blob: 6a58cb0c6825b1c26d0b46e27af965dd15213e44 [file] [log] [blame]
[email protected]04ca1bc2009-05-08 23:00:291// Copyright (c) 2009 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// The main idea in Courgette is to do patching *under a tranformation*. The
6// input is transformed into a new representation, patching occurs in the new
7// repesentation, and then the tranform is reversed to get the patched data.
8//
9// The idea is applied to pieces (or 'Elements') of the whole (or 'Ensemble').
10// Each of the elements has to go through the same set of steps in lock-step,
11// but there may be many different kinds of elements, which have different
12// transformation.
13//
14// This file declares all the main types involved in creating and applying a
15// patch with this structure.
16
17#ifndef COURGETTE_ENSEMBLE_H_
18#define COURGETTE_ENSEMBLE_H_
19
20#include <vector>
21#include <string>
22
23#include "base/basictypes.h"
24
25#include "courgette/courgette.h"
26#include "courgette/region.h"
27#include "courgette/streams.h"
28
29namespace courgette {
30
31// Forward declarations:
32class Ensemble;
33class PEInfo;
34
35// An Element is a region of an Ensemble with an identifyable kind.
36//
37class Element {
38 public:
39 enum Kind { WIN32_X86_WITH_CODE, WIN32_NOCODE };
40
41 virtual ~Element() {}
42
43 Kind kind() const { return kind_; }
44 const Region& region() const { return region_; }
45
46 // The name is used only for debugging and logging.
47 virtual std::string Name() const;
48
49 // Returns the byte position of this Element relative to the start of
50 // containing Ensemble.
51 size_t offset_in_ensemble() const;
52
53 // Some subclasses of Element might have a PEInfo.
54 virtual PEInfo* GetPEInfo() const { return NULL; }
55
56 protected:
57 Element(Kind kind, Ensemble* ensemble, const Region& region);
58
59 private:
60 Kind kind_;
61 Ensemble* ensemble_;
62 Region region_;
63
64 DISALLOW_COPY_AND_ASSIGN(Element);
65};
66
67
68class Ensemble {
69 public:
70 Ensemble(const Region& region, const char* name)
71 : region_(region), name_(name) {}
72 ~Ensemble();
73
74 const Region& region() const { return region_; }
75 const std::string& name() const { return name_; }
76
77 // Scans the region to find Elements within the region().
78 Status FindEmbeddedElements();
79
80 // Returns the elements found by 'FindEmbeddedElements'.
81 const std::vector<Element*>& elements() const { return elements_; }
82
83
84 private:
85 Region region_; // The memory, owned by caller, containing the
86 // Ensemble's data.
87 std::string name_; // A debugging/logging name for the Ensemble.
88
89 std::vector<Element*> elements_; // Embedded elements discovered.
90 std::vector<Element*> owned_elements_; // For deallocation.
91
92 DISALLOW_COPY_AND_ASSIGN(Ensemble);
93};
94
95inline size_t Element::offset_in_ensemble() const {
96 return region().start() - ensemble_->region().start();
97}
98
99// The 'CourgettePatchFile' is class is a 'namespace' for the constants that
100// appear in a Courgette patch file.
101struct CourgettePatchFile {
102 //
103 // The Courgette patch format interleaves the data for N embedded Elements.
104 //
105 // Format of a patch file:
106 // header:
107 // magic
108 // version
109 // source-checksum
110 // target-checksum
111 // multiple-streams:
112 // stream 0:
113 // number-of-transformed-elements (N) - varint32
114 // transformation-1-method-id
115 // transformation-2-method-id
116 // ...
117 // transformation-1-initial-parameters
118 // transformation-2-initial-parameters
119 // ...
120 // stream 1:
121 // correction:
122 // transformation-1-parameters
123 // transformation-2-parameters
124 // ...
125 // stream 2:
126 // correction:
127 // transformed-element-1
128 // transformed-element-2
129 // ...
130 // stream 3:
131 // correction:
132 // base-file
133 // element-1
134 // element-2
135 // ...
136
137 static const uint32 kMagic = 'C' | ('o' << 8) | ('u' << 16);
138
139 static const uint32 kVersion = 20090320;
140
141 // Transformation method IDs.
142 enum TransformationMethodId {
143 T_COURGETTE_WIN32_X86 = 1, // Windows 32 bit 'Portable Executable' x86.
144 };
145};
146
147// For any transform you would implement both a TransformationPatcher and a
148// TransformationPatchGenerator.
149//
150// TransformationPatcher is the interface which abstracts out the actual
151// transformation used on an Element. The patching itself happens outside the
152// actions of a TransformationPatcher. There are four steps.
153//
154// The first step is an Init step. The parameters to the Init step identify the
155// element, for example, range of locations within the original ensemble that
156// correspond to the element.
157//
158// PredictTransformParameters, explained below.
159//
160// The two final steps are 'Transform' - to transform the element into a new
161// representation, and to 'Reform' - to transform from the new representation
162// back to the original form.
163//
164// The Transform step takes some parameters. This allows the transform to be
165// customized to the particular element, or to receive some assistance in the
166// analysis required to perform the transform. The transform parameters might
167// be extensive but mostly predicable, so preceeding Transform is a
168// PredictTransformParameters step.
169//
170class TransformationPatcher {
171 public:
172 virtual ~TransformationPatcher() {}
173
174 // First step: provides parameters for the patching. This would at a minimum
175 // identify the element within the ensemble being patched.
176 virtual Status Init(SourceStream* parameter_stream) = 0;
177
178 // Second step: predicts transform parameters.
179 virtual Status PredictTransformParameters(
180 SinkStreamSet* predicted_parameters) = 0;
181
182 // Third step: transforms element from original representation into alternate
183 // representation.
184 virtual Status Transform(SourceStreamSet* corrected_parameters,
185 SinkStreamSet* transformed_element) = 0;
186
187 // Final step: transforms element back from alternate representation into
188 // original representation.
189 virtual Status Reform(SourceStreamSet* transformed_element,
190 SinkStream* reformed_element) = 0;
191};
192
193// TransformationPatchGenerator is the interface which abstracts out the actual
194// transformation used (and adjustment used) when differentially compressing one
195// Element from the |new_ensemble| against a corresponding element in the
196// |old_ensemble|.
197//
198// This is not a pure interface. There is a small amount of inheritance
199// implementation for the fields and actions common to all
200// TransformationPatchGenerators.
201//
202// When TransformationPatchGenerator is subclassed, there will be a
203// corresponding subclass of TransformationPatcher.
204//
205class TransformationPatchGenerator {
206 public:
207 TransformationPatchGenerator(Element* old_element,
208 Element* new_element,
209 TransformationPatcher* patcher);
210
211 virtual ~TransformationPatchGenerator();
212
213 // Returns the TransformationMethodId that identies this transformation.
214 virtual CourgettePatchFile::TransformationMethodId Kind() = 0;
215
216 // Writes the parameters that will be passed to TransformationPatcher::Init.
217 virtual Status WriteInitialParameters(SinkStream* parameter_stream) = 0;
218
219 // Predicts the transform parameters for the |old_element|. This must match
220 // exactly the output that will be produced by the PredictTransformParameters
221 // method of the corresponding subclass of TransformationPatcher. This method
222 // is not pure. The default implementation delegates to the patcher to
223 // guarantee matching output.
224 virtual Status PredictTransformParameters(SinkStreamSet* prediction);
225
226 // Writes the desired parameters for the transform of the old element from the
227 // file representation to the alternate representation.
228 virtual Status CorrectedTransformParameters(SinkStreamSet* parameters) = 0;
229
230 // Writes both |old_element| and |new_element| in the new representation.
231 // |old_corrected_parameters| will match the |corrected_parameters| passed to
232 // the Transform method of the corresponding sublcass of
233 // TransformationPatcher.
234 //
235 // The output written to |old_transformed_element| must match exactly the
236 // output written by the Transform method of the corresponding subclass of
237 // TransformationPatcher.
238 virtual Status Transform(SourceStreamSet* old_corrected_parameters,
239 SinkStreamSet* old_transformed_element,
240 SinkStreamSet* new_transformed_element) = 0;
241
242 // Transforms the new transformed_element back from the alternate
243 // representation into the original file format. This must match exactly the
244 // output that will be produced by the corresponding subclass of
245 // TransformationPatcher::Reform. This method is not pure. The default
246 // implementation delegates to the patcher.
247 virtual Status Reform(SourceStreamSet* transformed_element,
248 SinkStream* reformed_element);
249
250 protected:
251 Element* old_element_;
252 Element* new_element_;
253 TransformationPatcher* patcher_;
254};
255
256} // namespace
257#endif // COURGETTE_ENSEMBLE_H_