[email protected] | c1ca658 | 2013-04-09 00:32:02 | [diff] [blame] | 1 | // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include <algorithm> |
| 6 | |
| 7 | #include "skia/ext/convolver.h" |
| 8 | #include "skia/ext/convolver_SSE2.h" |
| 9 | #include "third_party/skia/include/core/SkTypes.h" |
| 10 | |
| 11 | #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h |
| 12 | |
| 13 | namespace skia { |
| 14 | |
| 15 | // Convolves horizontally along a single row. The row data is given in |
| 16 | // |src_data| and continues for the num_values() of the filter. |
| 17 | void ConvolveHorizontally_SSE2(const unsigned char* src_data, |
| 18 | const ConvolutionFilter1D& filter, |
[email protected] | c0e4e8d29 | 2013-05-24 22:20:49 | [diff] [blame] | 19 | unsigned char* out_row, |
| 20 | bool /*has_alpha*/) { |
[email protected] | c1ca658 | 2013-04-09 00:32:02 | [diff] [blame] | 21 | int num_values = filter.num_values(); |
| 22 | |
| 23 | int filter_offset, filter_length; |
| 24 | __m128i zero = _mm_setzero_si128(); |
| 25 | __m128i mask[4]; |
| 26 | // |mask| will be used to decimate all extra filter coefficients that are |
| 27 | // loaded by SIMD when |filter_length| is not divisible by 4. |
| 28 | // mask[0] is not used in following algorithm. |
| 29 | mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| 30 | mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| 31 | mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| 32 | |
| 33 | // Output one pixel each iteration, calculating all channels (RGBA) together. |
| 34 | for (int out_x = 0; out_x < num_values; out_x++) { |
| 35 | const ConvolutionFilter1D::Fixed* filter_values = |
| 36 | filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| 37 | |
| 38 | __m128i accum = _mm_setzero_si128(); |
| 39 | |
| 40 | // Compute the first pixel in this row that the filter affects. It will |
| 41 | // touch |filter_length| pixels (4 bytes each) after this. |
| 42 | const __m128i* row_to_filter = |
| 43 | reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); |
| 44 | |
| 45 | // We will load and accumulate with four coefficients per iteration. |
| 46 | for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { |
| 47 | |
| 48 | // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. |
| 49 | __m128i coeff, coeff16; |
| 50 | // [16] xx xx xx xx c3 c2 c1 c0 |
| 51 | coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| 52 | // [16] xx xx xx xx c1 c1 c0 c0 |
| 53 | coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| 54 | // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| 55 | coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| 56 | |
| 57 | // Load four pixels => unpack the first two pixels to 16 bits => |
| 58 | // multiply with coefficients => accumulate the convolution result. |
| 59 | // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 60 | __m128i src8 = _mm_loadu_si128(row_to_filter); |
| 61 | // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 62 | __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| 63 | __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 64 | __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 65 | // [32] a0*c0 b0*c0 g0*c0 r0*c0 |
| 66 | __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 67 | accum = _mm_add_epi32(accum, t); |
| 68 | // [32] a1*c1 b1*c1 g1*c1 r1*c1 |
| 69 | t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 70 | accum = _mm_add_epi32(accum, t); |
| 71 | |
| 72 | // Duplicate 3rd and 4th coefficients for all channels => |
| 73 | // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients |
| 74 | // => accumulate the convolution results. |
| 75 | // [16] xx xx xx xx c3 c3 c2 c2 |
| 76 | coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| 77 | // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| 78 | coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| 79 | // [16] a3 g3 b3 r3 a2 g2 b2 r2 |
| 80 | src16 = _mm_unpackhi_epi8(src8, zero); |
| 81 | mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 82 | mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 83 | // [32] a2*c2 b2*c2 g2*c2 r2*c2 |
| 84 | t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 85 | accum = _mm_add_epi32(accum, t); |
| 86 | // [32] a3*c3 b3*c3 g3*c3 r3*c3 |
| 87 | t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 88 | accum = _mm_add_epi32(accum, t); |
| 89 | |
| 90 | // Advance the pixel and coefficients pointers. |
| 91 | row_to_filter += 1; |
| 92 | filter_values += 4; |
| 93 | } |
| 94 | |
| 95 | // When |filter_length| is not divisible by 4, we need to decimate some of |
| 96 | // the filter coefficient that was loaded incorrectly to zero; Other than |
| 97 | // that the algorithm is same with above, exceot that the 4th pixel will be |
| 98 | // always absent. |
| 99 | int r = filter_length&3; |
| 100 | if (r) { |
| 101 | // Note: filter_values must be padded to align_up(filter_offset, 8). |
| 102 | __m128i coeff, coeff16; |
| 103 | coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| 104 | // Mask out extra filter taps. |
| 105 | coeff = _mm_and_si128(coeff, mask[r]); |
| 106 | coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| 107 | coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| 108 | |
| 109 | // Note: line buffer must be padded to align_up(filter_offset, 16). |
| 110 | // We resolve this by use C-version for the last horizontal line. |
| 111 | __m128i src8 = _mm_loadu_si128(row_to_filter); |
| 112 | __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| 113 | __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 114 | __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 115 | __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 116 | accum = _mm_add_epi32(accum, t); |
| 117 | t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 118 | accum = _mm_add_epi32(accum, t); |
| 119 | |
| 120 | src16 = _mm_unpackhi_epi8(src8, zero); |
| 121 | coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| 122 | coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); |
| 123 | mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 124 | mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 125 | t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 126 | accum = _mm_add_epi32(accum, t); |
| 127 | } |
| 128 | |
| 129 | // Shift right for fixed point implementation. |
| 130 | accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits); |
| 131 | |
| 132 | // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
| 133 | accum = _mm_packs_epi32(accum, zero); |
| 134 | // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
| 135 | accum = _mm_packus_epi16(accum, zero); |
| 136 | |
| 137 | // Store the pixel value of 32 bits. |
| 138 | *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); |
| 139 | out_row += 4; |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | // Convolves horizontally along four rows. The row data is given in |
| 144 | // |src_data| and continues for the num_values() of the filter. |
| 145 | // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
| 146 | // refer to that function for detailed comments. |
| 147 | void Convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4], |
| 148 | const ConvolutionFilter1D& filter, |
| 149 | unsigned char* out_row[4]) { |
| 150 | int num_values = filter.num_values(); |
| 151 | |
| 152 | int filter_offset, filter_length; |
| 153 | __m128i zero = _mm_setzero_si128(); |
| 154 | __m128i mask[4]; |
| 155 | // |mask| will be used to decimate all extra filter coefficients that are |
| 156 | // loaded by SIMD when |filter_length| is not divisible by 4. |
| 157 | // mask[0] is not used in following algorithm. |
| 158 | mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); |
| 159 | mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); |
| 160 | mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); |
| 161 | |
| 162 | // Output one pixel each iteration, calculating all channels (RGBA) together. |
| 163 | for (int out_x = 0; out_x < num_values; out_x++) { |
| 164 | const ConvolutionFilter1D::Fixed* filter_values = |
| 165 | filter.FilterForValue(out_x, &filter_offset, &filter_length); |
| 166 | |
| 167 | // four pixels in a column per iteration. |
| 168 | __m128i accum0 = _mm_setzero_si128(); |
| 169 | __m128i accum1 = _mm_setzero_si128(); |
| 170 | __m128i accum2 = _mm_setzero_si128(); |
| 171 | __m128i accum3 = _mm_setzero_si128(); |
| 172 | int start = (filter_offset<<2); |
| 173 | // We will load and accumulate with four coefficients per iteration. |
| 174 | for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { |
| 175 | __m128i coeff, coeff16lo, coeff16hi; |
| 176 | // [16] xx xx xx xx c3 c2 c1 c0 |
| 177 | coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| 178 | // [16] xx xx xx xx c1 c1 c0 c0 |
| 179 | coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| 180 | // [16] c1 c1 c1 c1 c0 c0 c0 c0 |
| 181 | coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| 182 | // [16] xx xx xx xx c3 c3 c2 c2 |
| 183 | coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| 184 | // [16] c3 c3 c3 c3 c2 c2 c2 c2 |
| 185 | coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| 186 | |
| 187 | __m128i src8, src16, mul_hi, mul_lo, t; |
| 188 | |
| 189 | #define ITERATION(src, accum) \ |
| 190 | src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ |
| 191 | src16 = _mm_unpacklo_epi8(src8, zero); \ |
| 192 | mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ |
| 193 | mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ |
| 194 | t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| 195 | accum = _mm_add_epi32(accum, t); \ |
| 196 | t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| 197 | accum = _mm_add_epi32(accum, t); \ |
| 198 | src16 = _mm_unpackhi_epi8(src8, zero); \ |
| 199 | mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ |
| 200 | mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ |
| 201 | t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ |
| 202 | accum = _mm_add_epi32(accum, t); \ |
| 203 | t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ |
| 204 | accum = _mm_add_epi32(accum, t) |
| 205 | |
| 206 | ITERATION(src_data[0] + start, accum0); |
| 207 | ITERATION(src_data[1] + start, accum1); |
| 208 | ITERATION(src_data[2] + start, accum2); |
| 209 | ITERATION(src_data[3] + start, accum3); |
| 210 | |
| 211 | start += 16; |
| 212 | filter_values += 4; |
| 213 | } |
| 214 | |
| 215 | int r = filter_length & 3; |
| 216 | if (r) { |
| 217 | // Note: filter_values must be padded to align_up(filter_offset, 8); |
| 218 | __m128i coeff; |
| 219 | coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); |
| 220 | // Mask out extra filter taps. |
| 221 | coeff = _mm_and_si128(coeff, mask[r]); |
| 222 | |
| 223 | __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); |
| 224 | /* c1 c1 c1 c1 c0 c0 c0 c0 */ |
| 225 | coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); |
| 226 | __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); |
| 227 | coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); |
| 228 | |
| 229 | __m128i src8, src16, mul_hi, mul_lo, t; |
| 230 | |
| 231 | ITERATION(src_data[0] + start, accum0); |
| 232 | ITERATION(src_data[1] + start, accum1); |
| 233 | ITERATION(src_data[2] + start, accum2); |
| 234 | ITERATION(src_data[3] + start, accum3); |
| 235 | } |
| 236 | |
| 237 | accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| 238 | accum0 = _mm_packs_epi32(accum0, zero); |
| 239 | accum0 = _mm_packus_epi16(accum0, zero); |
| 240 | accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| 241 | accum1 = _mm_packs_epi32(accum1, zero); |
| 242 | accum1 = _mm_packus_epi16(accum1, zero); |
| 243 | accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| 244 | accum2 = _mm_packs_epi32(accum2, zero); |
| 245 | accum2 = _mm_packus_epi16(accum2, zero); |
| 246 | accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
| 247 | accum3 = _mm_packs_epi32(accum3, zero); |
| 248 | accum3 = _mm_packus_epi16(accum3, zero); |
| 249 | |
| 250 | *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); |
| 251 | *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); |
| 252 | *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); |
| 253 | *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); |
| 254 | |
| 255 | out_row[0] += 4; |
| 256 | out_row[1] += 4; |
| 257 | out_row[2] += 4; |
| 258 | out_row[3] += 4; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | // Does vertical convolution to produce one output row. The filter values and |
| 263 | // length are given in the first two parameters. These are applied to each |
| 264 | // of the rows pointed to in the |source_data_rows| array, with each row |
| 265 | // being |pixel_width| wide. |
| 266 | // |
| 267 | // The output must have room for |pixel_width * 4| bytes. |
| 268 | template<bool has_alpha> |
| 269 | void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
| 270 | int filter_length, |
| 271 | unsigned char* const* source_data_rows, |
| 272 | int pixel_width, |
| 273 | unsigned char* out_row) { |
| 274 | int width = pixel_width & ~3; |
| 275 | |
| 276 | __m128i zero = _mm_setzero_si128(); |
| 277 | __m128i accum0, accum1, accum2, accum3, coeff16; |
| 278 | const __m128i* src; |
| 279 | // Output four pixels per iteration (16 bytes). |
| 280 | for (int out_x = 0; out_x < width; out_x += 4) { |
| 281 | |
| 282 | // Accumulated result for each pixel. 32 bits per RGBA channel. |
| 283 | accum0 = _mm_setzero_si128(); |
| 284 | accum1 = _mm_setzero_si128(); |
| 285 | accum2 = _mm_setzero_si128(); |
| 286 | accum3 = _mm_setzero_si128(); |
| 287 | |
| 288 | // Convolve with one filter coefficient per iteration. |
| 289 | for (int filter_y = 0; filter_y < filter_length; filter_y++) { |
| 290 | |
| 291 | // Duplicate the filter coefficient 8 times. |
| 292 | // [16] cj cj cj cj cj cj cj cj |
| 293 | coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
| 294 | |
| 295 | // Load four pixels (16 bytes) together. |
| 296 | // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 297 | src = reinterpret_cast<const __m128i*>( |
| 298 | &source_data_rows[filter_y][out_x << 2]); |
| 299 | __m128i src8 = _mm_loadu_si128(src); |
| 300 | |
| 301 | // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => |
| 302 | // multiply with current coefficient => accumulate the result. |
| 303 | // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 304 | __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| 305 | __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 306 | __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 307 | // [32] a0 b0 g0 r0 |
| 308 | __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 309 | accum0 = _mm_add_epi32(accum0, t); |
| 310 | // [32] a1 b1 g1 r1 |
| 311 | t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 312 | accum1 = _mm_add_epi32(accum1, t); |
| 313 | |
| 314 | // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => |
| 315 | // multiply with current coefficient => accumulate the result. |
| 316 | // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| 317 | src16 = _mm_unpackhi_epi8(src8, zero); |
| 318 | mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 319 | mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 320 | // [32] a2 b2 g2 r2 |
| 321 | t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 322 | accum2 = _mm_add_epi32(accum2, t); |
| 323 | // [32] a3 b3 g3 r3 |
| 324 | t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 325 | accum3 = _mm_add_epi32(accum3, t); |
| 326 | } |
| 327 | |
| 328 | // Shift right for fixed point implementation. |
| 329 | accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| 330 | accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| 331 | accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| 332 | accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits); |
| 333 | |
| 334 | // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
| 335 | // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 336 | accum0 = _mm_packs_epi32(accum0, accum1); |
| 337 | // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| 338 | accum2 = _mm_packs_epi32(accum2, accum3); |
| 339 | |
| 340 | // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
| 341 | // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 342 | accum0 = _mm_packus_epi16(accum0, accum2); |
| 343 | |
| 344 | if (has_alpha) { |
| 345 | // Compute the max(ri, gi, bi) for each pixel. |
| 346 | // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| 347 | __m128i a = _mm_srli_epi32(accum0, 8); |
| 348 | // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 349 | __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| 350 | // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| 351 | a = _mm_srli_epi32(accum0, 16); |
| 352 | // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 353 | b = _mm_max_epu8(a, b); // Max of r and g and b. |
| 354 | // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| 355 | b = _mm_slli_epi32(b, 24); |
| 356 | |
| 357 | // Make sure the value of alpha channel is always larger than maximum |
| 358 | // value of color channels. |
| 359 | accum0 = _mm_max_epu8(b, accum0); |
| 360 | } else { |
| 361 | // Set value of alpha channels to 0xFF. |
| 362 | __m128i mask = _mm_set1_epi32(0xff000000); |
| 363 | accum0 = _mm_or_si128(accum0, mask); |
| 364 | } |
| 365 | |
| 366 | // Store the convolution result (16 bytes) and advance the pixel pointers. |
| 367 | _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); |
| 368 | out_row += 16; |
| 369 | } |
| 370 | |
| 371 | // When the width of the output is not divisible by 4, We need to save one |
| 372 | // pixel (4 bytes) each time. And also the fourth pixel is always absent. |
| 373 | if (pixel_width & 3) { |
| 374 | accum0 = _mm_setzero_si128(); |
| 375 | accum1 = _mm_setzero_si128(); |
| 376 | accum2 = _mm_setzero_si128(); |
| 377 | for (int filter_y = 0; filter_y < filter_length; ++filter_y) { |
| 378 | coeff16 = _mm_set1_epi16(filter_values[filter_y]); |
| 379 | // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 380 | src = reinterpret_cast<const __m128i*>( |
| 381 | &source_data_rows[filter_y][width<<2]); |
| 382 | __m128i src8 = _mm_loadu_si128(src); |
| 383 | // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 384 | __m128i src16 = _mm_unpacklo_epi8(src8, zero); |
| 385 | __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 386 | __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 387 | // [32] a0 b0 g0 r0 |
| 388 | __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 389 | accum0 = _mm_add_epi32(accum0, t); |
| 390 | // [32] a1 b1 g1 r1 |
| 391 | t = _mm_unpackhi_epi16(mul_lo, mul_hi); |
| 392 | accum1 = _mm_add_epi32(accum1, t); |
| 393 | // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| 394 | src16 = _mm_unpackhi_epi8(src8, zero); |
| 395 | mul_hi = _mm_mulhi_epi16(src16, coeff16); |
| 396 | mul_lo = _mm_mullo_epi16(src16, coeff16); |
| 397 | // [32] a2 b2 g2 r2 |
| 398 | t = _mm_unpacklo_epi16(mul_lo, mul_hi); |
| 399 | accum2 = _mm_add_epi32(accum2, t); |
| 400 | } |
| 401 | |
| 402 | accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits); |
| 403 | accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits); |
| 404 | accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits); |
| 405 | // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 406 | accum0 = _mm_packs_epi32(accum0, accum1); |
| 407 | // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| 408 | accum2 = _mm_packs_epi32(accum2, zero); |
| 409 | // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 410 | accum0 = _mm_packus_epi16(accum0, accum2); |
| 411 | if (has_alpha) { |
| 412 | // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| 413 | __m128i a = _mm_srli_epi32(accum0, 8); |
| 414 | // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 415 | __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. |
| 416 | // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| 417 | a = _mm_srli_epi32(accum0, 16); |
| 418 | // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 419 | b = _mm_max_epu8(a, b); // Max of r and g and b. |
| 420 | // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| 421 | b = _mm_slli_epi32(b, 24); |
| 422 | accum0 = _mm_max_epu8(b, accum0); |
| 423 | } else { |
| 424 | __m128i mask = _mm_set1_epi32(0xff000000); |
| 425 | accum0 = _mm_or_si128(accum0, mask); |
| 426 | } |
| 427 | |
| 428 | for (int out_x = width; out_x < pixel_width; out_x++) { |
| 429 | *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); |
| 430 | accum0 = _mm_srli_si128(accum0, 4); |
| 431 | out_row += 4; |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values, |
| 437 | int filter_length, |
| 438 | unsigned char* const* source_data_rows, |
| 439 | int pixel_width, |
| 440 | unsigned char* out_row, |
| 441 | bool has_alpha) { |
| 442 | if (has_alpha) { |
| 443 | ConvolveVertically_SSE2<true>(filter_values, |
| 444 | filter_length, |
| 445 | source_data_rows, |
| 446 | pixel_width, |
| 447 | out_row); |
| 448 | } else { |
| 449 | ConvolveVertically_SSE2<false>(filter_values, |
| 450 | filter_length, |
| 451 | source_data_rows, |
| 452 | pixel_width, |
| 453 | out_row); |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | } // namespace skia |