blob: cd6e17ded0921125decbedfb92ce37f3dbe90eff [file] [log] [blame]
[email protected]e7bba5f82013-04-10 20:10:521// Copyright 2009, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
[email protected]318076b2013-04-18 21:19:4530#include "url/url_canon_ip.h"
[email protected]e7bba5f82013-04-10 20:10:5231
32#include <stdlib.h>
33
34#include "base/basictypes.h"
35#include "base/logging.h"
[email protected]318076b2013-04-18 21:19:4536#include "url/url_canon_internal.h"
[email protected]e7bba5f82013-04-10 20:10:5237
38namespace url_canon {
39
40namespace {
41
42// Converts one of the character types that represent a numerical base to the
43// corresponding base.
44int BaseForType(SharedCharTypes type) {
45 switch (type) {
46 case CHAR_HEX:
47 return 16;
48 case CHAR_DEC:
49 return 10;
50 case CHAR_OCT:
51 return 8;
52 default:
53 return 0;
54 }
55}
56
57template<typename CHAR, typename UCHAR>
58bool DoFindIPv4Components(const CHAR* spec,
59 const url_parse::Component& host,
60 url_parse::Component components[4]) {
61 if (!host.is_nonempty())
62 return false;
63
64 int cur_component = 0; // Index of the component we're working on.
65 int cur_component_begin = host.begin; // Start of the current component.
66 int end = host.end();
67 for (int i = host.begin; /* nothing */; i++) {
68 if (i >= end || spec[i] == '.') {
69 // Found the end of the current component.
70 int component_len = i - cur_component_begin;
71 components[cur_component] =
72 url_parse::Component(cur_component_begin, component_len);
73
74 // The next component starts after the dot.
75 cur_component_begin = i + 1;
76 cur_component++;
77
78 // Don't allow empty components (two dots in a row), except we may
79 // allow an empty component at the end (this would indicate that the
80 // input ends in a dot). We also want to error if the component is
81 // empty and it's the only component (cur_component == 1).
82 if (component_len == 0 && (i < end || cur_component == 1))
83 return false;
84
85 if (i >= end)
86 break; // End of the input.
87
88 if (cur_component == 4) {
89 // Anything else after the 4th component is an error unless it is a
90 // dot that would otherwise be treated as the end of input.
91 if (spec[i] == '.' && i + 1 == end)
92 break;
93 return false;
94 }
95 } else if (static_cast<UCHAR>(spec[i]) >= 0x80 ||
96 !IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
97 // Invalid character for an IPv4 address.
98 return false;
99 }
100 }
101
102 // Fill in any unused components.
103 while (cur_component < 4)
104 components[cur_component++] = url_parse::Component();
105 return true;
106}
107
108// Converts an IPv4 component to a 32-bit number, while checking for overflow.
109//
110// Possible return values:
111// - IPV4 - The number was valid, and did not overflow.
112// - BROKEN - The input was numeric, but too large for a 32-bit field.
113// - NEUTRAL - Input was not numeric.
114//
115// The input is assumed to be ASCII. FindIPv4Components should have stripped
116// out any input that is greater than 7 bits. The components are assumed
117// to be non-empty.
118template<typename CHAR>
119CanonHostInfo::Family IPv4ComponentToNumber(
120 const CHAR* spec,
121 const url_parse::Component& component,
122 uint32* number) {
123 // Figure out the base
124 SharedCharTypes base;
125 int base_prefix_len = 0; // Size of the prefix for this base.
126 if (spec[component.begin] == '0') {
127 // Either hex or dec, or a standalone zero.
128 if (component.len == 1) {
129 base = CHAR_DEC;
130 } else if (spec[component.begin + 1] == 'X' ||
131 spec[component.begin + 1] == 'x') {
132 base = CHAR_HEX;
133 base_prefix_len = 2;
134 } else {
135 base = CHAR_OCT;
136 base_prefix_len = 1;
137 }
138 } else {
139 base = CHAR_DEC;
140 }
141
142 // Extend the prefix to consume all leading zeros.
143 while (base_prefix_len < component.len &&
144 spec[component.begin + base_prefix_len] == '0')
145 base_prefix_len++;
146
147 // Put the component, minus any base prefix, into a NULL-terminated buffer so
148 // we can call the standard library. Because leading zeros have already been
149 // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
150 // overflow check.
151 const int kMaxComponentLen = 16;
152 char buf[kMaxComponentLen + 1]; // digits + '\0'
153 int dest_i = 0;
154 for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
155 // We know the input is 7-bit, so convert to narrow (if this is the wide
156 // version of the template) by casting.
157 char input = static_cast<char>(spec[i]);
158
159 // Validate that this character is OK for the given base.
160 if (!IsCharOfType(input, base))
161 return CanonHostInfo::NEUTRAL;
162
163 // Fill the buffer, if there's space remaining. This check allows us to
164 // verify that all characters are numeric, even those that don't fit.
165 if (dest_i < kMaxComponentLen)
166 buf[dest_i++] = input;
167 }
168
169 buf[dest_i] = '\0';
170
171 // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
172 // number can overflow a 64-bit number in <= 16 characters).
173 uint64 num = _strtoui64(buf, NULL, BaseForType(base));
174
175 // Check for 32-bit overflow.
176 if (num > kuint32max)
177 return CanonHostInfo::BROKEN;
178
179 // No overflow. Success!
180 *number = static_cast<uint32>(num);
181 return CanonHostInfo::IPV4;
182}
183
184// See declaration of IPv4AddressToNumber for documentation.
185template<typename CHAR>
186CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
187 const url_parse::Component& host,
188 unsigned char address[4],
189 int* num_ipv4_components) {
190 // The identified components. Not all may exist.
191 url_parse::Component components[4];
192 if (!FindIPv4Components(spec, host, components))
193 return CanonHostInfo::NEUTRAL;
194
195 // Convert existing components to digits. Values up to
196 // |existing_components| will be valid.
197 uint32 component_values[4];
198 int existing_components = 0;
199
200 // Set to true if one or more components are BROKEN. BROKEN is only
201 // returned if all components are IPV4 or BROKEN, so, for example,
202 // 12345678912345.de returns NEUTRAL rather than broken.
203 bool broken = false;
204 for (int i = 0; i < 4; i++) {
205 if (components[i].len <= 0)
206 continue;
207 CanonHostInfo::Family family = IPv4ComponentToNumber(
208 spec, components[i], &component_values[existing_components]);
209
210 if (family == CanonHostInfo::BROKEN) {
211 broken = true;
212 } else if (family != CanonHostInfo::IPV4) {
213 // Stop if we hit a non-BROKEN invalid non-empty component.
214 return family;
215 }
216
217 existing_components++;
218 }
219
220 if (broken)
221 return CanonHostInfo::BROKEN;
222
223 // Use that sequence of numbers to fill out the 4-component IP address.
224
225 // First, process all components but the last, while making sure each fits
226 // within an 8-bit field.
227 for (int i = 0; i < existing_components - 1; i++) {
228 if (component_values[i] > kuint8max)
229 return CanonHostInfo::BROKEN;
230 address[i] = static_cast<unsigned char>(component_values[i]);
231 }
232
233 // Next, consume the last component to fill in the remaining bytes.
234 uint32 last_value = component_values[existing_components - 1];
235 for (int i = 3; i >= existing_components - 1; i--) {
236 address[i] = static_cast<unsigned char>(last_value);
237 last_value >>= 8;
238 }
239
240 // If the last component has residual bits, report overflow.
241 if (last_value != 0)
242 return CanonHostInfo::BROKEN;
243
244 // Tell the caller how many components we saw.
245 *num_ipv4_components = existing_components;
246
247 // Success!
248 return CanonHostInfo::IPV4;
249}
250
251// Return true if we've made a final IPV4/BROKEN decision, false if the result
252// is NEUTRAL, and we could use a second opinion.
253template<typename CHAR, typename UCHAR>
254bool DoCanonicalizeIPv4Address(const CHAR* spec,
255 const url_parse::Component& host,
256 CanonOutput* output,
257 CanonHostInfo* host_info) {
258 host_info->family = IPv4AddressToNumber(
259 spec, host, host_info->address, &host_info->num_ipv4_components);
260
261 switch (host_info->family) {
262 case CanonHostInfo::IPV4:
263 // Definitely an IPv4 address.
264 host_info->out_host.begin = output->length();
265 AppendIPv4Address(host_info->address, output);
266 host_info->out_host.len = output->length() - host_info->out_host.begin;
267 return true;
268 case CanonHostInfo::BROKEN:
269 // Definitely broken.
270 return true;
271 default:
272 // Could be IPv6 or a hostname.
273 return false;
274 }
275}
276
277// Helper class that describes the main components of an IPv6 input string.
278// See the following examples to understand how it breaks up an input string:
279//
280// [Example 1]: input = "[::aa:bb]"
281// ==> num_hex_components = 2
282// ==> hex_components[0] = Component(3,2) "aa"
283// ==> hex_components[1] = Component(6,2) "bb"
284// ==> index_of_contraction = 0
285// ==> ipv4_component = Component(0, -1)
286//
287// [Example 2]: input = "[1:2::3:4:5]"
288// ==> num_hex_components = 5
289// ==> hex_components[0] = Component(1,1) "1"
290// ==> hex_components[1] = Component(3,1) "2"
291// ==> hex_components[2] = Component(6,1) "3"
292// ==> hex_components[3] = Component(8,1) "4"
293// ==> hex_components[4] = Component(10,1) "5"
294// ==> index_of_contraction = 2
295// ==> ipv4_component = Component(0, -1)
296//
297// [Example 3]: input = "[::ffff:192.168.0.1]"
298// ==> num_hex_components = 1
299// ==> hex_components[0] = Component(3,4) "ffff"
300// ==> index_of_contraction = 0
301// ==> ipv4_component = Component(8, 11) "192.168.0.1"
302//
303// [Example 4]: input = "[1::]"
304// ==> num_hex_components = 1
305// ==> hex_components[0] = Component(1,1) "1"
306// ==> index_of_contraction = 1
307// ==> ipv4_component = Component(0, -1)
308//
309// [Example 5]: input = "[::192.168.0.1]"
310// ==> num_hex_components = 0
311// ==> index_of_contraction = 0
312// ==> ipv4_component = Component(8, 11) "192.168.0.1"
313//
314struct IPv6Parsed {
315 // Zero-out the parse information.
316 void reset() {
317 num_hex_components = 0;
318 index_of_contraction = -1;
319 ipv4_component.reset();
320 }
321
322 // There can be up to 8 hex components (colon separated) in the literal.
323 url_parse::Component hex_components[8];
324
325 // The count of hex components present. Ranges from [0,8].
326 int num_hex_components;
327
328 // The index of the hex component that the "::" contraction precedes, or
329 // -1 if there is no contraction.
330 int index_of_contraction;
331
332 // The range of characters which are an IPv4 literal.
333 url_parse::Component ipv4_component;
334};
335
336// Parse the IPv6 input string. If parsing succeeded returns true and fills
337// |parsed| with the information. If parsing failed (because the input is
338// invalid) returns false.
339template<typename CHAR, typename UCHAR>
340bool DoParseIPv6(const CHAR* spec,
341 const url_parse::Component& host,
342 IPv6Parsed* parsed) {
343 // Zero-out the info.
344 parsed->reset();
345
346 if (!host.is_nonempty())
347 return false;
348
349 // The index for start and end of address range (no brackets).
350 int begin = host.begin;
351 int end = host.end();
352
353 int cur_component_begin = begin; // Start of the current component.
354
355 // Scan through the input, searching for hex components, "::" contractions,
356 // and IPv4 components.
357 for (int i = begin; /* i <= end */; i++) {
358 bool is_colon = spec[i] == ':';
359 bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
360
361 // We reached the end of the current component if we encounter a colon
362 // (separator between hex components, or start of a contraction), or end of
363 // input.
364 if (is_colon || i == end) {
365 int component_len = i - cur_component_begin;
366
367 // A component should not have more than 4 hex digits.
368 if (component_len > 4)
369 return false;
370
371 // Don't allow empty components.
372 if (component_len == 0) {
373 // The exception is when contractions appear at beginning of the
374 // input or at the end of the input.
375 if (!((is_contraction && i == begin) || (i == end &&
376 parsed->index_of_contraction == parsed->num_hex_components)))
377 return false;
378 }
379
380 // Add the hex component we just found to running list.
381 if (component_len > 0) {
382 // Can't have more than 8 components!
383 if (parsed->num_hex_components >= 8)
384 return false;
385
386 parsed->hex_components[parsed->num_hex_components++] =
387 url_parse::Component(cur_component_begin, component_len);
388 }
389 }
390
391 if (i == end)
392 break; // Reached the end of the input, DONE.
393
394 // We found a "::" contraction.
395 if (is_contraction) {
396 // There can be at most one contraction in the literal.
397 if (parsed->index_of_contraction != -1)
398 return false;
399 parsed->index_of_contraction = parsed->num_hex_components;
400 ++i; // Consume the colon we peeked.
401 }
402
403 if (is_colon) {
404 // Colons are separators between components, keep track of where the
405 // current component started (after this colon).
406 cur_component_begin = i + 1;
407 } else {
408 if (static_cast<UCHAR>(spec[i]) >= 0x80)
409 return false; // Not ASCII.
410
411 if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
412 // Regular components are hex numbers. It is also possible for
413 // a component to be an IPv4 address in dotted form.
414 if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
415 // Since IPv4 address can only appear at the end, assume the rest
416 // of the string is an IPv4 address. (We will parse this separately
417 // later).
418 parsed->ipv4_component = url_parse::Component(
419 cur_component_begin, end - cur_component_begin);
420 break;
421 } else {
422 // The character was neither a hex digit, nor an IPv4 character.
423 return false;
424 }
425 }
426 }
427 }
428
429 return true;
430}
431
432// Verifies the parsed IPv6 information, checking that the various components
433// add up to the right number of bits (hex components are 16 bits, while
434// embedded IPv4 formats are 32 bits, and contractions are placeholdes for
435// 16 or more bits). Returns true if sizes match up, false otherwise. On
436// success writes the length of the contraction (if any) to
437// |out_num_bytes_of_contraction|.
438bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
439 int* out_num_bytes_of_contraction) {
440 // Each group of four hex digits contributes 16 bits.
441 int num_bytes_without_contraction = parsed.num_hex_components * 2;
442
443 // If an IPv4 address was embedded at the end, it contributes 32 bits.
444 if (parsed.ipv4_component.is_valid())
445 num_bytes_without_contraction += 4;
446
447 // If there was a "::" contraction, its size is going to be:
448 // MAX([16bits], [128bits] - num_bytes_without_contraction).
449 int num_bytes_of_contraction = 0;
450 if (parsed.index_of_contraction != -1) {
451 num_bytes_of_contraction = 16 - num_bytes_without_contraction;
452 if (num_bytes_of_contraction < 2)
453 num_bytes_of_contraction = 2;
454 }
455
456 // Check that the numbers add up.
457 if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
458 return false;
459
460 *out_num_bytes_of_contraction = num_bytes_of_contraction;
461 return true;
462}
463
464// Converts a hex comonent into a number. This cannot fail since the caller has
465// already verified that each character in the string was a hex digit, and
466// that there were no more than 4 characters.
467template<typename CHAR>
468uint16 IPv6HexComponentToNumber(const CHAR* spec,
469 const url_parse::Component& component) {
470 DCHECK(component.len <= 4);
471
472 // Copy the hex string into a C-string.
473 char buf[5];
474 for (int i = 0; i < component.len; ++i)
475 buf[i] = static_cast<char>(spec[component.begin + i]);
476 buf[component.len] = '\0';
477
478 // Convert it to a number (overflow is not possible, since with 4 hex
479 // characters we can at most have a 16 bit number).
480 return static_cast<uint16>(_strtoui64(buf, NULL, 16));
481}
482
483// Converts an IPv6 address to a 128-bit number (network byte order), returning
484// true on success. False means that the input was not a valid IPv6 address.
485template<typename CHAR, typename UCHAR>
486bool DoIPv6AddressToNumber(const CHAR* spec,
487 const url_parse::Component& host,
488 unsigned char address[16]) {
489 // Make sure the component is bounded by '[' and ']'.
490 int end = host.end();
491 if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']')
492 return false;
493
494 // Exclude the square brackets.
495 url_parse::Component ipv6_comp(host.begin + 1, host.len - 2);
496
497 // Parse the IPv6 address -- identify where all the colon separated hex
498 // components are, the "::" contraction, and the embedded IPv4 address.
499 IPv6Parsed ipv6_parsed;
500 if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
501 return false;
502
503 // Do some basic size checks to make sure that the address doesn't
504 // specify more than 128 bits or fewer than 128 bits. This also resolves
505 // how may zero bytes the "::" contraction represents.
506 int num_bytes_of_contraction;
507 if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
508 return false;
509
510 int cur_index_in_address = 0;
511
512 // Loop through each hex components, and contraction in order.
513 for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
514 // Append the contraction if it appears before this component.
515 if (i == ipv6_parsed.index_of_contraction) {
516 for (int j = 0; j < num_bytes_of_contraction; ++j)
517 address[cur_index_in_address++] = 0;
518 }
519 // Append the hex component's value.
520 if (i != ipv6_parsed.num_hex_components) {
521 // Get the 16-bit value for this hex component.
522 uint16 number = IPv6HexComponentToNumber<CHAR>(
523 spec, ipv6_parsed.hex_components[i]);
524 // Append to |address|, in network byte order.
525 address[cur_index_in_address++] = (number & 0xFF00) >> 8;
526 address[cur_index_in_address++] = (number & 0x00FF);
527 }
528 }
529
530 // If there was an IPv4 section, convert it into a 32-bit number and append
531 // it to |address|.
532 if (ipv6_parsed.ipv4_component.is_valid()) {
533 // Append the 32-bit number to |address|.
534 int ignored_num_ipv4_components;
535 if (CanonHostInfo::IPV4 !=
536 IPv4AddressToNumber(spec,
537 ipv6_parsed.ipv4_component,
538 &address[cur_index_in_address],
539 &ignored_num_ipv4_components))
540 return false;
541 }
542
543 return true;
544}
545
546// Searches for the longest sequence of zeros in |address|, and writes the
547// range into |contraction_range|. The run of zeros must be at least 16 bits,
548// and if there is a tie the first is chosen.
549void ChooseIPv6ContractionRange(const unsigned char address[16],
550 url_parse::Component* contraction_range) {
551 // The longest run of zeros in |address| seen so far.
552 url_parse::Component max_range;
553
554 // The current run of zeros in |address| being iterated over.
555 url_parse::Component cur_range;
556
557 for (int i = 0; i < 16; i += 2) {
558 // Test for 16 bits worth of zero.
559 bool is_zero = (address[i] == 0 && address[i + 1] == 0);
560
561 if (is_zero) {
562 // Add the zero to the current range (or start a new one).
563 if (!cur_range.is_valid())
564 cur_range = url_parse::Component(i, 0);
565 cur_range.len += 2;
566 }
567
568 if (!is_zero || i == 14) {
569 // Just completed a run of zeros. If the run is greater than 16 bits,
570 // it is a candidate for the contraction.
571 if (cur_range.len > 2 && cur_range.len > max_range.len) {
572 max_range = cur_range;
573 }
574 cur_range.reset();
575 }
576 }
577 *contraction_range = max_range;
578}
579
580// Return true if we've made a final IPV6/BROKEN decision, false if the result
581// is NEUTRAL, and we could use a second opinion.
582template<typename CHAR, typename UCHAR>
583bool DoCanonicalizeIPv6Address(const CHAR* spec,
584 const url_parse::Component& host,
585 CanonOutput* output,
586 CanonHostInfo* host_info) {
587 // Turn the IP address into a 128 bit number.
588 if (!IPv6AddressToNumber(spec, host, host_info->address)) {
589 // If it's not an IPv6 address, scan for characters that should *only*
590 // exist in an IPv6 address.
591 for (int i = host.begin; i < host.end(); i++) {
592 switch (spec[i]) {
593 case '[':
594 case ']':
595 case ':':
596 host_info->family = CanonHostInfo::BROKEN;
597 return true;
598 }
599 }
600
601 // No invalid characters. Could still be IPv4 or a hostname.
602 host_info->family = CanonHostInfo::NEUTRAL;
603 return false;
604 }
605
606 host_info->out_host.begin = output->length();
607 output->push_back('[');
608 AppendIPv6Address(host_info->address, output);
609 output->push_back(']');
610 host_info->out_host.len = output->length() - host_info->out_host.begin;
611
612 host_info->family = CanonHostInfo::IPV6;
613 return true;
614}
615
616} // namespace
617
618void AppendIPv4Address(const unsigned char address[4], CanonOutput* output) {
619 for (int i = 0; i < 4; i++) {
620 char str[16];
621 _itoa_s(address[i], str, 10);
622
623 for (int ch = 0; str[ch] != 0; ch++)
624 output->push_back(str[ch]);
625
626 if (i != 3)
627 output->push_back('.');
628 }
629}
630
631void AppendIPv6Address(const unsigned char address[16], CanonOutput* output) {
632 // We will output the address according to the rules in:
633 // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
634
635 // Start by finding where to place the "::" contraction (if any).
636 url_parse::Component contraction_range;
637 ChooseIPv6ContractionRange(address, &contraction_range);
638
639 for (int i = 0; i <= 14;) {
640 // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
641 DCHECK(i % 2 == 0);
642 if (i == contraction_range.begin && contraction_range.len > 0) {
643 // Jump over the contraction.
644 if (i == 0)
645 output->push_back(':');
646 output->push_back(':');
647 i = contraction_range.end();
648 } else {
649 // Consume the next 16 bits from |address|.
650 int x = address[i] << 8 | address[i + 1];
651
652 i += 2;
653
654 // Stringify the 16 bit number (at most requires 4 hex digits).
655 char str[5];
656 _itoa_s(x, str, 16);
657 for (int ch = 0; str[ch] != 0; ++ch)
658 output->push_back(str[ch]);
659
660 // Put a colon after each number, except the last.
661 if (i < 16)
662 output->push_back(':');
663 }
664 }
665}
666
667bool FindIPv4Components(const char* spec,
668 const url_parse::Component& host,
669 url_parse::Component components[4]) {
670 return DoFindIPv4Components<char, unsigned char>(spec, host, components);
671}
672
673bool FindIPv4Components(const char16* spec,
674 const url_parse::Component& host,
675 url_parse::Component components[4]) {
676 return DoFindIPv4Components<char16, char16>(spec, host, components);
677}
678
679void CanonicalizeIPAddress(const char* spec,
680 const url_parse::Component& host,
681 CanonOutput* output,
682 CanonHostInfo* host_info) {
683 if (DoCanonicalizeIPv4Address<char, unsigned char>(
684 spec, host, output, host_info))
685 return;
686 if (DoCanonicalizeIPv6Address<char, unsigned char>(
687 spec, host, output, host_info))
688 return;
689}
690
691void CanonicalizeIPAddress(const char16* spec,
692 const url_parse::Component& host,
693 CanonOutput* output,
694 CanonHostInfo* host_info) {
695 if (DoCanonicalizeIPv4Address<char16, char16>(
696 spec, host, output, host_info))
697 return;
698 if (DoCanonicalizeIPv6Address<char16, char16>(
699 spec, host, output, host_info))
700 return;
701}
702
703CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
704 const url_parse::Component& host,
705 unsigned char address[4],
706 int* num_ipv4_components) {
707 return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components);
708}
709
710CanonHostInfo::Family IPv4AddressToNumber(const char16* spec,
711 const url_parse::Component& host,
712 unsigned char address[4],
713 int* num_ipv4_components) {
714 return DoIPv4AddressToNumber<char16>(
715 spec, host, address, num_ipv4_components);
716}
717
718bool IPv6AddressToNumber(const char* spec,
719 const url_parse::Component& host,
720 unsigned char address[16]) {
721 return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
722}
723
724bool IPv6AddressToNumber(const char16* spec,
725 const url_parse::Component& host,
726 unsigned char address[16]) {
727 return DoIPv6AddressToNumber<char16, char16>(spec, host, address);
728}
729
730} // namespace url_canon