blob: 24b84eadbd77c8a334712a0306c5af0775acaceb [file] [log] [blame]
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/trees/layer_tree_host_impl.h"
#include <algorithm>
#include "base/basictypes.h"
#include "base/debug/trace_event.h"
#include "base/json/json_writer.h"
#include "base/metrics/histogram.h"
#include "base/stl_util.h"
#include "base/stringprintf.h"
#include "cc/animation/scrollbar_animation_controller.h"
#include "cc/base/math_util.h"
#include "cc/base/util.h"
#include "cc/debug/debug_rect_history.h"
#include "cc/debug/frame_rate_counter.h"
#include "cc/debug/overdraw_metrics.h"
#include "cc/debug/paint_time_counter.h"
#include "cc/debug/rendering_stats_instrumentation.h"
#include "cc/input/page_scale_animation.h"
#include "cc/input/top_controls_manager.h"
#include "cc/layers/append_quads_data.h"
#include "cc/layers/heads_up_display_layer_impl.h"
#include "cc/layers/layer_iterator.h"
#include "cc/layers/scrollbar_layer_impl.h"
#include "cc/output/compositor_frame_metadata.h"
#include "cc/output/delegating_renderer.h"
#include "cc/output/gl_renderer.h"
#include "cc/output/software_renderer.h"
#include "cc/quads/render_pass_draw_quad.h"
#include "cc/quads/shared_quad_state.h"
#include "cc/quads/solid_color_draw_quad.h"
#include "cc/resources/memory_history.h"
#include "cc/resources/picture_layer_tiling.h"
#include "cc/resources/prioritized_resource_manager.h"
#include "cc/scheduler/delay_based_time_source.h"
#include "cc/scheduler/texture_uploader.h"
#include "cc/trees/damage_tracker.h"
#include "cc/trees/layer_tree_host.h"
#include "cc/trees/layer_tree_host_common.h"
#include "cc/trees/layer_tree_impl.h"
#include "cc/trees/quad_culler.h"
#include "cc/trees/single_thread_proxy.h"
#include "cc/trees/tree_synchronizer.h"
#include "ui/gfx/size_conversions.h"
#include "ui/gfx/vector2d_conversions.h"
namespace {
void DidVisibilityChange(cc::LayerTreeHostImpl* id, bool visible) {
if (visible) {
TRACE_EVENT_ASYNC_BEGIN1("webkit",
"LayerTreeHostImpl::SetVisible",
id,
"LayerTreeHostImpl",
id);
return;
}
TRACE_EVENT_ASYNC_END0("webkit", "LayerTreeHostImpl::SetVisible", id);
}
std::string ValueToString(scoped_ptr<base::Value> value) {
std::string str;
base::JSONWriter::Write(value.get(), &str);
return str;
}
} // namespace
namespace cc {
class LayerTreeHostImplTimeSourceAdapter : public TimeSourceClient {
public:
static scoped_ptr<LayerTreeHostImplTimeSourceAdapter> Create(
LayerTreeHostImpl* layer_tree_host_impl,
scoped_refptr<DelayBasedTimeSource> time_source) {
return make_scoped_ptr(
new LayerTreeHostImplTimeSourceAdapter(layer_tree_host_impl,
time_source));
}
virtual ~LayerTreeHostImplTimeSourceAdapter() {
time_source_->SetClient(NULL);
time_source_->SetActive(false);
}
virtual void OnTimerTick() OVERRIDE {
// In single threaded mode we attempt to simulate changing the current
// thread by maintaining a fake thread id. When we switch from one
// thread to another, we construct DebugScopedSetXXXThread objects that
// update the thread id. This lets DCHECKS that ensure we're on the
// right thread to work correctly in single threaded mode. The problem
// here is that the timer tasks are run via the message loop, and when
// they run, we've had no chance to construct a DebugScopedSetXXXThread
// object. The result is that we report that we're running on the main
// thread. In multi-threaded mode, this timer is run on the compositor
// thread, so to keep this consistent in single-threaded mode, we'll
// construct a DebugScopedSetImplThread object. There is no need to do
// this in multi-threaded mode since the real thread id's will be
// correct. In fact, setting fake thread id's interferes with the real
// thread id's and causes breakage.
scoped_ptr<DebugScopedSetImplThread> set_impl_thread;
if (!layer_tree_host_impl_->proxy()->HasImplThread()) {
set_impl_thread.reset(
new DebugScopedSetImplThread(layer_tree_host_impl_->proxy()));
}
layer_tree_host_impl_->ActivatePendingTreeIfNeeded();
layer_tree_host_impl_->Animate(base::TimeTicks::Now(), base::Time::Now());
layer_tree_host_impl_->BeginNextFrame();
}
void SetActive(bool active) {
if (active != time_source_->Active())
time_source_->SetActive(active);
}
private:
LayerTreeHostImplTimeSourceAdapter(
LayerTreeHostImpl* layer_tree_host_impl,
scoped_refptr<DelayBasedTimeSource> time_source)
: layer_tree_host_impl_(layer_tree_host_impl),
time_source_(time_source) {
time_source_->SetClient(this);
}
LayerTreeHostImpl* layer_tree_host_impl_;
scoped_refptr<DelayBasedTimeSource> time_source_;
DISALLOW_COPY_AND_ASSIGN(LayerTreeHostImplTimeSourceAdapter);
};
LayerTreeHostImpl::FrameData::FrameData()
: contains_incomplete_tile(false) {}
LayerTreeHostImpl::FrameData::~FrameData() {}
scoped_ptr<LayerTreeHostImpl> LayerTreeHostImpl::Create(
const LayerTreeSettings& settings,
LayerTreeHostImplClient* client,
Proxy* proxy,
RenderingStatsInstrumentation* rendering_stats_instrumentation) {
return make_scoped_ptr(
new LayerTreeHostImpl(settings,
client,
proxy,
rendering_stats_instrumentation));
}
LayerTreeHostImpl::LayerTreeHostImpl(
const LayerTreeSettings& settings,
LayerTreeHostImplClient* client,
Proxy* proxy,
RenderingStatsInstrumentation* rendering_stats_instrumentation)
: client_(client),
proxy_(proxy),
did_lock_scrolling_layer_(false),
should_bubble_scrolls_(false),
wheel_scrolling_(false),
settings_(settings),
overdraw_bottom_height_(0.f),
device_scale_factor_(1.f),
visible_(true),
managed_memory_policy_(
PrioritizedResourceManager::DefaultMemoryAllocationLimit(),
ManagedMemoryPolicy::CUTOFF_ALLOW_EVERYTHING,
0,
ManagedMemoryPolicy::CUTOFF_ALLOW_NOTHING),
pinch_gesture_active_(false),
fps_counter_(FrameRateCounter::Create(proxy_->HasImplThread())),
paint_time_counter_(PaintTimeCounter::Create()),
memory_history_(MemoryHistory::Create()),
debug_rect_history_(DebugRectHistory::Create()),
last_sent_memory_visible_bytes_(0),
last_sent_memory_visible_and_nearby_bytes_(0),
last_sent_memory_use_bytes_(0),
animation_registrar_(AnimationRegistrar::Create()),
rendering_stats_instrumentation_(rendering_stats_instrumentation) {
DCHECK(proxy_->IsImplThread());
DidVisibilityChange(this, visible_);
SetDebugState(settings.initial_debug_state);
if (settings.calculate_top_controls_position) {
top_controls_manager_ =
TopControlsManager::Create(this,
settings.top_controls_height,
settings.top_controls_show_threshold,
settings.top_controls_hide_threshold);
}
SetDebugState(settings.initial_debug_state);
// LTHI always has an active tree.
active_tree_ = LayerTreeImpl::create(this);
}
LayerTreeHostImpl::~LayerTreeHostImpl() {
DCHECK(proxy_->IsImplThread());
TRACE_EVENT0("cc", "LayerTreeHostImpl::~LayerTreeHostImpl()");
if (active_tree_->root_layer()) {
ClearRenderSurfaces();
// The layer trees must be destroyed before the layer tree host. We've
// made a contract with our animation controllers that the registrar
// will outlive them, and we must make good.
recycle_tree_.reset();
pending_tree_.reset();
active_tree_.reset();
}
}
void LayerTreeHostImpl::BeginCommit() {}
void LayerTreeHostImpl::CommitComplete() {
TRACE_EVENT0("cc", "LayerTreeHostImpl::CommitComplete");
// Impl-side painting needs an update immediately post-commit to have the
// opportunity to create tilings. Other paths can call UpdateDrawProperties
// more lazily when needed prior to drawing.
if (settings_.impl_side_painting) {
pending_tree_->set_needs_update_draw_properties();
pending_tree_->UpdateDrawProperties(LayerTreeImpl::UPDATE_PENDING_TREE);
} else {
active_tree_->set_needs_update_draw_properties();
}
client_->SendManagedMemoryStats();
}
bool LayerTreeHostImpl::CanDraw() {
// Note: If you are changing this function or any other function that might
// affect the result of CanDraw, make sure to call
// client_->OnCanDrawStateChanged in the proper places and update the
// NotifyIfCanDrawChanged test.
if (!active_tree_->root_layer()) {
TRACE_EVENT_INSTANT0("cc", "LayerTreeHostImpl::CanDraw no root layer",
TRACE_EVENT_SCOPE_THREAD);
return false;
}
if (device_viewport_size_.IsEmpty()) {
TRACE_EVENT_INSTANT0("cc", "LayerTreeHostImpl::CanDraw empty viewport",
TRACE_EVENT_SCOPE_THREAD);
return false;
}
if (active_tree_->ViewportSizeInvalid()) {
TRACE_EVENT_INSTANT0(
"cc", "LayerTreeHostImpl::CanDraw viewport size recently changed",
TRACE_EVENT_SCOPE_THREAD);
return false;
}
if (!renderer_) {
TRACE_EVENT_INSTANT0("cc", "LayerTreeHostImpl::CanDraw no renderer",
TRACE_EVENT_SCOPE_THREAD);
return false;
}
if (active_tree_->ContentsTexturesPurged()) {
TRACE_EVENT_INSTANT0(
"cc", "LayerTreeHostImpl::CanDraw contents textures purged",
TRACE_EVENT_SCOPE_THREAD);
return false;
}
return true;
}
void LayerTreeHostImpl::Animate(base::TimeTicks monotonic_time,
base::Time wall_clock_time) {
AnimatePageScale(monotonic_time);
AnimateLayers(monotonic_time, wall_clock_time);
AnimateScrollbars(monotonic_time);
AnimateTopControls(monotonic_time);
}
void LayerTreeHostImpl::ManageTiles() {
DCHECK(tile_manager_);
tile_manager_->ManageTiles();
size_t memory_required_bytes;
size_t memory_nice_to_have_bytes;
size_t memory_used_bytes;
tile_manager_->GetMemoryStats(&memory_required_bytes,
&memory_nice_to_have_bytes,
&memory_used_bytes);
SendManagedMemoryStats(memory_required_bytes,
memory_nice_to_have_bytes,
memory_used_bytes);
}
void LayerTreeHostImpl::SetAnticipatedDrawTime(base::TimeTicks time) {
if (tile_manager_)
tile_manager_->SetAnticipatedDrawTime(time);
}
void LayerTreeHostImpl::StartPageScaleAnimation(gfx::Vector2d target_offset,
bool anchor_point,
float page_scale,
base::TimeTicks start_time,
base::TimeDelta duration) {
if (!RootScrollLayer())
return;
gfx::Vector2dF scroll_total =
RootScrollLayer()->scroll_offset() + RootScrollLayer()->scroll_delta();
gfx::SizeF scaled_scrollable_size = active_tree_->ScrollableSize();
gfx::SizeF viewport_size = VisibleViewportSize();
double start_time_seconds = (start_time - base::TimeTicks()).InSecondsF();
page_scale_animation_ =
PageScaleAnimation::Create(scroll_total,
active_tree_->total_page_scale_factor(),
viewport_size,
scaled_scrollable_size,
start_time_seconds);
if (anchor_point) {
gfx::Vector2dF anchor(target_offset);
page_scale_animation_->ZoomWithAnchor(anchor,
page_scale,
duration.InSecondsF());
} else {
gfx::Vector2dF scaled_target_offset = target_offset;
page_scale_animation_->ZoomTo(scaled_target_offset,
page_scale,
duration.InSecondsF());
}
client_->SetNeedsRedrawOnImplThread();
client_->SetNeedsCommitOnImplThread();
client_->RenewTreePriority();
}
void LayerTreeHostImpl::ScheduleAnimation() {
client_->SetNeedsRedrawOnImplThread();
}
bool LayerTreeHostImpl::HaveTouchEventHandlersAt(gfx::Point viewport_point) {
if (!EnsureRenderSurfaceLayerList())
return false;
gfx::PointF device_viewport_point =
gfx::ScalePoint(viewport_point, device_scale_factor_);
// First find out which layer was hit from the saved list of visible layers
// in the most recent frame.
LayerImpl* layer_impl = LayerTreeHostCommon::FindLayerThatIsHitByPoint(
device_viewport_point,
active_tree_->RenderSurfaceLayerList());
// Walk up the hierarchy and look for a layer with a touch event handler
// region that the given point hits.
for (; layer_impl; layer_impl = layer_impl->parent()) {
if (LayerTreeHostCommon::LayerHasTouchEventHandlersAt(device_viewport_point,
layer_impl))
return true;
}
return false;
}
void LayerTreeHostImpl::TrackDamageForAllSurfaces(
LayerImpl* root_draw_layer,
const LayerList& render_surface_layer_list) {
// For now, we use damage tracking to compute a global scissor. To do this, we
// must compute all damage tracking before drawing anything, so that we know
// the root damage rect. The root damage rect is then used to scissor each
// surface.
for (int surface_index = render_surface_layer_list.size() - 1;
surface_index >= 0;
--surface_index) {
LayerImpl* render_surface_layer = render_surface_layer_list[surface_index];
RenderSurfaceImpl* render_surface = render_surface_layer->render_surface();
DCHECK(render_surface);
render_surface->damage_tracker()->UpdateDamageTrackingState(
render_surface->layer_list(),
render_surface_layer->id(),
render_surface->SurfacePropertyChangedOnlyFromDescendant(),
render_surface->content_rect(),
render_surface_layer->mask_layer(),
render_surface_layer->filters(),
render_surface_layer->filter().get());
}
}
void LayerTreeHostImpl::FrameData::AppendRenderPass(
scoped_ptr<RenderPass> render_pass) {
render_passes_by_id[render_pass->id] = render_pass.get();
render_passes.push_back(render_pass.Pass());
}
static void AppendQuadsForLayer(RenderPass* target_render_pass,
LayerImpl* layer,
const OcclusionTrackerImpl& occlusion_tracker,
AppendQuadsData* append_quads_data) {
bool for_surface = false;
QuadCuller quad_culler(&target_render_pass->quad_list,
&target_render_pass->shared_quad_state_list,
layer,
occlusion_tracker,
layer->ShowDebugBorders(),
for_surface);
layer->AppendQuads(&quad_culler, append_quads_data);
}
static void AppendQuadsForRenderSurfaceLayer(
RenderPass* target_render_pass,
LayerImpl* layer,
const RenderPass* contributing_render_pass,
const OcclusionTrackerImpl& occlusion_tracker,
AppendQuadsData* append_quads_data) {
bool for_surface = true;
QuadCuller quad_culler(&target_render_pass->quad_list,
&target_render_pass->shared_quad_state_list,
layer,
occlusion_tracker,
layer->ShowDebugBorders(),
for_surface);
bool is_replica = false;
layer->render_surface()->AppendQuads(&quad_culler,
append_quads_data,
is_replica,
contributing_render_pass->id);
// Add replica after the surface so that it appears below the surface.
if (layer->has_replica()) {
is_replica = true;
layer->render_surface()->AppendQuads(&quad_culler,
append_quads_data,
is_replica,
contributing_render_pass->id);
}
}
static void AppendQuadsToFillScreen(
RenderPass* target_render_pass,
LayerImpl* root_layer,
SkColor screen_background_color,
const OcclusionTrackerImpl& occlusion_tracker) {
if (!root_layer || !SkColorGetA(screen_background_color))
return;
Region fill_region = occlusion_tracker.ComputeVisibleRegionInScreen();
if (fill_region.IsEmpty())
return;
bool for_surface = false;
QuadCuller quad_culler(&target_render_pass->quad_list,
&target_render_pass->shared_quad_state_list,
root_layer,
occlusion_tracker,
root_layer->ShowDebugBorders(),
for_surface);
// Manually create the quad state for the gutter quads, as the root layer
// doesn't have any bounds and so can't generate this itself.
// TODO(danakj): Make the gutter quads generated by the solid color layer
// (make it smarter about generating quads to fill unoccluded areas).
gfx::Rect root_target_rect = root_layer->render_surface()->content_rect();
float opacity = 1.f;
SharedQuadState* shared_quad_state =
quad_culler.UseSharedQuadState(SharedQuadState::Create());
shared_quad_state->SetAll(root_layer->draw_transform(),
root_target_rect.size(),
root_target_rect,
root_target_rect,
false,
opacity);
AppendQuadsData append_quads_data;
gfx::Transform transform_to_layer_space(gfx::Transform::kSkipInitialization);
bool did_invert = root_layer->screen_space_transform().GetInverse(
&transform_to_layer_space);
DCHECK(did_invert);
for (Region::Iterator fill_rects(fill_region);
fill_rects.has_rect();
fill_rects.next()) {
// The root layer transform is composed of translations and scales only,
// no perspective, so mapping is sufficient (as opposed to projecting).
gfx::Rect layer_rect =
MathUtil::MapClippedRect(transform_to_layer_space, fill_rects.rect());
// Skip the quad culler and just append the quads directly to avoid
// occlusion checks.
scoped_ptr<SolidColorDrawQuad> quad = SolidColorDrawQuad::Create();
quad->SetNew(shared_quad_state, layer_rect, screen_background_color);
quad_culler.Append(quad.PassAs<DrawQuad>(), &append_quads_data);
}
}
bool LayerTreeHostImpl::CalculateRenderPasses(FrameData* frame) {
DCHECK(frame->render_passes.empty());
if (!CanDraw() || !active_tree_->root_layer())
return false;
TrackDamageForAllSurfaces(active_tree_->root_layer(),
*frame->render_surface_layer_list);
TRACE_EVENT1("cc",
"LayerTreeHostImpl::CalculateRenderPasses",
"render_surface_layer_list.size()",
static_cast<uint64>(frame->render_surface_layer_list->size()));
// Create the render passes in dependency order.
for (int surface_index = frame->render_surface_layer_list->size() - 1;
surface_index >= 0;
--surface_index) {
LayerImpl* render_surface_layer =
(*frame->render_surface_layer_list)[surface_index];
render_surface_layer->render_surface()->AppendRenderPasses(frame);
}
bool record_metrics_for_frame =
settings_.show_overdraw_in_tracing &&
base::debug::TraceLog::GetInstance() &&
base::debug::TraceLog::GetInstance()->IsEnabled();
OcclusionTrackerImpl occlusion_tracker(
active_tree_->root_layer()->render_surface()->content_rect(),
record_metrics_for_frame);
occlusion_tracker.set_minimum_tracking_size(
settings_.minimum_occlusion_tracking_size);
if (debug_state_.show_occluding_rects) {
occlusion_tracker.set_occluding_screen_space_rects_container(
&frame->occluding_screen_space_rects);
}
if (debug_state_.show_non_occluding_rects) {
occlusion_tracker.set_non_occluding_screen_space_rects_container(
&frame->non_occluding_screen_space_rects);
}
// Add quads to the Render passes in FrontToBack order to allow for testing
// occlusion and performing culling during the tree walk.
typedef LayerIterator<LayerImpl,
std::vector<LayerImpl*>,
RenderSurfaceImpl,
LayerIteratorActions::FrontToBack> LayerIteratorType;
// Typically when we are missing a texture and use a checkerboard quad, we
// still draw the frame. However when the layer being checkerboarded is moving
// due to an impl-animation, we drop the frame to avoid flashing due to the
// texture suddenly appearing in the future.
bool draw_frame = true;
int layers_drawn = 0;
LayerIteratorType end =
LayerIteratorType::End(frame->render_surface_layer_list);
for (LayerIteratorType it =
LayerIteratorType::Begin(frame->render_surface_layer_list);
it != end;
++it) {
RenderPass::Id target_render_pass_id =
it.target_render_surface_layer()->render_surface()->RenderPassId();
RenderPass* target_render_pass =
frame->render_passes_by_id[target_render_pass_id];
occlusion_tracker.EnterLayer(it);
AppendQuadsData append_quads_data(target_render_pass->id);
if (it.represents_contributing_render_surface()) {
RenderPass::Id contributing_render_pass_id =
it->render_surface()->RenderPassId();
RenderPass* contributing_render_pass =
frame->render_passes_by_id[contributing_render_pass_id];
AppendQuadsForRenderSurfaceLayer(target_render_pass,
*it,
contributing_render_pass,
occlusion_tracker,
&append_quads_data);
} else if (it.represents_itself() &&
!it->visible_content_rect().IsEmpty()) {
bool has_occlusion_from_outside_target_surface;
bool impl_draw_transform_is_unknown = false;
if (occlusion_tracker.Occluded(
it->render_target(),
it->visible_content_rect(),
it->draw_transform(),
impl_draw_transform_is_unknown,
it->is_clipped(),
it->clip_rect(),
&has_occlusion_from_outside_target_surface)) {
append_quads_data.had_occlusion_from_outside_target_surface |=
has_occlusion_from_outside_target_surface;
} else {
DCHECK_EQ(active_tree_, it->layer_tree_impl());
it->WillDraw(resource_provider_.get());
frame->will_draw_layers.push_back(*it);
if (it->HasContributingDelegatedRenderPasses()) {
RenderPass::Id contributing_render_pass_id =
it->FirstContributingRenderPassId();
while (frame->render_passes_by_id.find(contributing_render_pass_id) !=
frame->render_passes_by_id.end()) {
RenderPass* render_pass =
frame->render_passes_by_id[contributing_render_pass_id];
AppendQuadsData append_quads_data(render_pass->id);
AppendQuadsForLayer(render_pass,
*it,
occlusion_tracker,
&append_quads_data);
contributing_render_pass_id =
it->NextContributingRenderPassId(contributing_render_pass_id);
}
}
AppendQuadsForLayer(target_render_pass,
*it,
occlusion_tracker,
&append_quads_data);
}
++layers_drawn;
}
if (append_quads_data.had_occlusion_from_outside_target_surface)
target_render_pass->has_occlusion_from_outside_target_surface = true;
if (append_quads_data.num_missing_tiles) {
rendering_stats_instrumentation_->AddMissingTiles(
append_quads_data.num_missing_tiles);
bool layer_has_animating_transform =
it->screen_space_transform_is_animating() ||
it->draw_transform_is_animating();
if (layer_has_animating_transform)
draw_frame = false;
}
if (append_quads_data.had_incomplete_tile)
frame->contains_incomplete_tile = true;
occlusion_tracker.LeaveLayer(it);
}
rendering_stats_instrumentation_->AddLayersDrawn(layers_drawn);
#ifndef NDEBUG
for (size_t i = 0; i < frame->render_passes.size(); ++i) {
for (size_t j = 0; j < frame->render_passes[i]->quad_list.size(); ++j)
DCHECK(frame->render_passes[i]->quad_list[j]->shared_quad_state);
DCHECK(frame->render_passes_by_id.find(frame->render_passes[i]->id)
!= frame->render_passes_by_id.end());
}
#endif
DCHECK(frame->render_passes.back()->output_rect.origin().IsOrigin());
if (!active_tree_->has_transparent_background()) {
frame->render_passes.back()->has_transparent_background = false;
AppendQuadsToFillScreen(frame->render_passes.back(),
active_tree_->root_layer(),
active_tree_->background_color(),
occlusion_tracker);
}
if (draw_frame)
occlusion_tracker.overdraw_metrics()->RecordMetrics(this);
RemoveRenderPasses(CullRenderPassesWithNoQuads(), frame);
renderer_->DecideRenderPassAllocationsForFrame(frame->render_passes);
RemoveRenderPasses(CullRenderPassesWithCachedTextures(renderer_.get()),
frame);
return draw_frame;
}
void LayerTreeHostImpl::SetBackgroundTickingEnabled(bool enabled) {
// Lazily create the time_source adapter so that we can vary the interval for
// testing.
if (!time_source_client_adapter_) {
time_source_client_adapter_ = LayerTreeHostImplTimeSourceAdapter::Create(
this,
DelayBasedTimeSource::Create(LowFrequencyAnimationInterval(),
proxy_->CurrentThread()));
}
time_source_client_adapter_->SetActive(enabled);
}
static inline RenderPass* FindRenderPassById(
RenderPass::Id render_pass_id,
const LayerTreeHostImpl::FrameData& frame) {
RenderPassIdHashMap::const_iterator it =
frame.render_passes_by_id.find(render_pass_id);
return it != frame.render_passes_by_id.end() ? it->second : NULL;
}
static void RemoveRenderPassesRecursive(RenderPass::Id remove_render_pass_id,
LayerTreeHostImpl::FrameData* frame) {
RenderPass* remove_render_pass =
FindRenderPassById(remove_render_pass_id, *frame);
// The pass was already removed by another quad - probably the original, and
// we are the replica.
if (!remove_render_pass)
return;
RenderPassList& render_passes = frame->render_passes;
RenderPassList::iterator to_remove = std::find(render_passes.begin(),
render_passes.end(),
remove_render_pass);
DCHECK(to_remove != render_passes.end());
scoped_ptr<RenderPass> removed_pass = render_passes.take(to_remove);
frame->render_passes.erase(to_remove);
frame->render_passes_by_id.erase(remove_render_pass_id);
// Now follow up for all RenderPass quads and remove their RenderPasses
// recursively.
const QuadList& quad_list = removed_pass->quad_list;
QuadList::ConstBackToFrontIterator quad_list_iterator =
quad_list.BackToFrontBegin();
for (; quad_list_iterator != quad_list.BackToFrontEnd();
++quad_list_iterator) {
DrawQuad* current_quad = (*quad_list_iterator);
if (current_quad->material != DrawQuad::RENDER_PASS)
continue;
RenderPass::Id next_remove_render_pass_id =
RenderPassDrawQuad::MaterialCast(current_quad)->render_pass_id;
RemoveRenderPassesRecursive(next_remove_render_pass_id, frame);
}
}
bool LayerTreeHostImpl::CullRenderPassesWithCachedTextures::
ShouldRemoveRenderPass(const RenderPassDrawQuad& quad,
const FrameData& frame) const {
bool quad_has_damage = !quad.contents_changed_since_last_frame.IsEmpty();
bool quad_has_cached_resource =
renderer_->HaveCachedResourcesForRenderPassId(quad.render_pass_id);
if (quad_has_damage) {
TRACE_EVENT0("cc", "CullRenderPassesWithCachedTextures have damage");
return false;
} else if (!quad_has_cached_resource) {
TRACE_EVENT0("cc", "CullRenderPassesWithCachedTextures have no texture");
return false;
}
TRACE_EVENT0("cc", "CullRenderPassesWithCachedTextures dropped!");
return true;
}
bool LayerTreeHostImpl::CullRenderPassesWithNoQuads::ShouldRemoveRenderPass(
const RenderPassDrawQuad& quad, const FrameData& frame) const {
const RenderPass* render_pass =
FindRenderPassById(quad.render_pass_id, frame);
if (!render_pass)
return false;
// If any quad or RenderPass draws into this RenderPass, then keep it.
const QuadList& quad_list = render_pass->quad_list;
for (QuadList::ConstBackToFrontIterator quad_list_iterator =
quad_list.BackToFrontBegin();
quad_list_iterator != quad_list.BackToFrontEnd();
++quad_list_iterator) {
DrawQuad* current_quad = *quad_list_iterator;
if (current_quad->material != DrawQuad::RENDER_PASS)
return false;
const RenderPass* contributing_pass = FindRenderPassById(
RenderPassDrawQuad::MaterialCast(current_quad)->render_pass_id, frame);
if (contributing_pass)
return false;
}
return true;
}
// Defined for linking tests.
template CC_EXPORT void LayerTreeHostImpl::RemoveRenderPasses<
LayerTreeHostImpl::CullRenderPassesWithCachedTextures>(
CullRenderPassesWithCachedTextures culler, FrameData* frame);
template CC_EXPORT void LayerTreeHostImpl::RemoveRenderPasses<
LayerTreeHostImpl::CullRenderPassesWithNoQuads>(
CullRenderPassesWithNoQuads culler, FrameData*);
// static
template <typename RenderPassCuller>
void LayerTreeHostImpl::RemoveRenderPasses(RenderPassCuller culler,
FrameData* frame) {
for (size_t it = culler.RenderPassListBegin(frame->render_passes);
it != culler.RenderPassListEnd(frame->render_passes);
it = culler.RenderPassListNext(it)) {
const RenderPass* current_pass = frame->render_passes[it];
const QuadList& quad_list = current_pass->quad_list;
QuadList::ConstBackToFrontIterator quad_list_iterator =
quad_list.BackToFrontBegin();
for (; quad_list_iterator != quad_list.BackToFrontEnd();
++quad_list_iterator) {
DrawQuad* current_quad = *quad_list_iterator;
if (current_quad->material != DrawQuad::RENDER_PASS)
continue;
const RenderPassDrawQuad* render_pass_quad =
RenderPassDrawQuad::MaterialCast(current_quad);
if (!culler.ShouldRemoveRenderPass(*render_pass_quad, *frame))
continue;
// We are changing the vector in the middle of iteration. Because we
// delete render passes that draw into the current pass, we are
// guaranteed that any data from the iterator to the end will not
// change. So, capture the iterator position from the end of the
// list, and restore it after the change.
size_t position_from_end = frame->render_passes.size() - it;
RemoveRenderPassesRecursive(render_pass_quad->render_pass_id, frame);
it = frame->render_passes.size() - position_from_end;
DCHECK_GE(frame->render_passes.size(), position_from_end);
}
}
}
bool LayerTreeHostImpl::PrepareToDraw(FrameData* frame) {
TRACE_EVENT0("cc", "LayerTreeHostImpl::PrepareToDraw");
active_tree_->UpdateDrawProperties(
LayerTreeImpl::UPDATE_ACTIVE_TREE_FOR_DRAW);
frame->render_surface_layer_list = &active_tree_->RenderSurfaceLayerList();
frame->render_passes.clear();
frame->render_passes_by_id.clear();
frame->will_draw_layers.clear();
if (!CalculateRenderPasses(frame))
return false;
// If we return true, then we expect DrawLayers() to be called before this
// function is called again.
return true;
}
void LayerTreeHostImpl::EnforceManagedMemoryPolicy(
const ManagedMemoryPolicy& policy) {
bool evicted_resources = client_->ReduceContentsTextureMemoryOnImplThread(
visible_ ? policy.bytes_limit_when_visible
: policy.bytes_limit_when_not_visible,
ManagedMemoryPolicy::PriorityCutoffToValue(
visible_ ? policy.priority_cutoff_when_visible
: policy.priority_cutoff_when_not_visible));
if (evicted_resources) {
active_tree_->SetContentsTexturesPurged();
if (pending_tree_)
pending_tree_->SetContentsTexturesPurged();
client_->SetNeedsCommitOnImplThread();
client_->OnCanDrawStateChanged(CanDraw());
client_->RenewTreePriority();
}
client_->SendManagedMemoryStats();
if (tile_manager_) {
GlobalStateThatImpactsTilePriority new_state(tile_manager_->GlobalState());
new_state.memory_limit_in_bytes = visible_ ?
policy.bytes_limit_when_visible :
policy.bytes_limit_when_not_visible;
new_state.memory_limit_policy =
ManagedMemoryPolicy::PriorityCutoffToTileMemoryLimitPolicy(
visible_ ?
policy.priority_cutoff_when_visible :
policy.priority_cutoff_when_not_visible);
tile_manager_->SetGlobalState(new_state);
}
}
bool LayerTreeHostImpl::HasImplThread() const {
return proxy_->HasImplThread();
}
void LayerTreeHostImpl::ScheduleManageTiles() {
if (client_)
client_->SetNeedsManageTilesOnImplThread();
}
void LayerTreeHostImpl::DidInitializeVisibleTile() {
// TODO(reveman): Determine tiles that changed and only damage
// what's necessary.
SetFullRootLayerDamage();
if (client_)
client_->DidInitializeVisibleTileOnImplThread();
}
bool LayerTreeHostImpl::ShouldClearRootRenderPass() const {
return settings_.should_clear_root_render_pass;
}
void LayerTreeHostImpl::SetManagedMemoryPolicy(
const ManagedMemoryPolicy& policy) {
if (managed_memory_policy_ == policy)
return;
managed_memory_policy_ = policy;
if (!proxy_->HasImplThread()) {
// TODO(ccameron): In single-thread mode, this can be called on the main
// thread by GLRenderer::OnMemoryAllocationChanged.
DebugScopedSetImplThread impl_thread(proxy_);
EnforceManagedMemoryPolicy(managed_memory_policy_);
} else {
DCHECK(proxy_->IsImplThread());
EnforceManagedMemoryPolicy(managed_memory_policy_);
}
// We always need to commit after changing the memory policy because the new
// limit can result in more or less content having texture allocated for it.
client_->SetNeedsCommitOnImplThread();
}
void LayerTreeHostImpl::OnVSyncParametersChanged(base::TimeTicks timebase,
base::TimeDelta interval) {
client_->OnVSyncParametersChanged(timebase, interval);
}
void LayerTreeHostImpl::DidVSync(base::TimeTicks frame_time) {
client_->DidVSync(frame_time);
}
void LayerTreeHostImpl::OnSendFrameToParentCompositorAck(
const CompositorFrameAck& ack) {
if (!renderer_)
return;
// TODO(piman): We may need to do some validation on this ack before
// processing it.
renderer_->ReceiveCompositorFrameAck(ack);
}
void LayerTreeHostImpl::OnCanDrawStateChangedForTree() {
client_->OnCanDrawStateChanged(CanDraw());
}
CompositorFrameMetadata LayerTreeHostImpl::MakeCompositorFrameMetadata() const {
CompositorFrameMetadata metadata;
metadata.device_scale_factor = device_scale_factor_;
metadata.page_scale_factor = active_tree_->total_page_scale_factor();
metadata.viewport_size = active_tree_->ScrollableViewportSize();
metadata.root_layer_size = active_tree_->ScrollableSize();
metadata.min_page_scale_factor = active_tree_->min_page_scale_factor();
metadata.max_page_scale_factor = active_tree_->max_page_scale_factor();
if (top_controls_manager_) {
metadata.location_bar_offset =
gfx::Vector2dF(0.f, top_controls_manager_->controls_top_offset());
metadata.location_bar_content_translation =
gfx::Vector2dF(0.f, top_controls_manager_->content_top_offset());
metadata.overdraw_bottom_height = overdraw_bottom_height_;
}
if (!RootScrollLayer())
return metadata;
metadata.root_scroll_offset = RootScrollLayer()->TotalScrollOffset();
return metadata;
}
void LayerTreeHostImpl::DrawLayers(FrameData* frame,
base::TimeTicks frame_begin_time) {
TRACE_EVENT0("cc", "LayerTreeHostImpl::DrawLayers");
DCHECK(CanDraw());
DCHECK(!frame->render_passes.empty());
fps_counter_->SaveTimeStamp(frame_begin_time);
rendering_stats_instrumentation_->SetScreenFrameCount(
fps_counter_->current_frame_number());
rendering_stats_instrumentation_->SetDroppedFrameCount(
fps_counter_->dropped_frame_count());
if (tile_manager_) {
memory_history_->SaveEntry(
tile_manager_->memory_stats_from_last_assign());
}
if (debug_state_.ShowHudRects()) {
debug_rect_history_->SaveDebugRectsForCurrentFrame(
active_tree_->root_layer(),
*frame->render_surface_layer_list,
frame->occluding_screen_space_rects,
frame->non_occluding_screen_space_rects,
debug_state_);
}
if (!settings_.impl_side_painting && debug_state_.continuous_painting) {
const RenderingStats& stats =
rendering_stats_instrumentation_->GetRenderingStats();
paint_time_counter_->SavePaintTime(stats.total_paint_time);
}
if (debug_state_.trace_all_rendered_frames) {
TRACE_EVENT_INSTANT1("cc.debug", "Frame", TRACE_EVENT_SCOPE_THREAD,
"frame", ValueToString(FrameStateAsValue()));
}
// Because the contents of the HUD depend on everything else in the frame, the
// contents of its texture are updated as the last thing before the frame is
// drawn.
if (active_tree_->hud_layer())
active_tree_->hud_layer()->UpdateHudTexture(resource_provider_.get());
renderer_->DrawFrame(&frame->render_passes);
// The render passes should be consumed by the renderer.
DCHECK(frame->render_passes.empty());
frame->render_passes_by_id.clear();
// The next frame should start by assuming nothing has changed, and changes
// are noted as they occur.
for (size_t i = 0; i < frame->render_surface_layer_list->size(); i++) {
(*frame->render_surface_layer_list)[i]->render_surface()->damage_tracker()->
DidDrawDamagedArea();
}
active_tree_->root_layer()->ResetAllChangeTrackingForSubtree();
UpdateAnimationState();
}
void LayerTreeHostImpl::DidDrawAllLayers(const FrameData& frame) {
for (size_t i = 0; i < frame.will_draw_layers.size(); ++i)
frame.will_draw_layers[i]->DidDraw(resource_provider_.get());
// Once all layers have been drawn, pending texture uploads should no
// longer block future uploads.
resource_provider_->MarkPendingUploadsAsNonBlocking();
}
void LayerTreeHostImpl::FinishAllRendering() {
if (renderer_)
renderer_->Finish();
}
bool LayerTreeHostImpl::IsContextLost() {
DCHECK(proxy_->IsImplThread());
return renderer_ && renderer_->IsContextLost();
}
const RendererCapabilities& LayerTreeHostImpl::GetRendererCapabilities() const {
return renderer_->Capabilities();
}
bool LayerTreeHostImpl::SwapBuffers() {
return renderer_->SwapBuffers();
}
void LayerTreeHostImpl::EnableVSyncNotification(bool enable) {
if (output_surface_)
output_surface_->EnableVSyncNotification(enable);
}
gfx::Size LayerTreeHostImpl::DeviceViewportSize() const {
return device_viewport_size();
}
gfx::SizeF LayerTreeHostImpl::VisibleViewportSize() const {
gfx::SizeF dip_size =
gfx::ScaleSize(DeviceViewportSize(), 1.f / device_scale_factor());
// The clip layer should be used if non-overlay scrollbars may exist since
// it adjusts for them.
LayerImpl* clip_layer = active_tree_->RootClipLayer();
if (!Settings().solid_color_scrollbars && clip_layer &&
clip_layer->masks_to_bounds())
dip_size = clip_layer->bounds();
float top_offset =
top_controls_manager_ ? top_controls_manager_->content_top_offset() : 0.f;
return gfx::SizeF(dip_size.width(),
dip_size.height() - top_offset - overdraw_bottom_height_);
}
const LayerTreeSettings& LayerTreeHostImpl::Settings() const {
return settings();
}
void LayerTreeHostImpl::DidLoseOutputSurface() {
client_->DidLoseOutputSurfaceOnImplThread();
}
void LayerTreeHostImpl::OnSwapBuffersComplete() {
client_->OnSwapBuffersCompleteOnImplThread();
}
void LayerTreeHostImpl::Readback(void* pixels,
gfx::Rect rect_in_device_viewport) {
DCHECK(renderer_);
renderer_->GetFramebufferPixels(pixels, rect_in_device_viewport);
}
bool LayerTreeHostImpl::haveRootScrollLayer() const {
return RootScrollLayer();
}
LayerImpl* LayerTreeHostImpl::RootLayer() const {
return active_tree_->root_layer();
}
LayerImpl* LayerTreeHostImpl::RootScrollLayer() const {
return active_tree_->RootScrollLayer();
}
LayerImpl* LayerTreeHostImpl::CurrentlyScrollingLayer() const {
return active_tree_->CurrentlyScrollingLayer();
}
// Content layers can be either directly scrollable or contained in an outer
// scrolling layer which applies the scroll transform. Given a content layer,
// this function returns the associated scroll layer if any.
static LayerImpl* FindScrollLayerForContentLayer(LayerImpl* layer_impl) {
if (!layer_impl)
return 0;
if (layer_impl->scrollable())
return layer_impl;
if (layer_impl->DrawsContent() &&
layer_impl->parent() &&
layer_impl->parent()->scrollable())
return layer_impl->parent();
return 0;
}
void LayerTreeHostImpl::CreatePendingTree() {
CHECK(!pending_tree_);
if (recycle_tree_)
recycle_tree_.swap(pending_tree_);
else
pending_tree_ = LayerTreeImpl::create(this);
client_->OnCanDrawStateChanged(CanDraw());
client_->OnHasPendingTreeStateChanged(pending_tree_);
TRACE_EVENT_ASYNC_BEGIN0("cc", "PendingTree", pending_tree_.get());
TRACE_EVENT_ASYNC_STEP0("cc",
"PendingTree", pending_tree_.get(), "waiting");
}
void LayerTreeHostImpl::CheckForCompletedTileUploads() {
DCHECK(!client_->IsInsideDraw()) <<
"Checking for completed uploads within a draw may trigger "
"spurious redraws.";
if (tile_manager_)
tile_manager_->CheckForCompletedTileUploads();
}
bool LayerTreeHostImpl::ActivatePendingTreeIfNeeded() {
if (!pending_tree_)
return false;
CHECK(tile_manager_);
pending_tree_->UpdateDrawProperties(LayerTreeImpl::UPDATE_PENDING_TREE);
TRACE_EVENT_ASYNC_STEP1("cc",
"PendingTree", pending_tree_.get(), "activate",
"state", ValueToString(ActivationStateAsValue()));
// Activate once all visible resources in pending tree are ready
// or tile manager has no work scheduled for pending tree.
if (!pending_tree_->AreVisibleResourcesReady()) {
// In smoothness takes priority mode, the pending tree's priorities are
// ignored, so the tile manager may not have work for it even though it
// is simultaneously not ready to be activated.
if (tile_manager_->GlobalState().tree_priority ==
SMOOTHNESS_TAKES_PRIORITY ||
tile_manager_->HasPendingWorkScheduled(PENDING_TREE)) {
TRACE_EVENT_ASYNC_STEP0("cc",
"PendingTree",
pending_tree_.get(),
"waiting");
return false;
}
}
ActivatePendingTree();
return true;
}
void LayerTreeHostImpl::ActivatePendingTree() {
CHECK(pending_tree_);
TRACE_EVENT_ASYNC_END0("cc", "PendingTree", pending_tree_.get());
active_tree_->PushPersistedState(pending_tree_.get());
if (pending_tree_->needs_full_tree_sync()) {
active_tree_->SetRootLayer(
TreeSynchronizer::SynchronizeTrees(pending_tree_->root_layer(),
active_tree_->DetachLayerTree(),
active_tree_.get()));
}
TreeSynchronizer::PushProperties(pending_tree_->root_layer(),
active_tree_->root_layer());
DCHECK(!recycle_tree_);
pending_tree_->PushPropertiesTo(active_tree_.get());
// Now that we've synced everything from the pending tree to the active
// tree, rename the pending tree the recycle tree so we can reuse it on the
// next sync.
pending_tree_.swap(recycle_tree_);
recycle_tree_->ClearRenderSurfaces();
active_tree_->DidBecomeActive();
// Reduce wasted memory now that unlinked resources are guaranteed not
// to be used.
client_->ReduceWastedContentsTextureMemoryOnImplThread();
client_->OnCanDrawStateChanged(CanDraw());
client_->OnHasPendingTreeStateChanged(pending_tree_);
client_->SetNeedsRedrawOnImplThread();
client_->RenewTreePriority();
if (debug_state_.continuous_painting) {
const RenderingStats& stats =
rendering_stats_instrumentation_->GetRenderingStats();
paint_time_counter_->SavePaintTime(
stats.total_paint_time +
stats.total_rasterize_time_for_now_bins_on_pending_tree);
}
}
void LayerTreeHostImpl::SetVisible(bool visible) {
DCHECK(proxy_->IsImplThread());
if (visible_ == visible)
return;
visible_ = visible;
DidVisibilityChange(this, visible_);
EnforceManagedMemoryPolicy(managed_memory_policy_);
if (!renderer_)
return;
renderer_->SetVisible(visible);
SetBackgroundTickingEnabled(
!visible_ &&
!animation_registrar_->active_animation_controllers().empty());
}
bool LayerTreeHostImpl::InitializeRenderer(
scoped_ptr<OutputSurface> output_surface) {
// Since we will create a new resource provider, we cannot continue to use
// the old resources (i.e. render_surfaces and texture IDs). Clear them
// before we destroy the old resource provider.
if (active_tree_->root_layer())
ClearRenderSurfaces();
if (active_tree_->root_layer())
SendDidLoseOutputSurfaceRecursive(active_tree_->root_layer());
if (pending_tree_ && pending_tree_->root_layer())
SendDidLoseOutputSurfaceRecursive(pending_tree_->root_layer());
if (recycle_tree_ && recycle_tree_->root_layer())
SendDidLoseOutputSurfaceRecursive(recycle_tree_->root_layer());
// Note: order is important here.
renderer_.reset();
tile_manager_.reset();
resource_provider_.reset();
output_surface_.reset();
if (!output_surface->BindToClient(this))
return false;
scoped_ptr<ResourceProvider> resource_provider =
ResourceProvider::Create(output_surface.get());
if (!resource_provider)
return false;
if (settings_.impl_side_painting) {
tile_manager_.reset(new TileManager(this,
resource_provider.get(),
settings_.num_raster_threads,
settings_.use_cheapness_estimator,
settings_.use_color_estimator,
settings_.prediction_benchmarking,
rendering_stats_instrumentation_));
}
if (output_surface->capabilities().has_parent_compositor) {
renderer_ = DelegatingRenderer::Create(this, output_surface.get(),
resource_provider.get());
} else if (output_surface->context3d()) {
renderer_ = GLRenderer::Create(this,
output_surface.get(),
resource_provider.get());
} else if (output_surface->software_device()) {
renderer_ = SoftwareRenderer::Create(this,
output_surface.get(),
resource_provider.get());
}
if (!renderer_)
return false;
resource_provider_ = resource_provider.Pass();
output_surface_ = output_surface.Pass();
if (!visible_)
renderer_->SetVisible(visible_);
client_->OnCanDrawStateChanged(CanDraw());
// See note in LayerTreeImpl::UpdateDrawProperties. Renderer needs
// to be initialized to get max texture size.
active_tree_->set_needs_update_draw_properties();
if (pending_tree_)
pending_tree_->set_needs_update_draw_properties();
return true;
}
void LayerTreeHostImpl::SetViewportSize(gfx::Size layout_viewport_size,
gfx::Size device_viewport_size) {
if (layout_viewport_size == layout_viewport_size_ &&
device_viewport_size == device_viewport_size_)
return;
if (pending_tree_ && device_viewport_size_ != device_viewport_size)
active_tree_->SetViewportSizeInvalid();
layout_viewport_size_ = layout_viewport_size;
device_viewport_size_ = device_viewport_size;
UpdateMaxScrollOffset();
if (renderer_)
renderer_->ViewportChanged();
client_->OnCanDrawStateChanged(CanDraw());
}
static void AdjustScrollsForPageScaleChange(LayerImpl* layer_impl,
float page_scale_change) {
if (!layer_impl)
return;
if (layer_impl->scrollable()) {
// We need to convert impl-side scroll deltas to page_scale space.
gfx::Vector2dF scroll_delta = layer_impl->scroll_delta();
scroll_delta.Scale(page_scale_change);
layer_impl->SetScrollDelta(scroll_delta);
}
for (size_t i = 0; i < layer_impl->children().size(); ++i)
AdjustScrollsForPageScaleChange(layer_impl->children()[i],
page_scale_change);
}
void LayerTreeHostImpl::SetOverdrawBottomHeight(float overdraw_bottom_height) {
if (overdraw_bottom_height == overdraw_bottom_height_)
return;
overdraw_bottom_height_ = overdraw_bottom_height;
UpdateMaxScrollOffset();
}
void LayerTreeHostImpl::SetDeviceScaleFactor(float device_scale_factor) {
if (device_scale_factor == device_scale_factor_)
return;
device_scale_factor_ = device_scale_factor;
UpdateMaxScrollOffset();
}
void LayerTreeHostImpl::UpdateMaxScrollOffset() {
active_tree_->UpdateMaxScrollOffset();
}
void LayerTreeHostImpl::setActiveTreeNeedsUpdateDrawProperties() {
active_tree_->set_needs_update_draw_properties();
}
void LayerTreeHostImpl::setNeedsRedraw() {
client_->SetNeedsRedrawOnImplThread();
}
bool LayerTreeHostImpl::EnsureRenderSurfaceLayerList() {
active_tree_->UpdateDrawProperties(LayerTreeImpl::UPDATE_ACTIVE_TREE);
return active_tree_->RenderSurfaceLayerList().size();
}
InputHandlerClient::ScrollStatus LayerTreeHostImpl::ScrollBegin(
gfx::Point viewport_point, InputHandlerClient::ScrollInputType type) {
TRACE_EVENT0("cc", "LayerTreeHostImpl::ScrollBegin");
if (top_controls_manager_)
top_controls_manager_->ScrollBegin();
DCHECK(!CurrentlyScrollingLayer());
ClearCurrentlyScrollingLayer();
if (!EnsureRenderSurfaceLayerList())
return ScrollIgnored;
gfx::PointF device_viewport_point = gfx::ScalePoint(viewport_point,
device_scale_factor_);
// First find out which layer was hit from the saved list of visible layers
// in the most recent frame.
LayerImpl* layer_impl = LayerTreeHostCommon::FindLayerThatIsHitByPoint(
device_viewport_point, active_tree_->RenderSurfaceLayerList());
// Walk up the hierarchy and look for a scrollable layer.
LayerImpl* potentially_scrolling_layer_impl = 0;
for (; layer_impl; layer_impl = layer_impl->parent()) {
// The content layer can also block attempts to scroll outside the main
// thread.
ScrollStatus status = layer_impl->TryScroll(device_viewport_point, type);
if (status == ScrollOnMainThread) {
rendering_stats_instrumentation_->IncrementMainThreadScrolls();
UMA_HISTOGRAM_BOOLEAN("TryScroll.SlowScroll", true);
active_tree()->DidBeginScroll();
return ScrollOnMainThread;
}
LayerImpl* scroll_layer_impl = FindScrollLayerForContentLayer(layer_impl);
if (!scroll_layer_impl)
continue;
status = scroll_layer_impl->TryScroll(device_viewport_point, type);
// If any layer wants to divert the scroll event to the main thread, abort.
if (status == ScrollOnMainThread) {
rendering_stats_instrumentation_->IncrementMainThreadScrolls();
UMA_HISTOGRAM_BOOLEAN("TryScroll.SlowScroll", true);
active_tree()->DidBeginScroll();
return ScrollOnMainThread;
}
if (status == ScrollStarted && !potentially_scrolling_layer_impl)
potentially_scrolling_layer_impl = scroll_layer_impl;
}
// When hiding top controls is enabled and the controls are hidden or
// overlaying the content, force scrolls to be enabled on the root layer to
// allow bringing the top controls back into view.
if (!potentially_scrolling_layer_impl && top_controls_manager_ &&
top_controls_manager_->content_top_offset() !=
settings_.top_controls_height) {
potentially_scrolling_layer_impl = RootScrollLayer();
}
if (potentially_scrolling_layer_impl) {
active_tree_->SetCurrentlyScrollingLayer(
potentially_scrolling_layer_impl);
should_bubble_scrolls_ = (type != NonBubblingGesture);
wheel_scrolling_ = (type == Wheel);
rendering_stats_instrumentation_->IncrementImplThreadScrolls();
client_->RenewTreePriority();
UMA_HISTOGRAM_BOOLEAN("TryScroll.SlowScroll", false);
active_tree()->DidBeginScroll();
return ScrollStarted;
}
return ScrollIgnored;
}
gfx::Vector2dF LayerTreeHostImpl::ScrollLayerWithViewportSpaceDelta(
LayerImpl* layer_impl,
float scale_from_viewport_to_screen_space,
gfx::PointF viewport_point,
gfx::Vector2dF viewport_delta) {
// Layers with non-invertible screen space transforms should not have passed
// the scroll hit test in the first place.
DCHECK(layer_impl->screen_space_transform().IsInvertible());
gfx::Transform inverse_screen_space_transform(
gfx::Transform::kSkipInitialization);
bool did_invert = layer_impl->screen_space_transform().GetInverse(
&inverse_screen_space_transform);
// TODO: With the advent of impl-side crolling for non-root layers, we may
// need to explicitly handle uninvertible transforms here.
DCHECK(did_invert);
gfx::PointF screen_space_point =
gfx::ScalePoint(viewport_point, scale_from_viewport_to_screen_space);
gfx::Vector2dF screen_space_delta = viewport_delta;
screen_space_delta.Scale(scale_from_viewport_to_screen_space);
// First project the scroll start and end points to local layer space to find
// the scroll delta in layer coordinates.
bool start_clipped, end_clipped;
gfx::PointF screen_space_end_point = screen_space_point + screen_space_delta;
gfx::PointF local_start_point =
MathUtil::ProjectPoint(inverse_screen_space_transform,
screen_space_point,
&start_clipped);
gfx::PointF local_end_point =
MathUtil::ProjectPoint(inverse_screen_space_transform,
screen_space_end_point,
&end_clipped);
// In general scroll point coordinates should not get clipped.
DCHECK(!start_clipped);
DCHECK(!end_clipped);
if (start_clipped || end_clipped)
return gfx::Vector2dF();
// local_start_point and local_end_point are in content space but we want to
// move them to layer space for scrolling.
float width_scale = 1.f / layer_impl->contents_scale_x();
float height_scale = 1.f / layer_impl->contents_scale_y();
local_start_point.Scale(width_scale, height_scale);
local_end_point.Scale(width_scale, height_scale);
// Apply the scroll delta.
gfx::Vector2dF previous_delta = layer_impl->scroll_delta();
layer_impl->ScrollBy(local_end_point - local_start_point);
// Get the end point in the layer's content space so we can apply its
// ScreenSpaceTransform.
gfx::PointF actual_local_end_point = local_start_point +
layer_impl->scroll_delta() -
previous_delta;
gfx::PointF actual_local_content_end_point =
gfx::ScalePoint(actual_local_end_point,
1.f / width_scale,
1.f / height_scale);
// Calculate the applied scroll delta in viewport space coordinates.
gfx::PointF actual_screen_space_end_point =
MathUtil::MapPoint(layer_impl->screen_space_transform(),
actual_local_content_end_point,
&end_clipped);
DCHECK(!end_clipped);
if (end_clipped)
return gfx::Vector2dF();
gfx::PointF actual_viewport_end_point =
gfx::ScalePoint(actual_screen_space_end_point,
1.f / scale_from_viewport_to_screen_space);
return actual_viewport_end_point - viewport_point;
}
static gfx::Vector2dF ScrollLayerWithLocalDelta(LayerImpl* layer_impl,
gfx::Vector2dF local_delta) {
gfx::Vector2dF previous_delta(layer_impl->scroll_delta());
layer_impl->ScrollBy(local_delta);
return layer_impl->scroll_delta() - previous_delta;
}
bool LayerTreeHostImpl::ScrollBy(gfx::Point viewport_point,
gfx::Vector2dF scroll_delta) {
TRACE_EVENT0("cc", "LayerTreeHostImpl::ScrollBy");
if (!CurrentlyScrollingLayer())
return false;
gfx::Vector2dF pending_delta = scroll_delta;
bool did_scroll = false;
bool consume_by_top_controls = top_controls_manager_ &&
(CurrentlyScrollingLayer() == RootScrollLayer() || scroll_delta.y() < 0);
for (LayerImpl* layer_impl = CurrentlyScrollingLayer();
layer_impl;
layer_impl = layer_impl->parent()) {
if (!layer_impl->scrollable())
continue;
// Only allow bubble scrolling when the scroll is in the direction to make
// the top controls visible.
if (consume_by_top_controls && layer_impl == RootScrollLayer()) {
pending_delta = top_controls_manager_->ScrollBy(pending_delta);
UpdateMaxScrollOffset();
}
gfx::Vector2dF applied_delta;
// Gesture events need to be transformed from viewport coordinates to local
// layer coordinates so that the scrolling contents exactly follow the
// user's finger. In contrast, wheel events represent a fixed amount of
// scrolling so we can just apply them directly.
if (!wheel_scrolling_) {
float scale_from_viewport_to_screen_space = device_scale_factor_;
applied_delta =
ScrollLayerWithViewportSpaceDelta(layer_impl,
scale_from_viewport_to_screen_space,
viewport_point, pending_delta);
} else {
applied_delta = ScrollLayerWithLocalDelta(layer_impl, pending_delta);
}
// If the layer wasn't able to move, try the next one in the hierarchy.
float move_threshold_squared = 0.1f * 0.1f;
if (applied_delta.LengthSquared() < move_threshold_squared) {
if (should_bubble_scrolls_ || !did_lock_scrolling_layer_)
continue;
else
break;
}
did_scroll = true;
did_lock_scrolling_layer_ = true;
if (!should_bubble_scrolls_) {
active_tree_->SetCurrentlyScrollingLayer(layer_impl);
break;
}
// If the applied delta is within 45 degrees of the input delta, bail out to
// make it easier to scroll just one layer in one direction without
// affecting any of its parents.
float angle_threshold = 45;
if (MathUtil::SmallestAngleBetweenVectors(
applied_delta, pending_delta) < angle_threshold) {
pending_delta = gfx::Vector2d();
break;
}
// Allow further movement only on an axis perpendicular to the direction in
// which the layer moved.
gfx::Vector2dF perpendicular_axis(-applied_delta.y(), applied_delta.x());
pending_delta = MathUtil::ProjectVector(pending_delta, perpendicular_axis);
if (gfx::ToFlooredVector2d(pending_delta).IsZero())
break;
}
active_tree()->DidUpdateScroll();
if (did_scroll) {
client_->SetNeedsCommitOnImplThread();
client_->SetNeedsRedrawOnImplThread();
client_->RenewTreePriority();
}
return did_scroll;
}
// This implements scrolling by page as described here:
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms645601(v=vs.85).aspx#_win32_The_Mouse_Wheel
// for events with WHEEL_PAGESCROLL set.
bool LayerTreeHostImpl::ScrollVerticallyByPage(
gfx::Point viewport_point,
WebKit::WebScrollbar::ScrollDirection direction) {
DCHECK(wheel_scrolling_);
for (LayerImpl* layer_impl = CurrentlyScrollingLayer();
layer_impl;
layer_impl = layer_impl->parent()) {
if (!layer_impl->scrollable())
continue;
if (!layer_impl->vertical_scrollbar_layer())
continue;
float height = layer_impl->vertical_scrollbar_layer()->bounds().height();
// These magical values match WebKit and are designed to scroll nearly the
// entire visible content height but leave a bit of overlap.
float page = std::max(height * 0.875f, 1.f);
if (direction == WebKit::WebScrollbar::ScrollBackward)
page = -page;
gfx::Vector2dF delta = gfx::Vector2dF(0.f, page);
gfx::Vector2dF applied_delta = ScrollLayerWithLocalDelta(layer_impl, delta);
if (!applied_delta.IsZero()) {
active_tree()->DidUpdateScroll();
client_->SetNeedsCommitOnImplThread();
client_->SetNeedsRedrawOnImplThread();
client_->RenewTreePriority();
return true;
}
active_tree_->SetCurrentlyScrollingLayer(layer_impl);
}
return false;
}
void LayerTreeHostImpl::ClearCurrentlyScrollingLayer() {
active_tree_->ClearCurrentlyScrollingLayer();
did_lock_scrolling_layer_ = false;
}
void LayerTreeHostImpl::ScrollEnd() {
if (top_controls_manager_)
top_controls_manager_->ScrollEnd();
ClearCurrentlyScrollingLayer();
active_tree()->DidEndScroll();
StartScrollbarAnimation(base::TimeTicks::Now());
}
void LayerTreeHostImpl::PinchGestureBegin() {
pinch_gesture_active_ = true;
previous_pinch_anchor_ = gfx::Point();
client_->RenewTreePriority();
}
void LayerTreeHostImpl::PinchGestureUpdate(float magnify_delta,
gfx::Point anchor) {
TRACE_EVENT0("cc", "LayerTreeHostImpl::PinchGestureUpdate");
if (!RootScrollLayer())
return;
// Keep the center-of-pinch anchor specified by (x, y) in a stable
// position over the course of the magnify.
float page_scale_delta = active_tree_->page_scale_delta();
gfx::PointF previous_scale_anchor =
gfx::ScalePoint(anchor, 1.f / page_scale_delta);
active_tree_->SetPageScaleDelta(page_scale_delta * magnify_delta);
page_scale_delta = active_tree_->page_scale_delta();
gfx::PointF new_scale_anchor =
gfx::ScalePoint(anchor, 1.f / page_scale_delta);
gfx::Vector2dF move = previous_scale_anchor - new_scale_anchor;
previous_pinch_anchor_ = anchor;
move.Scale(1 / active_tree_->page_scale_factor());
RootScrollLayer()->ScrollBy(move);
client_->SetNeedsCommitOnImplThread();
client_->SetNeedsRedrawOnImplThread();
client_->RenewTreePriority();
}
void LayerTreeHostImpl::PinchGestureEnd() {
pinch_gesture_active_ = false;
client_->SetNeedsCommitOnImplThread();
}
static void CollectScrollDeltas(ScrollAndScaleSet* scroll_info,
LayerImpl* layer_impl) {
if (!layer_impl)
return;
gfx::Vector2d scroll_delta =
gfx::ToFlooredVector2d(layer_impl->scroll_delta());
if (!scroll_delta.IsZero()) {
LayerTreeHostCommon::ScrollUpdateInfo scroll;
scroll.layer_id = layer_impl->id();
scroll.scroll_delta = scroll_delta;
scroll_info->scrolls.push_back(scroll);
layer_impl->SetSentScrollDelta(scroll_delta);
}
for (size_t i = 0; i < layer_impl->children().size(); ++i)
CollectScrollDeltas(scroll_info, layer_impl->children()[i]);
}
scoped_ptr<ScrollAndScaleSet> LayerTreeHostImpl::ProcessScrollDeltas() {
scoped_ptr<ScrollAndScaleSet> scroll_info(new ScrollAndScaleSet());
CollectScrollDeltas(scroll_info.get(), active_tree_->root_layer());
scroll_info->page_scale_delta = active_tree_->page_scale_delta();
active_tree_->set_sent_page_scale_delta(scroll_info->page_scale_delta);
return scroll_info.Pass();
}
void LayerTreeHostImpl::SetFullRootLayerDamage() {
if (active_tree_->root_layer()) {
RenderSurfaceImpl* render_surface =
active_tree_->root_layer()->render_surface();
if (render_surface)
render_surface->damage_tracker()->ForceFullDamageNextUpdate();
}
}
void LayerTreeHostImpl::AnimatePageScale(base::TimeTicks time) {
if (!page_scale_animation_ || !RootScrollLayer())
return;
double monotonic_time = (time - base::TimeTicks()).InSecondsF();
gfx::Vector2dF scroll_total = RootScrollLayer()->scroll_offset() +
RootScrollLayer()->scroll_delta();
active_tree_->SetPageScaleDelta(
page_scale_animation_->PageScaleFactorAtTime(monotonic_time) /
active_tree_->page_scale_factor());
gfx::Vector2dF next_scroll =
page_scale_animation_->ScrollOffsetAtTime(monotonic_time);
RootScrollLayer()->ScrollBy(next_scroll - scroll_total);
client_->SetNeedsRedrawOnImplThread();
if (page_scale_animation_->IsAnimationCompleteAtTime(monotonic_time)) {
page_scale_animation_.reset();
client_->SetNeedsCommitOnImplThread();
client_->RenewTreePriority();
}
}
void LayerTreeHostImpl::AnimateTopControls(base::TimeTicks time) {
if (!top_controls_manager_ || !RootScrollLayer())
return;
gfx::Vector2dF scroll = top_controls_manager_->Animate(time);
UpdateMaxScrollOffset();
RootScrollLayer()->ScrollBy(gfx::ScaleVector2d(
scroll, 1.f / active_tree_->total_page_scale_factor()));
}
void LayerTreeHostImpl::AnimateLayers(base::TimeTicks monotonic_time,
base::Time wall_clock_time) {
if (!settings_.accelerated_animation_enabled ||
animation_registrar_->active_animation_controllers().empty() ||
!active_tree_->root_layer())
return;
TRACE_EVENT0("cc", "LayerTreeHostImpl::AnimateLayers");
last_animation_time_ = wall_clock_time;
double monotonic_seconds = (monotonic_time - base::TimeTicks()).InSecondsF();
AnimationRegistrar::AnimationControllerMap copy =
animation_registrar_->active_animation_controllers();
for (AnimationRegistrar::AnimationControllerMap::iterator iter = copy.begin();
iter != copy.end();
++iter)
(*iter).second->Animate(monotonic_seconds);
client_->SetNeedsRedrawOnImplThread();
SetBackgroundTickingEnabled(
!visible_ &&
!animation_registrar_->active_animation_controllers().empty());
}
void LayerTreeHostImpl::UpdateAnimationState() {
if (!settings_.accelerated_animation_enabled ||
animation_registrar_->active_animation_controllers().empty() ||
!active_tree_->root_layer())
return;
TRACE_EVENT0("cc", "LayerTreeHostImpl::UpdateAnimationState");
scoped_ptr<AnimationEventsVector> events =
make_scoped_ptr(new AnimationEventsVector);
AnimationRegistrar::AnimationControllerMap copy =
animation_registrar_->active_animation_controllers();
for (AnimationRegistrar::AnimationControllerMap::iterator iter = copy.begin();
iter != copy.end();
++iter)
(*iter).second->UpdateState(events.get());
if (!events->empty()) {
client_->PostAnimationEventsToMainThreadOnImplThread(events.Pass(),
last_animation_time_);
}
}
base::TimeDelta LayerTreeHostImpl::LowFrequencyAnimationInterval() const {
return base::TimeDelta::FromSeconds(1);
}
void LayerTreeHostImpl::SendDidLoseOutputSurfaceRecursive(LayerImpl* current) {
DCHECK(current);
current->DidLoseOutputSurface();
if (current->mask_layer())
SendDidLoseOutputSurfaceRecursive(current->mask_layer());
if (current->replica_layer())
SendDidLoseOutputSurfaceRecursive(current->replica_layer());
for (size_t i = 0; i < current->children().size(); ++i)
SendDidLoseOutputSurfaceRecursive(current->children()[i]);
}
void LayerTreeHostImpl::ClearRenderSurfaces() {
active_tree_->ClearRenderSurfaces();
if (pending_tree_)
pending_tree_->ClearRenderSurfaces();
}
std::string LayerTreeHostImpl::LayerTreeAsText() const {
std::string str;
if (active_tree_->root_layer()) {
str = active_tree_->root_layer()->LayerTreeAsText();
str += "RenderSurfaces:\n";
DumpRenderSurfaces(&str, 1, active_tree_->root_layer());
}
return str;
}
std::string LayerTreeHostImpl::LayerTreeAsJson() const {
std::string str;
if (active_tree_->root_layer()) {
scoped_ptr<base::Value> json(active_tree_->root_layer()->LayerTreeAsJson());
base::JSONWriter::WriteWithOptions(
json.get(), base::JSONWriter::OPTIONS_PRETTY_PRINT, &str);
}
return str;
}
void LayerTreeHostImpl::DumpRenderSurfaces(std::string* str,
int indent,
const LayerImpl* layer) const {
if (layer->render_surface())
layer->render_surface()->DumpSurface(str, indent);
for (size_t i = 0; i < layer->children().size(); ++i)
DumpRenderSurfaces(str, indent, layer->children()[i]);
}
int LayerTreeHostImpl::SourceAnimationFrameNumber() const {
return fps_counter_->current_frame_number();
}
void LayerTreeHostImpl::SendManagedMemoryStats(
size_t memory_visible_bytes,
size_t memory_visible_and_nearby_bytes,
size_t memory_use_bytes) {
if (!renderer_)
return;
// Round the numbers being sent up to the next 8MB, to throttle the rate
// at which we spam the GPU process.
static const size_t rounding_step = 8 * 1024 * 1024;
memory_visible_bytes = RoundUp(memory_visible_bytes, rounding_step);
memory_visible_and_nearby_bytes = RoundUp(memory_visible_and_nearby_bytes,
rounding_step);
memory_use_bytes = RoundUp(memory_use_bytes, rounding_step);
if (last_sent_memory_visible_bytes_ == memory_visible_bytes &&
last_sent_memory_visible_and_nearby_bytes_ ==
memory_visible_and_nearby_bytes &&
last_sent_memory_use_bytes_ == memory_use_bytes) {
return;
}
last_sent_memory_visible_bytes_ = memory_visible_bytes;
last_sent_memory_visible_and_nearby_bytes_ = memory_visible_and_nearby_bytes;
last_sent_memory_use_bytes_ = memory_use_bytes;
renderer_->SendManagedMemoryStats(last_sent_memory_visible_bytes_,
last_sent_memory_visible_and_nearby_bytes_,
last_sent_memory_use_bytes_);
}
void LayerTreeHostImpl::AnimateScrollbars(base::TimeTicks time) {
AnimateScrollbarsRecursive(active_tree_->root_layer(), time);
}
void LayerTreeHostImpl::AnimateScrollbarsRecursive(LayerImpl* layer,
base::TimeTicks time) {
if (!layer)
return;
ScrollbarAnimationController* scrollbar_controller =
layer->scrollbar_animation_controller();
if (scrollbar_controller && scrollbar_controller->Animate(time)) {
TRACE_EVENT_INSTANT0(
"cc", "LayerTreeHostImpl::SetNeedsRedraw due to AnimateScrollbars",
TRACE_EVENT_SCOPE_THREAD);
client_->SetNeedsRedrawOnImplThread();
}
for (size_t i = 0; i < layer->children().size(); ++i)
AnimateScrollbarsRecursive(layer->children()[i], time);
}
void LayerTreeHostImpl::StartScrollbarAnimation(base::TimeTicks time) {
TRACE_EVENT0("cc", "LayerTreeHostImpl::StartScrollbarAnimation");
StartScrollbarAnimationRecursive(RootLayer(), time);
}
void LayerTreeHostImpl::StartScrollbarAnimationRecursive(LayerImpl* layer,
base::TimeTicks time) {
if (!layer)
return;
ScrollbarAnimationController* scrollbar_controller =
layer->scrollbar_animation_controller();
if (scrollbar_controller && scrollbar_controller->IsAnimating()) {
base::TimeDelta delay = scrollbar_controller->DelayBeforeStart(time);
if (delay > base::TimeDelta())
client_->RequestScrollbarAnimationOnImplThread(delay);
else if (scrollbar_controller->Animate(time))
client_->SetNeedsRedrawOnImplThread();
}
for (size_t i = 0; i < layer->children().size(); ++i)
StartScrollbarAnimationRecursive(layer->children()[i], time);
}
void LayerTreeHostImpl::SetTreePriority(TreePriority priority) {
if (!tile_manager_)
return;
GlobalStateThatImpactsTilePriority new_state(tile_manager_->GlobalState());
if (new_state.tree_priority == priority)
return;
new_state.tree_priority = priority;
tile_manager_->SetGlobalState(new_state);
}
void LayerTreeHostImpl::BeginNextFrame() {
current_frame_time_ = base::TimeTicks();
}
base::TimeTicks LayerTreeHostImpl::CurrentFrameTime() {
if (current_frame_time_.is_null())
current_frame_time_ = base::TimeTicks::Now();
return current_frame_time_;
}
scoped_ptr<base::Value> LayerTreeHostImpl::AsValue() const {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->Set("activation_state", ActivationStateAsValue().release());
state->Set("frame_state", FrameStateAsValue().release());
return state.PassAs<base::Value>();
}
scoped_ptr<base::Value> LayerTreeHostImpl::ActivationStateAsValue() const {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->SetString("lthi_id", base::StringPrintf("%p", this));
state->SetBoolean("visible_resources_ready",
pending_tree_->AreVisibleResourcesReady());
state->Set("tile_manager", tile_manager_->BasicStateAsValue().release());
return state.PassAs<base::Value>();
}
scoped_ptr<base::Value> LayerTreeHostImpl::FrameStateAsValue() const {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->SetString("lthi_id", base::StringPrintf("%p", this));
state->Set("device_viewport_size",
MathUtil::AsValue(device_viewport_size_).release());
if (tile_manager_)
state->Set("tiles", tile_manager_->AllTilesAsValue().release());
state->Set("active_tree", active_tree_->AsValue().release());
return state.PassAs<base::Value>();
}
// static
LayerImpl* LayerTreeHostImpl::GetNonCompositedContentLayerRecursive(
LayerImpl* layer) {
if (!layer)
return NULL;
if (layer->DrawsContent())
return layer;
for (LayerImpl::LayerList::const_iterator it = layer->children().begin();
it != layer->children().end(); ++it) {
LayerImpl* nccr = GetNonCompositedContentLayerRecursive(*it);
if (nccr)
return nccr;
}
return NULL;
}
skia::RefPtr<SkPicture> LayerTreeHostImpl::CapturePicture() {
LayerTreeImpl* tree =
pending_tree_ ? pending_tree_.get() : active_tree_.get();
LayerImpl* layer = GetNonCompositedContentLayerRecursive(tree->root_layer());
return layer ? layer->GetPicture() : skia::RefPtr<SkPicture>();
}
void LayerTreeHostImpl::SetDebugState(const LayerTreeDebugState& debug_state) {
if (debug_state_.continuous_painting != debug_state.continuous_painting)
paint_time_counter_->ClearHistory();
debug_state_ = debug_state;
}
} // namespace cc