[email protected] | 2054dc1 | 2013-06-10 14:00:06 | [diff] [blame] | 1 | // Copyright 2013 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | // This file is an internal atomic implementation, use base/atomicops.h instead. |
| 6 | // |
| 7 | // LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears. |
| 8 | |
| 9 | #ifndef BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_ |
| 10 | #define BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_ |
| 11 | |
| 12 | namespace base { |
| 13 | namespace subtle { |
| 14 | |
| 15 | // Memory barriers on ARM are funky, but the kernel is here to help: |
| 16 | // |
| 17 | // * ARMv5 didn't support SMP, there is no memory barrier instruction at |
| 18 | // all on this architecture, or when targeting its machine code. |
| 19 | // |
| 20 | // * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by |
| 21 | // writing a random value to a very specific coprocessor register. |
| 22 | // |
| 23 | // * On ARMv7, the "dmb" instruction is used to perform a full memory |
| 24 | // barrier (though writing to the co-processor will still work). |
| 25 | // However, on single core devices (e.g. Nexus One, or Nexus S), |
| 26 | // this instruction will take up to 200 ns, which is huge, even though |
| 27 | // it's completely un-needed on these devices. |
| 28 | // |
| 29 | // * There is no easy way to determine at runtime if the device is |
| 30 | // single or multi-core. However, the kernel provides a useful helper |
| 31 | // function at a fixed memory address (0xffff0fa0), which will always |
| 32 | // perform a memory barrier in the most efficient way. I.e. on single |
| 33 | // core devices, this is an empty function that exits immediately. |
| 34 | // On multi-core devices, it implements a full memory barrier. |
| 35 | // |
| 36 | // * This source could be compiled to ARMv5 machine code that runs on a |
| 37 | // multi-core ARMv6 or ARMv7 device. In this case, memory barriers |
| 38 | // are needed for correct execution. Always call the kernel helper, even |
| 39 | // when targeting ARMv5TE. |
| 40 | // |
| 41 | |
| 42 | inline void MemoryBarrier() { |
| 43 | // Note: This is a function call, which is also an implicit compiler |
| 44 | // barrier. |
| 45 | typedef void (*KernelMemoryBarrierFunc)(); |
| 46 | ((KernelMemoryBarrierFunc)0xffff0fa0)(); |
| 47 | } |
| 48 | |
| 49 | // An ARM toolchain would only define one of these depending on which |
| 50 | // variant of the target architecture is being used. This tests against |
| 51 | // any known ARMv6 or ARMv7 variant, where it is possible to directly |
| 52 | // use ldrex/strex instructions to implement fast atomic operations. |
| 53 | #if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \ |
| 54 | defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \ |
| 55 | defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \ |
| 56 | defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \ |
| 57 | defined(__ARM_ARCH_6KZ__) || defined(__ARM_ARCH_6T2__) |
| 58 | |
| 59 | inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
| 60 | Atomic32 old_value, |
| 61 | Atomic32 new_value) { |
| 62 | Atomic32 prev_value; |
| 63 | int reloop; |
| 64 | do { |
| 65 | // The following is equivalent to: |
| 66 | // |
| 67 | // prev_value = LDREX(ptr) |
| 68 | // reloop = 0 |
| 69 | // if (prev_value != old_value) |
| 70 | // reloop = STREX(ptr, new_value) |
| 71 | __asm__ __volatile__(" ldrex %0, [%3]\n" |
| 72 | " mov %1, #0\n" |
[email protected] | 8ceb4b90f | 2013-07-11 03:52:52 | [diff] [blame] | 73 | " cmp %0, %4\n" |
[email protected] | 2054dc1 | 2013-06-10 14:00:06 | [diff] [blame] | 74 | #ifdef __thumb2__ |
| 75 | " it eq\n" |
| 76 | #endif |
| 77 | " strexeq %1, %5, [%3]\n" |
| 78 | : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr) |
| 79 | : "r"(ptr), "r"(old_value), "r"(new_value) |
| 80 | : "cc", "memory"); |
| 81 | } while (reloop != 0); |
| 82 | return prev_value; |
| 83 | } |
| 84 | |
| 85 | inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
| 86 | Atomic32 old_value, |
| 87 | Atomic32 new_value) { |
| 88 | Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 89 | MemoryBarrier(); |
| 90 | return result; |
| 91 | } |
| 92 | |
| 93 | inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
| 94 | Atomic32 old_value, |
| 95 | Atomic32 new_value) { |
| 96 | MemoryBarrier(); |
| 97 | return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
| 98 | } |
| 99 | |
| 100 | inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, |
| 101 | Atomic32 increment) { |
| 102 | Atomic32 value; |
| 103 | int reloop; |
| 104 | do { |
| 105 | // Equivalent to: |
| 106 | // |
| 107 | // value = LDREX(ptr) |
| 108 | // value += increment |
| 109 | // reloop = STREX(ptr, value) |
| 110 | // |
| 111 | __asm__ __volatile__(" ldrex %0, [%3]\n" |
| 112 | " add %0, %0, %4\n" |
| 113 | " strex %1, %0, [%3]\n" |
| 114 | : "=&r"(value), "=&r"(reloop), "+m"(*ptr) |
| 115 | : "r"(ptr), "r"(increment) |
| 116 | : "cc", "memory"); |
| 117 | } while (reloop); |
| 118 | return value; |
| 119 | } |
| 120 | |
| 121 | inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
| 122 | Atomic32 increment) { |
| 123 | // TODO(digit): Investigate if it's possible to implement this with |
| 124 | // a single MemoryBarrier() operation between the LDREX and STREX. |
| 125 | // See http://crbug.com/246514 |
| 126 | MemoryBarrier(); |
| 127 | Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment); |
| 128 | MemoryBarrier(); |
| 129 | return result; |
| 130 | } |
| 131 | |
| 132 | inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
| 133 | Atomic32 new_value) { |
| 134 | Atomic32 old_value; |
| 135 | int reloop; |
| 136 | do { |
| 137 | // old_value = LDREX(ptr) |
[email protected] | 8ceb4b90f | 2013-07-11 03:52:52 | [diff] [blame] | 138 | // reloop = STREX(ptr, new_value) |
[email protected] | 2054dc1 | 2013-06-10 14:00:06 | [diff] [blame] | 139 | __asm__ __volatile__(" ldrex %0, [%3]\n" |
| 140 | " strex %1, %4, [%3]\n" |
| 141 | : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr) |
| 142 | : "r"(ptr), "r"(new_value) |
| 143 | : "cc", "memory"); |
| 144 | } while (reloop != 0); |
| 145 | return old_value; |
| 146 | } |
| 147 | |
| 148 | // This tests against any known ARMv5 variant. |
| 149 | #elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \ |
| 150 | defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__) |
| 151 | |
| 152 | // The kernel also provides a helper function to perform an atomic |
| 153 | // compare-and-swap operation at the hard-wired address 0xffff0fc0. |
| 154 | // On ARMv5, this is implemented by a special code path that the kernel |
| 155 | // detects and treats specially when thread pre-emption happens. |
| 156 | // On ARMv6 and higher, it uses LDREX/STREX instructions instead. |
| 157 | // |
| 158 | // Note that this always perform a full memory barrier, there is no |
| 159 | // need to add calls MemoryBarrier() before or after it. It also |
| 160 | // returns 0 on success, and 1 on exit. |
| 161 | // |
| 162 | // Available and reliable since Linux 2.6.24. Both Android and ChromeOS |
| 163 | // use newer kernel revisions, so this should not be a concern. |
| 164 | namespace { |
| 165 | |
| 166 | inline int LinuxKernelCmpxchg(Atomic32 old_value, |
| 167 | Atomic32 new_value, |
| 168 | volatile Atomic32* ptr) { |
| 169 | typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*); |
| 170 | return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr); |
| 171 | } |
| 172 | |
| 173 | } // namespace |
| 174 | |
| 175 | inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
| 176 | Atomic32 old_value, |
| 177 | Atomic32 new_value) { |
| 178 | Atomic32 prev_value; |
| 179 | for (;;) { |
| 180 | prev_value = *ptr; |
| 181 | if (prev_value != old_value) |
| 182 | return prev_value; |
| 183 | if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) |
| 184 | return old_value; |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
| 189 | Atomic32 new_value) { |
| 190 | Atomic32 old_value; |
| 191 | do { |
| 192 | old_value = *ptr; |
| 193 | } while (LinuxKernelCmpxchg(old_value, new_value, ptr)); |
| 194 | return old_value; |
| 195 | } |
| 196 | |
| 197 | inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, |
| 198 | Atomic32 increment) { |
| 199 | return Barrier_AtomicIncrement(ptr, increment); |
| 200 | } |
| 201 | |
| 202 | inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
| 203 | Atomic32 increment) { |
| 204 | for (;;) { |
| 205 | // Atomic exchange the old value with an incremented one. |
| 206 | Atomic32 old_value = *ptr; |
| 207 | Atomic32 new_value = old_value + increment; |
| 208 | if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) { |
| 209 | // The exchange took place as expected. |
| 210 | return new_value; |
| 211 | } |
| 212 | // Otherwise, *ptr changed mid-loop and we need to retry. |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
| 217 | Atomic32 old_value, |
| 218 | Atomic32 new_value) { |
| 219 | Atomic32 prev_value; |
| 220 | for (;;) { |
| 221 | prev_value = *ptr; |
| 222 | if (prev_value != old_value) { |
| 223 | // Always ensure acquire semantics. |
| 224 | MemoryBarrier(); |
| 225 | return prev_value; |
| 226 | } |
| 227 | if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) |
| 228 | return old_value; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
| 233 | Atomic32 old_value, |
| 234 | Atomic32 new_value) { |
[email protected] | 8ceb4b90f | 2013-07-11 03:52:52 | [diff] [blame] | 235 | // This could be implemented as: |
| 236 | // MemoryBarrier(); |
| 237 | // return NoBarrier_CompareAndSwap(); |
| 238 | // |
| 239 | // But would use 3 barriers per succesful CAS. To save performance, |
| 240 | // use Acquire_CompareAndSwap(). Its implementation guarantees that: |
| 241 | // - A succesful swap uses only 2 barriers (in the kernel helper). |
| 242 | // - An early return due to (prev_value != old_value) performs |
| 243 | // a memory barrier with no store, which is equivalent to the |
| 244 | // generic implementation above. |
| 245 | return Acquire_CompareAndSwap(ptr, old_value, new_value); |
[email protected] | 2054dc1 | 2013-06-10 14:00:06 | [diff] [blame] | 246 | } |
| 247 | |
| 248 | #else |
| 249 | # error "Your CPU's ARM architecture is not supported yet" |
| 250 | #endif |
| 251 | |
| 252 | // NOTE: Atomicity of the following load and store operations is only |
| 253 | // guaranteed in case of 32-bit alignement of |ptr| values. |
| 254 | |
| 255 | inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 256 | *ptr = value; |
| 257 | } |
| 258 | |
| 259 | inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 260 | *ptr = value; |
| 261 | MemoryBarrier(); |
| 262 | } |
| 263 | |
| 264 | inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { |
| 265 | MemoryBarrier(); |
| 266 | *ptr = value; |
| 267 | } |
| 268 | |
| 269 | inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; } |
| 270 | |
| 271 | inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { |
| 272 | Atomic32 value = *ptr; |
| 273 | MemoryBarrier(); |
| 274 | return value; |
| 275 | } |
| 276 | |
| 277 | inline Atomic32 Release_Load(volatile const Atomic32* ptr) { |
| 278 | MemoryBarrier(); |
| 279 | return *ptr; |
| 280 | } |
| 281 | |
| 282 | } // namespace base::subtle |
| 283 | } // namespace base |
| 284 | |
| 285 | #endif // BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_ |