
| // Create and return a group for 4. This should remove 1 but not 2. |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) == NULL); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL); |
| |
| // Create and return a group for 3. This will kill off 2. |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) != NULL); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) == NULL); |
| |
| // Verify that adding 5 kills off 3, despite 4 being created before 3. |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 5) != NULL); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) == NULL); |
| } |
| |
| TEST_F(QuicConnectionTest, DontProcessFramesIfPacketClosedConnection) { |
| // Construct a packet with stream frame and connection close frame. |
| header_.public_header.guid = guid_; |
| header_.packet_sequence_number = 1; |
| header_.public_header.reset_flag = false; |
| header_.public_header.version_flag = false; |
| header_.entropy_flag = false; |
| header_.fec_flag = false; |
| header_.fec_group = 0; |
| |
| QuicConnectionCloseFrame qccf; |
| qccf.error_code = QUIC_PEER_GOING_AWAY; |
| qccf.ack_frame = QuicAckFrame(0, QuicTime::Zero(), 1); |
| QuicFrame close_frame(&qccf); |
| QuicFrame stream_frame(&frame1_); |
| |
| QuicFrames frames; |
| frames.push_back(stream_frame); |
| frames.push_back(close_frame); |
| scoped_ptr<QuicPacket> packet( |
| framer_.BuildUnsizedDataPacket(header_, frames).packet); |
| EXPECT_TRUE(NULL != packet.get()); |
| scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( |
| ENCRYPTION_NONE, 1, *packet)); |
| |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_PEER_GOING_AWAY, true)); |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(0); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| } |
| |
| TEST_F(QuicConnectionTest, SelectMutualVersion) { |
| // Set the connection to speak the lowest quic version. |
| connection_.set_version(QuicVersionMin()); |
| EXPECT_EQ(QuicVersionMin(), connection_.version()); |
| |
| // Pass in available versions which includes a higher mutually supported |
| // version. The higher mutually supported version should be selected. |
| QuicVersionVector supported_versions; |
| for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { |
| supported_versions.push_back(kSupportedQuicVersions[i]); |
| } |
| EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); |
| EXPECT_EQ(QuicVersionMax(), connection_.version()); |
| |
| // Expect that the lowest version is selected. |
| // Ensure the lowest supported version is less than the max, unless they're |
| // the same. |
| EXPECT_LE(QuicVersionMin(), QuicVersionMax()); |
| QuicVersionVector lowest_version_vector; |
| lowest_version_vector.push_back(QuicVersionMin()); |
| EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); |
| EXPECT_EQ(QuicVersionMin(), connection_.version()); |
| |
| // Shouldn't be able to find a mutually supported version. |
| QuicVersionVector unsupported_version; |
| unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED); |
| EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); |
| } |
| |
| TEST_F(QuicConnectionTest, ConnectionCloseWhenNotWriteBlocked) { |
| helper_->set_blocked(false); // Already default. |
| |
| // Send a packet (but write will not block). |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_EQ(1u, helper_->packets_write_attempts()); |
| |
| // Send an erroneous packet to close the connection. |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_PACKET_HEADER, false)); |
| ProcessDataPacket(6000, 0, !kEntropyFlag); |
| EXPECT_EQ(2u, helper_->packets_write_attempts()); |
| } |
| |
| TEST_F(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| helper_->set_blocked(true); |
| |
| // Send a packet to so that write will really block. |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| EXPECT_EQ(1u, helper_->packets_write_attempts()); |
| |
| // Send an erroneous packet to close the connection. |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_PACKET_HEADER, false)); |
| ProcessDataPacket(6000, 0, !kEntropyFlag); |
| EXPECT_EQ(1u, helper_->packets_write_attempts()); |
| } |
| |
| TEST_F(QuicConnectionTest, ConnectionCloseWhenNothingPending) { |
| helper_->set_blocked(true); |
| |
| // Send an erroneous packet to close the connection. |
| EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_PACKET_HEADER, false)); |
| ProcessDataPacket(6000, 0, !kEntropyFlag); |
| EXPECT_EQ(1u, helper_->packets_write_attempts()); |
| } |
| |
| TEST_F(QuicConnectionTest, AckNotifierTriggerCallback) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Create a delegate which we expect to be called. |
| MockAckNotifierDelegate delegate; |
| EXPECT_CALL(delegate, OnAckNotification()).Times(1);; |
| |
| // Send some data, which will register the delegate to be notified. |
| connection_.SendStreamDataAndNotifyWhenAcked(1, "foo", 0, !kFin, &delegate); |
| |
| // Process an ACK from the server which should trigger the callback. |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1); |
| QuicAckFrame frame(1, QuicTime::Zero(), 0); |
| ProcessAckPacket(&frame, true); |
| } |
| |
| TEST_F(QuicConnectionTest, AckNotifierFailToTriggerCallback) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Create a delegate which we don't expect to be called. |
| MockAckNotifierDelegate delegate; |
| EXPECT_CALL(delegate, OnAckNotification()).Times(0);; |
| |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(2); |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| |
| // Send some data, which will register the delegate to be notified. This will |
| // not be ACKed and so the delegate should never be called. |
| connection_.SendStreamDataAndNotifyWhenAcked(1, "foo", 0, !kFin, &delegate); |
| |
| // Send some other data which we will ACK. |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| connection_.SendStreamData(1, "bar", 0, !kFin); |
| |
| // Now we receive ACK for packets 2 and 3, but importantly missing packet 1 |
| // which we registered to be notified about. |
| QuicAckFrame frame(3, QuicTime::Zero(), 0); |
| frame.received_info.missing_packets.insert(1); |
| ProcessAckPacket(&frame, true); |
| } |
| |
| TEST_F(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Create a delegate which we expect to be called. |
| MockAckNotifierDelegate delegate; |
| EXPECT_CALL(delegate, OnAckNotification()).Times(1);; |
| |
| // In total expect ACKs for all 4 packets. |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(4); |
| |
| // We will lose the second packet. |
| EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1); |
| |
| // Send four packets, and register to be notified on ACK of packet 2. |
| connection_.SendStreamData(1, "foo", 0, !kFin); |
| connection_.SendStreamDataAndNotifyWhenAcked(1, "bar", 0, !kFin, &delegate); |
| connection_.SendStreamData(1, "baz", 0, !kFin); |
| connection_.SendStreamData(1, "qux", 0, !kFin); |
| |
| // Now we receive ACK for packets 1, 3, and 4. |
| QuicAckFrame frame(4, QuicTime::Zero(), 0); |
| frame.received_info.missing_packets.insert(2); |
| ProcessAckPacket(&frame, true); |
| |
| // Advance time to trigger RTO, for packet 2 (which should be retransmitted as |
| // packet 5). |
| EXPECT_CALL(*send_algorithm_, OnPacketAbandoned(2, _)).Times(1); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Now we get an ACK for packet 5 (retransmitted packet 2), which should |
| // trigger the callback. |
| QuicAckFrame second_ack_frame(5, QuicTime::Zero(), 0); |
| ProcessAckPacket(&second_ack_frame, true); |
| } |
| |
| // TODO(rjshade): Add a similar test that FEC recovery on peer (and resulting |
| // ACK) triggers notification on our end. |
| TEST_F(QuicConnectionTest, AckNotifierCallbackAfterFECRecovery) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(1).WillOnce(Return(true)); |
| |
| // Create a delegate which we expect to be called. |
| MockAckNotifierDelegate delegate; |
| EXPECT_CALL(delegate, OnAckNotification()).Times(1);; |
| |
| // Expect ACKs for 1 packet. |
| EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1); |
| |
| // Send one packet, and register to be notified on ACK. |
| connection_.SendStreamDataAndNotifyWhenAcked(1, "foo", 0, !kFin, &delegate); |
| |
| // Ack packet gets dropped, but we receive an FEC packet that covers it. |
| // Should recover the Ack packet and trigger the notification callback. |
| QuicFrames frames; |
| |
| QuicAckFrame ack_frame(1, QuicTime::Zero(), 0); |
| frames.push_back(QuicFrame(&ack_frame)); |
| |
| // Dummy stream frame to satisfy expectations set elsewhere. |
| frames.push_back(QuicFrame(&frame1_)); |
| |
| QuicPacketHeader ack_header; |
| ack_header.public_header.guid = guid_; |
| ack_header.public_header.reset_flag = false; |
| ack_header.public_header.version_flag = false; |
| ack_header.entropy_flag = !kEntropyFlag; |
| ack_header.fec_flag = true; |
| ack_header.packet_sequence_number = 42; |
| ack_header.is_in_fec_group = IN_FEC_GROUP; |
| ack_header.fec_group = 1; |
| |
| QuicPacket* packet = |
| framer_.BuildUnsizedDataPacket(ack_header, frames).packet; |
| |
| // Take the packet which contains the ACK frame, and construct and deliver an |
| // FEC packet which allows the ACK packet to be recovered. |
| ProcessFecPacket(2, 1, true, !kEntropyFlag, packet); |
| } |
| |
| class MockQuicConnectionDebugVisitor |
| : public QuicConnectionDebugVisitorInterface { |
| public: |
| MOCK_METHOD1(OnFrameAddedToPacket, |
| void(const QuicFrame&)); |
| |
| MOCK_METHOD4(OnPacketSent, |
| void(QuicPacketSequenceNumber, |
| EncryptionLevel, |
| const QuicEncryptedPacket&, |
| int)); |
| |
| MOCK_METHOD2(OnPacketRetransmitted, |
| void(QuicPacketSequenceNumber, |
| QuicPacketSequenceNumber)); |
| |
| MOCK_METHOD3(OnPacketReceived, |
| void(const IPEndPoint&, |
| const IPEndPoint&, |
| const QuicEncryptedPacket&)); |
| |
| MOCK_METHOD1(OnProtocolVersionMismatch, |
| void(QuicVersion)); |
| |
| MOCK_METHOD1(OnPacketHeader, |
| void(const QuicPacketHeader& header)); |
| |
| MOCK_METHOD1(OnStreamFrame, |
| void(const QuicStreamFrame&)); |
| |
| MOCK_METHOD1(OnAckFrame, |
| void(const QuicAckFrame& frame)); |
| |
| MOCK_METHOD1(OnCongestionFeedbackFrame, |
| void(const QuicCongestionFeedbackFrame&)); |
| |
| MOCK_METHOD1(OnRstStreamFrame, |
| void(const QuicRstStreamFrame&)); |
| |
| MOCK_METHOD1(OnConnectionCloseFrame, |
| void(const QuicConnectionCloseFrame&)); |
| |
| MOCK_METHOD1(OnPublicResetPacket, |
| void(const QuicPublicResetPacket&)); |
| |
| MOCK_METHOD1(OnVersionNegotiationPacket, |
| void(const QuicVersionNegotiationPacket&)); |
| |
| MOCK_METHOD2(OnRevivedPacket, |
| void(const QuicPacketHeader&, StringPiece payload)); |
| }; |
| |
| TEST_F(QuicConnectionTest, OnPacketHeaderDebugVisitor) { |
| QuicPacketHeader header; |
| |
| scoped_ptr<MockQuicConnectionDebugVisitor> |
| debug_visitor(new StrictMock<MockQuicConnectionDebugVisitor>); |
| connection_.set_debug_visitor(debug_visitor.get()); |
| EXPECT_CALL(*debug_visitor, OnPacketHeader(Ref(header))).Times(1); |
| connection_.OnPacketHeader(header); |
| } |
| |
| } // namespace |
| } // namespace test |
| } // namespace net |