blob: ade43a776ee113ecc975a6b431e870a37da7f238 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/internal/name_constraints.h"
#include <limits.h>
#include "base/strings/string_util.h"
#include "net/cert/internal/verify_name_match.h"
#include "net/der/input.h"
#include "net/der/parser.h"
#include "net/der/tag.h"
namespace net {
namespace {
// The name types of GeneralName that are fully supported in name constraints.
//
// (The other types will have the minimal checking described by RFC 5280
// section 4.2.1.10: If a name constraints extension that is marked as critical
// imposes constraints on a particular name form, and an instance of
// that name form appears in the subject field or subjectAltName
// extension of a subsequent certificate, then the application MUST
// either process the constraint or reject the certificate.)
const int kSupportedNameTypes = GENERAL_NAME_DNS_NAME |
GENERAL_NAME_DIRECTORY_NAME |
GENERAL_NAME_IP_ADDRESS;
// Controls wildcard handling of DNSNameMatches.
// If WildcardMatchType is WILDCARD_PARTIAL_MATCH "*.bar.com" is considered to
// match the constraint "foo.bar.com". If it is WILDCARD_FULL_MATCH, "*.bar.com"
// will match "bar.com" but not "foo.bar.com".
enum WildcardMatchType { WILDCARD_PARTIAL_MATCH, WILDCARD_FULL_MATCH };
// Returns true if |name| falls in the subtree defined by |dns_constraint|.
// RFC 5280 section 4.2.1.10:
// DNS name restrictions are expressed as host.example.com. Any DNS
// name that can be constructed by simply adding zero or more labels
// to the left-hand side of the name satisfies the name constraint. For
// example, www.host.example.com would satisfy the constraint but
// host1.example.com would not.
//
// |wildcard_matching| controls handling of wildcard names (|name| starts with
// "*."). Wildcard handling is not specified by RFC 5280, but certificate
// verification allows it, name constraints must check it similarly.
bool DNSNameMatches(base::StringPiece name,
base::StringPiece dns_constraint,
WildcardMatchType wildcard_matching) {
// Everything matches the empty DNS name constraint.
if (dns_constraint.empty())
return true;
// Normalize absolute DNS names by removing the trailing dot, if any.
if (!name.empty() && *name.rbegin() == '.')
name.remove_suffix(1);
if (!dns_constraint.empty() && *dns_constraint.rbegin() == '.')
dns_constraint.remove_suffix(1);
// Wildcard partial-match handling ("*.bar.com" matching name constraint
// "foo.bar.com"). This only handles the case where the the dnsname and the
// constraint match after removing the leftmost label, otherwise it is handled
// by falling through to the check of whether the dnsname is fully within or
// fully outside of the constraint.
if (wildcard_matching == WILDCARD_PARTIAL_MATCH && name.size() > 2 &&
name[0] == '*' && name[1] == '.') {
size_t dns_constraint_dot_pos = dns_constraint.find('.');
if (dns_constraint_dot_pos != std::string::npos) {
base::StringPiece dns_constraint_domain(
dns_constraint.begin() + dns_constraint_dot_pos + 1,
dns_constraint.size() - dns_constraint_dot_pos - 1);
base::StringPiece wildcard_domain(name.begin() + 2, name.size() - 2);
if (base::EqualsCaseInsensitiveASCII(wildcard_domain,
dns_constraint_domain)) {
return true;
}
}
}
if (!base::EndsWith(name, dns_constraint,
base::CompareCase::INSENSITIVE_ASCII)) {
return false;
}
// Exact match.
if (name.size() == dns_constraint.size())
return true;
// Subtree match.
if (name.size() > dns_constraint.size() &&
name[name.size() - dns_constraint.size() - 1] == '.') {
return true;
}
// Trailing text matches, but not in a subtree (e.g., "foobar.com" is not a
// match for "bar.com").
return false;
}
// Return true if the bitmask |mask| contains only zeros after the first
// |prefix_length| bits.
bool IsSuffixZero(const std::vector<uint8_t>& mask, unsigned prefix_length) {
size_t zero_bits = mask.size() * CHAR_BIT - prefix_length;
size_t zero_bytes = zero_bits / CHAR_BIT;
std::vector<uint8_t> zeros(zero_bytes, 0);
if (memcmp(zeros.data(), mask.data() + mask.size() - zero_bytes, zero_bytes))
return false;
size_t leftover_bits = zero_bits % CHAR_BIT;
if (leftover_bits) {
uint8_t b = mask[mask.size() - zero_bytes - 1];
for (size_t i = 0; i < leftover_bits; ++i) {
if (b & (1 << i))
return false;
}
}
return true;
}
// Controls handling of unsupported name types in ParseGeneralName. (Unsupported
// types are those not in kSupportedNameTypes.)
// RECORD_UNSUPPORTED causes unsupported types to be recorded in
// |present_name_types|.
// IGNORE_UNSUPPORTED causes unsupported types to not be recorded.
enum ParseGeneralNameUnsupportedTypeBehavior {
RECORD_UNSUPPORTED,
IGNORE_UNSUPPORTED,
};
// Controls parsing of iPAddress names in ParseGeneralName.
// IP_ADDRESS_ONLY parses the iPAddress names as a 4 or 16 byte IP address.
// IP_ADDRESS_AND_NETMASK parses the iPAddress names as 8 or 32 bytes containing
// an IP address followed by a netmask.
enum ParseGeneralNameIPAddressType {
IP_ADDRESS_ONLY,
IP_ADDRESS_AND_NETMASK,
};
// Parses a GeneralName value and adds it to |subtrees|.
WARN_UNUSED_RESULT bool ParseGeneralName(
const der::Input& input,
ParseGeneralNameUnsupportedTypeBehavior unsupported_type_behavior,
ParseGeneralNameIPAddressType ip_address_type,
NameConstraints::GeneralNames* subtrees) {
der::Parser parser(input);
der::Tag tag;
der::Input value;
if (!parser.ReadTagAndValue(&tag, &value))
return false;
if (!der::IsContextSpecific(tag))
return false;
GeneralNameTypes name_type = GENERAL_NAME_NONE;
// GeneralName ::= CHOICE {
switch (der::GetTagNumber(tag)) {
// otherName [0] OtherName,
case 0:
if (!der::IsConstructed(tag))
return false;
name_type = GENERAL_NAME_OTHER_NAME;
break;
// rfc822Name [1] IA5String,
case 1:
if (der::IsConstructed(tag))
return false;
name_type = GENERAL_NAME_RFC822_NAME;
break;
// dNSName [2] IA5String,
case 2: {
if (der::IsConstructed(tag))
return false;
name_type = GENERAL_NAME_DNS_NAME;
const std::string s = value.AsString();
if (!base::IsStringASCII(s))
return false;
subtrees->dns_names.push_back(s);
break;
}
// x400Address [3] ORAddress,
case 3:
if (!der::IsConstructed(tag))
return false;
name_type = GENERAL_NAME_X400_ADDRESS;
break;
// directoryName [4] Name,
case 4:
if (!der::IsConstructed(tag))
return false;
name_type = GENERAL_NAME_DIRECTORY_NAME;
subtrees->directory_names.push_back(std::vector<uint8_t>(
value.UnsafeData(), value.UnsafeData() + value.Length()));
break;
// ediPartyName [5] EDIPartyName,
case 5:
if (!der::IsConstructed(tag))
return false;
name_type = GENERAL_NAME_EDI_PARTY_NAME;
break;
// uniformResourceIdentifier [6] IA5String,
case 6:
if (der::IsConstructed(tag))
return false;
name_type = GENERAL_NAME_UNIFORM_RESOURCE_IDENTIFIER;
break;
// iPAddress [7] OCTET STRING,
case 7:
if (der::IsConstructed(tag))
return false;
name_type = GENERAL_NAME_IP_ADDRESS;
if (ip_address_type == IP_ADDRESS_ONLY) {
// RFC 5280 section 4.2.1.6:
// When the subjectAltName extension contains an iPAddress, the address
// MUST be stored in the octet string in "network byte order", as
// specified in [RFC791]. The least significant bit (LSB) of each octet
// is the LSB of the corresponding byte in the network address. For IP
// version 4, as specified in [RFC791], the octet string MUST contain
// exactly four octets. For IP version 6, as specified in [RFC2460],
// the octet string MUST contain exactly sixteen octets.
if ((value.Length() != kIPv4AddressSize &&
value.Length() != kIPv6AddressSize)) {
return false;
}
subtrees->ip_addresses.push_back(std::vector<uint8_t>(
value.UnsafeData(), value.UnsafeData() + value.Length()));
} else {
DCHECK_EQ(ip_address_type, IP_ADDRESS_AND_NETMASK);
// RFC 5280 section 4.2.1.10:
// The syntax of iPAddress MUST be as described in Section 4.2.1.6 with
// the following additions specifically for name constraints. For IPv4
// addresses, the iPAddress field of GeneralName MUST contain eight (8)
// octets, encoded in the style of RFC 4632 (CIDR) to represent an
// address range [RFC4632]. For IPv6 addresses, the iPAddress field
// MUST contain 32 octets similarly encoded. For example, a name
// constraint for "class C" subnet 192.0.2.0 is represented as the
// octets C0 00 02 00 FF FF FF 00, representing the CIDR notation
// 192.0.2.0/24 (mask 255.255.255.0).
if (value.Length() != kIPv4AddressSize * 2 &&
value.Length() != kIPv6AddressSize * 2) {
return false;
}
const std::vector<uint8_t> mask(value.UnsafeData() + value.Length() / 2,
value.UnsafeData() + value.Length());
const unsigned mask_prefix_length = MaskPrefixLength(mask);
if (!IsSuffixZero(mask, mask_prefix_length))
return false;
subtrees->ip_address_ranges.push_back(std::make_pair(
std::vector<uint8_t>(value.UnsafeData(),
value.UnsafeData() + value.Length() / 2),
mask_prefix_length));
}
break;
// registeredID [8] OBJECT IDENTIFIER }
case 8:
if (der::IsConstructed(tag))
return false;
name_type = GENERAL_NAME_REGISTERED_ID;
break;
default:
return false;
}
DCHECK_NE(GENERAL_NAME_NONE, name_type);
if ((name_type & kSupportedNameTypes) ||
unsupported_type_behavior == RECORD_UNSUPPORTED) {
subtrees->present_name_types |= name_type;
}
return true;
}
// Parses a GeneralSubtrees |value| and store the contents in |subtrees|.
// The individual values stored into |subtrees| are not validated by this
// function.
// NOTE: |subtrees| will be modified regardless of the return.
WARN_UNUSED_RESULT bool ParseGeneralSubtrees(
const der::Input& value,
bool is_critical,
NameConstraints::GeneralNames* subtrees) {
// GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
//
// GeneralSubtree ::= SEQUENCE {
// base GeneralName,
// minimum [0] BaseDistance DEFAULT 0,
// maximum [1] BaseDistance OPTIONAL }
//
// BaseDistance ::= INTEGER (0..MAX)
der::Parser sequence_parser(value);
// The GeneralSubtrees sequence should have at least 1 element.
if (!sequence_parser.HasMore())
return false;
while (sequence_parser.HasMore()) {
der::Parser subtree_sequence;
if (!sequence_parser.ReadSequence(&subtree_sequence))
return false;
der::Input raw_general_name;
if (!subtree_sequence.ReadRawTLV(&raw_general_name))
return false;
if (!ParseGeneralName(raw_general_name,
is_critical ? RECORD_UNSUPPORTED : IGNORE_UNSUPPORTED,
IP_ADDRESS_AND_NETMASK, subtrees)) {
return false;
}
// RFC 5280 section 4.2.1.10:
// Within this profile, the minimum and maximum fields are not used with any
// name forms, thus, the minimum MUST be zero, and maximum MUST be absent.
// However, if an application encounters a critical name constraints
// extension that specifies other values for minimum or maximum for a name
// form that appears in a subsequent certificate, the application MUST
// either process these fields or reject the certificate.
// Note that technically failing here isn't required: rather only need to
// fail if a name of this type actually appears in a subsequent cert and
// this extension was marked critical. However the minimum and maximum
// fields appear uncommon enough that implementing that isn't useful.
if (subtree_sequence.HasMore())
return false;
}
return true;
}
} // namespace
NameConstraints::GeneralNames::GeneralNames() {}
NameConstraints::GeneralNames::~GeneralNames() {}
NameConstraints::~NameConstraints() {}
// static
scoped_ptr<NameConstraints> NameConstraints::CreateFromDer(
const der::Input& extension_value,
bool is_critical) {
scoped_ptr<NameConstraints> name_constraints(new NameConstraints());
if (!name_constraints->Parse(extension_value, is_critical))
return nullptr;
return name_constraints;
}
bool NameConstraints::Parse(const der::Input& extension_value,
bool is_critical) {
der::Parser extension_parser(extension_value);
der::Parser sequence_parser;
// NameConstraints ::= SEQUENCE {
// permittedSubtrees [0] GeneralSubtrees OPTIONAL,
// excludedSubtrees [1] GeneralSubtrees OPTIONAL }
if (!extension_parser.ReadSequence(&sequence_parser))
return false;
if (extension_parser.HasMore())
return false;
bool had_permitted_subtrees = false;
der::Input permitted_subtrees_value;
if (!sequence_parser.ReadOptionalTag(der::ContextSpecificConstructed(0),
&permitted_subtrees_value,
&had_permitted_subtrees)) {
return false;
}
if (had_permitted_subtrees &&
!ParseGeneralSubtrees(permitted_subtrees_value, is_critical,
&permitted_subtrees_)) {
return false;
}
bool had_excluded_subtrees = false;
der::Input excluded_subtrees_value;
if (!sequence_parser.ReadOptionalTag(der::ContextSpecificConstructed(1),
&excluded_subtrees_value,
&had_excluded_subtrees)) {
return false;
}
if (had_excluded_subtrees &&
!ParseGeneralSubtrees(excluded_subtrees_value, is_critical,
&excluded_subtrees_)) {
return false;
}
// RFC 5280 section 4.2.1.10:
// Conforming CAs MUST NOT issue certificates where name constraints is an
// empty sequence. That is, either the permittedSubtrees field or the
// excludedSubtrees MUST be present.
if (!had_permitted_subtrees && !had_excluded_subtrees)
return false;
if (sequence_parser.HasMore())
return false;
return true;
}
bool NameConstraints::IsPermittedCert(
const der::Input& subject_rdn_sequence,
const der::Input& subject_alt_name_extnvalue_tlv) const {
// Subject Alternative Name handling:
//
// RFC 5280 section 4.2.1.6:
// id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }
//
// SubjectAltName ::= GeneralNames
//
// GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
GeneralNames san_names;
if (subject_alt_name_extnvalue_tlv.Length()) {
der::Parser extnvalue_parser(subject_alt_name_extnvalue_tlv);
der::Input subject_alt_name_tlv;
if (!extnvalue_parser.ReadTag(der::kOctetString, &subject_alt_name_tlv))
return false;
der::Parser subject_alt_name_parser(subject_alt_name_tlv);
der::Parser san_sequence_parser;
if (!subject_alt_name_parser.ReadSequence(&san_sequence_parser))
return false;
// Should not have trailing data after subjectAltName sequence.
if (subject_alt_name_parser.HasMore())
return false;
// The subjectAltName sequence should have at least 1 element.
if (!san_sequence_parser.HasMore())
return false;
while (san_sequence_parser.HasMore()) {
der::Input raw_general_name;
if (!san_sequence_parser.ReadRawTLV(&raw_general_name))
return false;
if (!ParseGeneralName(raw_general_name, RECORD_UNSUPPORTED,
IP_ADDRESS_ONLY, &san_names))
return false;
}
// Check unsupported name types:
// ConstrainedNameTypes for the unsupported types will only be true if that
// type of name was present in a name constraint that was marked critical.
//
// RFC 5280 section 4.2.1.10:
// If a name constraints extension that is marked as critical
// imposes constraints on a particular name form, and an instance of
// that name form appears in the subject field or subjectAltName
// extension of a subsequent certificate, then the application MUST
// either process the constraint or reject the certificate.
if (ConstrainedNameTypes() & san_names.present_name_types &
~kSupportedNameTypes) {
return false;
}
// Check supported name types:
for (const auto& dns_name : san_names.dns_names) {
if (!IsPermittedDNSName(dns_name))
return false;
}
for (const auto& directory_name : san_names.directory_names) {
if (!IsPermittedDirectoryName(
der::Input(directory_name.data(), directory_name.size()))) {
return false;
}
}
for (const auto& ip_address : san_names.ip_addresses) {
if (!IsPermittedIP(ip_address))
return false;
}
}
// Subject handling:
// RFC 5280 section 4.2.1.10:
// Legacy implementations exist where an electronic mail address is embedded
// in the subject distinguished name in an attribute of type emailAddress
// (Section 4.1.2.6). When constraints are imposed on the rfc822Name name
// form, but the certificate does not include a subject alternative name, the
// rfc822Name constraint MUST be applied to the attribute of type emailAddress
// in the subject distinguished name.
if (!subject_alt_name_extnvalue_tlv.Length() &&
(ConstrainedNameTypes() & GENERAL_NAME_RFC822_NAME)) {
bool contained_email_address = false;
if (!NameContainsEmailAddress(subject_rdn_sequence,
&contained_email_address)) {
return false;
}
if (contained_email_address)
return false;
}
// RFC 5280 4.1.2.6:
// If subject naming information is present only in the subjectAltName
// extension (e.g., a key bound only to an email address or URI), then the
// subject name MUST be an empty sequence and the subjectAltName extension
// MUST be critical.
// This code assumes that criticality condition is checked by the caller, and
// therefore only needs to avoid the IsPermittedDirectoryName check against an
// empty subject in such a case.
if (subject_alt_name_extnvalue_tlv.Length() &&
subject_rdn_sequence.Length() == 0) {
return true;
}
return IsPermittedDirectoryName(subject_rdn_sequence);
}
bool NameConstraints::IsPermittedDNSName(const std::string& name) const {
// If there are no name constraints for DNS names, all names are accepted.
if (!(ConstrainedNameTypes() & GENERAL_NAME_DNS_NAME))
return true;
for (const std::string& excluded_name : excluded_subtrees_.dns_names) {
// When matching wildcard hosts against excluded subtrees, consider it a
// match if the constraint would match any expansion of the wildcard. Eg,
// *.bar.com should match a constraint of foo.bar.com.
if (DNSNameMatches(name, excluded_name, WILDCARD_PARTIAL_MATCH))
return false;
}
for (const std::string& permitted_name : permitted_subtrees_.dns_names) {
// When matching wildcard hosts against permitted subtrees, consider it a
// match only if the constraint would match all expansions of the wildcard.
// Eg, *.bar.com should match a constraint of bar.com, but not foo.bar.com.
if (DNSNameMatches(name, permitted_name, WILDCARD_FULL_MATCH))
return true;
}
return false;
}
bool NameConstraints::IsPermittedDirectoryName(
const der::Input& name_rdn_sequence) const {
// If there are no name constraints for directory names, all names are
// accepted.
if (!(ConstrainedNameTypes() & GENERAL_NAME_DIRECTORY_NAME))
return true;
for (const auto& excluded_name : excluded_subtrees_.directory_names) {
if (VerifyNameInSubtree(
name_rdn_sequence,
der::Input(excluded_name.data(), excluded_name.size()))) {
return false;
}
}
for (const auto& permitted_name : permitted_subtrees_.directory_names) {
if (VerifyNameInSubtree(
name_rdn_sequence,
der::Input(permitted_name.data(), permitted_name.size()))) {
return true;
}
}
return false;
}
bool NameConstraints::IsPermittedIP(const IPAddressNumber& ip) const {
// If there are no name constraints for IP Address names, all names are
// accepted.
if (!(ConstrainedNameTypes() & GENERAL_NAME_IP_ADDRESS))
return true;
for (const auto& excluded_ip : excluded_subtrees_.ip_address_ranges) {
if (IPNumberMatchesPrefix(ip, excluded_ip.first, excluded_ip.second))
return false;
}
for (const auto& permitted_ip : permitted_subtrees_.ip_address_ranges) {
if (IPNumberMatchesPrefix(ip, permitted_ip.first, permitted_ip.second))
return true;
}
return false;
}
int NameConstraints::ConstrainedNameTypes() const {
return (permitted_subtrees_.present_name_types |
excluded_subtrees_.present_name_types);
}
} // namespace net