blob: 63222a80138e71a0deb0147201f1d61b767b6e5b [file] [log] [blame]
license.botbf09a502008-08-24 00:55:551// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
[email protected]295039bd2008-08-15 04:32:574
5#ifndef BASE_MESSAGE_PUMP_WIN_H_
6#define BASE_MESSAGE_PUMP_WIN_H_
7
[email protected]295039bd2008-08-15 04:32:578#include <windows.h>
9
[email protected]17b89142008-11-07 21:52:1510#include <list>
11
[email protected]295039bd2008-08-15 04:32:5712#include "base/lock.h"
13#include "base/message_pump.h"
14#include "base/observer_list.h"
[email protected]32cda29d2008-10-09 23:58:4315#include "base/scoped_handle.h"
[email protected]295039bd2008-08-15 04:32:5716#include "base/time.h"
17
18namespace base {
19
[email protected]17b89142008-11-07 21:52:1520// MessagePumpWin serves as the base for specialized versions of the MessagePump
21// for Windows. It provides basic functionality like handling of observers and
22// controlling the lifetime of the message pump.
23class MessagePumpWin : public MessagePump {
24 public:
25 // An Observer is an object that receives global notifications from the
26 // MessageLoop.
27 //
28 // NOTE: An Observer implementation should be extremely fast!
29 //
30 class Observer {
31 public:
32 virtual ~Observer() {}
33
34 // This method is called before processing a message.
35 // The message may be undefined in which case msg.message is 0
36 virtual void WillProcessMessage(const MSG& msg) = 0;
37
38 // This method is called when control returns from processing a UI message.
39 // The message may be undefined in which case msg.message is 0
40 virtual void DidProcessMessage(const MSG& msg) = 0;
41 };
42
43 // Dispatcher is used during a nested invocation of Run to dispatch events.
44 // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
45 // dispatch events (or invoke TranslateMessage), rather every message is
46 // passed to Dispatcher's Dispatch method for dispatch. It is up to the
47 // Dispatcher to dispatch, or not, the event.
48 //
49 // The nested loop is exited by either posting a quit, or returning false
50 // from Dispatch.
51 class Dispatcher {
52 public:
53 virtual ~Dispatcher() {}
54 // Dispatches the event. If true is returned processing continues as
55 // normal. If false is returned, the nested loop exits immediately.
56 virtual bool Dispatch(const MSG& msg) = 0;
57 };
58
59 MessagePumpWin() : have_work_(0), state_(NULL) {}
60 virtual ~MessagePumpWin() {}
61
62 // Add an Observer, which will start receiving notifications immediately.
63 void AddObserver(Observer* observer);
64
65 // Remove an Observer. It is safe to call this method while an Observer is
66 // receiving a notification callback.
67 void RemoveObserver(Observer* observer);
68
69 // Give a chance to code processing additional messages to notify the
70 // message loop observers that another message has been processed.
71 void WillProcessMessage(const MSG& msg);
72 void DidProcessMessage(const MSG& msg);
73
74 // Like MessagePump::Run, but MSG objects are routed through dispatcher.
75 void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher);
76
77 // MessagePump methods:
78 virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
79 virtual void Quit();
80
81 protected:
82 struct RunState {
83 Delegate* delegate;
84 Dispatcher* dispatcher;
85
86 // Used to flag that the current Run() invocation should return ASAP.
87 bool should_quit;
88
89 // Used to count how many Run() invocations are on the stack.
90 int run_depth;
91 };
92
93 virtual void DoRunLoop() = 0;
94 int GetCurrentDelay() const;
95
96 ObserverList<Observer> observers_;
97
98 // The time at which delayed work should run.
99 Time delayed_work_time_;
100
101 // A boolean value used to indicate if there is a kMsgDoWork message pending
102 // in the Windows Message queue. There is at most one such message, and it
103 // can drive execution of tasks when a native message pump is running.
104 LONG have_work_;
105
106 // State for the current invocation of Run.
107 RunState* state_;
108};
109
110//-----------------------------------------------------------------------------
111// MessagePumpForUI extends MessagePumpWin with methods that are particular to a
112// MessageLoop instantiated with TYPE_UI.
113//
114// MessagePumpForUI implements a "traditional" Windows message pump. It contains
[email protected]295039bd2008-08-15 04:32:57115// a nearly infinite loop that peeks out messages, and then dispatches them.
[email protected]17b89142008-11-07 21:52:15116// Intermixed with those peeks are callouts to DoWork for pending tasks, and
117// DoDelayedWork for pending timers. When there are no events to be serviced,
118// this pump goes into a wait state. In most cases, this message pump handles
119// all processing.
[email protected]295039bd2008-08-15 04:32:57120//
121// However, when a task, or windows event, invokes on the stack a native dialog
122// box or such, that window typically provides a bare bones (native?) message
123// pump. That bare-bones message pump generally supports little more than a
124// peek of the Windows message queue, followed by a dispatch of the peeked
125// message. MessageLoop extends that bare-bones message pump to also service
126// Tasks, at the cost of some complexity.
127//
128// The basic structure of the extension (refered to as a sub-pump) is that a
129// special message, kMsgHaveWork, is repeatedly injected into the Windows
130// Message queue. Each time the kMsgHaveWork message is peeked, checks are
131// made for an extended set of events, including the availability of Tasks to
132// run.
133//
134// After running a task, the special message kMsgHaveWork is again posted to
135// the Windows Message queue, ensuring a future time slice for processing a
136// future event. To prevent flooding the Windows Message queue, care is taken
137// to be sure that at most one kMsgHaveWork message is EVER pending in the
138// Window's Message queue.
139//
140// There are a few additional complexities in this system where, when there are
141// no Tasks to run, this otherwise infinite stream of messages which drives the
142// sub-pump is halted. The pump is automatically re-started when Tasks are
143// queued.
144//
145// A second complexity is that the presence of this stream of posted tasks may
146// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
147// Such paint and timer events always give priority to a posted message, such as
148// kMsgHaveWork messages. As a result, care is taken to do some peeking in
149// between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
150// is peeked, and before a replacement kMsgHaveWork is posted).
151//
152// NOTE: Although it may seem odd that messages are used to start and stop this
153// flow (as opposed to signaling objects, etc.), it should be understood that
154// the native message pump will *only* respond to messages. As a result, it is
155// an excellent choice. It is also helpful that the starter messages that are
156// placed in the queue when new task arrive also awakens DoRunLoop.
157//
[email protected]17b89142008-11-07 21:52:15158class MessagePumpForUI : public MessagePumpWin {
[email protected]295039bd2008-08-15 04:32:57159 public:
[email protected]17b89142008-11-07 21:52:15160 MessagePumpForUI();
161 virtual ~MessagePumpForUI();
[email protected]295039bd2008-08-15 04:32:57162
[email protected]17b89142008-11-07 21:52:15163 // MessagePump methods:
164 virtual void ScheduleWork();
165 virtual void ScheduleDelayedWork(const Time& delayed_work_time);
[email protected]295039bd2008-08-15 04:32:57166
167 // Applications can call this to encourage us to process all pending WM_PAINT
168 // messages. This method will process all paint messages the Windows Message
169 // queue can provide, up to some fixed number (to avoid any infinite loops).
170 void PumpOutPendingPaintMessages();
171
[email protected]17b89142008-11-07 21:52:15172 private:
[email protected]295039bd2008-08-15 04:32:57173 static LRESULT CALLBACK WndProcThunk(
174 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
[email protected]17b89142008-11-07 21:52:15175 virtual void DoRunLoop();
[email protected]295039bd2008-08-15 04:32:57176 void InitMessageWnd();
[email protected]17b89142008-11-07 21:52:15177 void WaitForWork();
[email protected]295039bd2008-08-15 04:32:57178 void HandleWorkMessage();
179 void HandleTimerMessage();
[email protected]295039bd2008-08-15 04:32:57180 bool ProcessNextWindowsMessage();
181 bool ProcessMessageHelper(const MSG& msg);
182 bool ProcessPumpReplacementMessage();
[email protected]295039bd2008-08-15 04:32:57183
184 // A hidden message-only window.
185 HWND message_hwnd_;
[email protected]1a8f5d1d2008-09-25 20:33:04186};
187
188//-----------------------------------------------------------------------------
189// MessagePumpForIO extends MessagePumpWin with methods that are particular to a
[email protected]17b89142008-11-07 21:52:15190// MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
191// deal with Windows mesagges, and instead has a Run loop based on Completion
192// Ports so it is better suited for IO operations.
[email protected]1a8f5d1d2008-09-25 20:33:04193//
194class MessagePumpForIO : public MessagePumpWin {
195 public:
[email protected]17b89142008-11-07 21:52:15196 struct IOContext;
[email protected]1a8f5d1d2008-09-25 20:33:04197
[email protected]32cda29d2008-10-09 23:58:43198 // Clients interested in receiving OS notifications when asynchronous IO
199 // operations complete should implement this interface and register themselves
200 // with the message pump.
[email protected]17b89142008-11-07 21:52:15201 //
202 // Typical use #1:
203 // // Use only when there are no user's buffers involved on the actual IO,
204 // // so that all the cleanup can be done by the message pump.
205 // class MyFile : public IOHandler {
206 // MyFile() {
207 // ...
208 // context_ = new IOContext;
209 // context_->handler = this;
210 // message_pump->RegisterIOHandler(file_, this);
211 // }
212 // ~MyFile() {
213 // if (pending_) {
214 // // By setting the handler to NULL, we're asking for this context
215 // // to be deleted when received, without calling back to us.
216 // context_->handler = NULL;
217 // } else {
218 // delete context_;
219 // }
220 // }
221 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
222 // DWORD error) {
223 // pending_ = false;
224 // }
225 // void DoSomeIo() {
226 // ...
227 // // The only buffer required for this operation is the overlapped
228 // // structure.
229 // ConnectNamedPipe(file_, &context_->overlapped);
230 // pending_ = true;
231 // }
232 // bool pending_;
233 // IOContext* context_;
234 // HANDLE file_;
235 // };
236 //
237 // Typical use #2:
238 // class MyFile : public IOHandler {
239 // MyFile() {
240 // ...
241 // message_pump->RegisterIOHandler(file_, this);
242 // }
243 // // Plus some code to make sure that this destructor is not called
244 // // while there are pending IO operations.
245 // ~MyFile() {
246 // }
247 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
248 // DWORD error) {
249 // ...
250 // delete context;
251 // }
252 // void DoSomeIo() {
253 // ...
254 // IOContext* context = new IOContext;
255 // // This is not used for anything. It just prevents the context from
256 // // being considered "abandoned".
257 // context->handler = this;
258 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
259 // }
260 // HANDLE file_;
261 // };
262 //
263 // Typical use #3:
264 // Same as the previous example, except that in order to deal with the
265 // requirement stated for the destructor, the class calls WaitForIOCompletion
266 // from the destructor to block until all IO finishes.
267 // ~MyFile() {
268 // while(pending_)
269 // message_pump->WaitForIOCompletion(INFINITE, this);
270 // }
271 //
[email protected]32cda29d2008-10-09 23:58:43272 class IOHandler {
273 public:
274 virtual ~IOHandler() {}
275 // This will be called once the pending IO operation associated with
276 // |context| completes. |error| is the Win32 error code of the IO operation
277 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
278 // on error.
[email protected]17b89142008-11-07 21:52:15279 virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
[email protected]32cda29d2008-10-09 23:58:43280 DWORD error) = 0;
281 };
282
[email protected]17b89142008-11-07 21:52:15283 // The extended context that should be used as the base structure on every
284 // overlapped IO operation. |handler| must be set to the registered IOHandler
285 // for the given file when the operation is started, and it can be set to NULL
286 // before the operation completes to indicate that the handler should not be
287 // called anymore, and instead, the IOContext should be deleted when the OS
288 // notifies the completion of this operation. Please remember that any buffers
289 // involved with an IO operation should be around until the callback is
290 // received, so this technique can only be used for IO that do not involve
291 // additional buffers (other than the overlapped structure itself).
292 struct IOContext {
293 OVERLAPPED overlapped;
294 IOHandler* handler;
295 };
296
297 MessagePumpForIO();
[email protected]1a8f5d1d2008-09-25 20:33:04298 virtual ~MessagePumpForIO() {}
299
[email protected]17b89142008-11-07 21:52:15300 // MessagePump methods:
301 virtual void ScheduleWork();
302 virtual void ScheduleDelayedWork(const Time& delayed_work_time);
[email protected]1a8f5d1d2008-09-25 20:33:04303
[email protected]32cda29d2008-10-09 23:58:43304 // Register the handler to be used when asynchronous IO for the given file
305 // completes. The registration persists as long as |file_handle| is valid, so
306 // |handler| must be valid as long as there is pending IO for the given file.
307 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
308
[email protected]17b89142008-11-07 21:52:15309 // Waits for the next IO completion that should be processed by |filter|, for
310 // up to |timeout| milliseconds. Return true if any IO operation completed,
311 // regardless of the involved handler, and false if the timeout expired. If
312 // the completion port received any message and the involved IO handler
313 // matches |filter|, the callback is called before returning from this code;
314 // if the handler is not the one that we are looking for, the callback will
315 // be postponed for another time, so reentrancy problems can be avoided.
316 // External use of this method should be reserved for the rare case when the
317 // caller is willing to allow pausing regular task dispatching on this thread.
318 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
[email protected]32cda29d2008-10-09 23:58:43319
[email protected]1a8f5d1d2008-09-25 20:33:04320 private:
[email protected]17b89142008-11-07 21:52:15321 struct IOItem {
322 IOHandler* handler;
323 IOContext* context;
324 DWORD bytes_transfered;
325 DWORD error;
326 };
327
[email protected]1a8f5d1d2008-09-25 20:33:04328 virtual void DoRunLoop();
329 void WaitForWork();
[email protected]17b89142008-11-07 21:52:15330 bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
331 bool GetIOItem(DWORD timeout, IOItem* item);
332 bool ProcessInternalIOItem(const IOItem& item);
[email protected]32cda29d2008-10-09 23:58:43333
334 // The completion port associated with this thread.
335 ScopedHandle port_;
[email protected]17b89142008-11-07 21:52:15336 // This list will be empty almost always. It stores IO completions that have
337 // not been delivered yet because somebody was doing cleanup.
338 std::list<IOItem> completed_io_;
[email protected]1a8f5d1d2008-09-25 20:33:04339};
340
[email protected]295039bd2008-08-15 04:32:57341} // namespace base
342
343#endif // BASE_MESSAGE_PUMP_WIN_H_