| // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/string_util.h" |
| |
| #include "build/build_config.h" |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <math.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| #include <wchar.h> |
| #include <wctype.h> |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "base/basictypes.h" |
| #include "base/logging.h" |
| #include "base/singleton.h" |
| #include "base/third_party/dmg_fp/dmg_fp.h" |
| |
| namespace { |
| |
| // Force the singleton used by Empty[W]String[16] to be a unique type. This |
| // prevents other code that might accidentally use Singleton<string> from |
| // getting our internal one. |
| struct EmptyStrings { |
| EmptyStrings() {} |
| const std::string s; |
| const std::wstring ws; |
| const string16 s16; |
| }; |
| |
| // Used by ReplaceStringPlaceholders to track the position in the string of |
| // replaced parameters. |
| struct ReplacementOffset { |
| ReplacementOffset(int parameter, size_t offset) |
| : parameter(parameter), |
| offset(offset) {} |
| |
| // Index of the parameter. |
| int parameter; |
| |
| // Starting position in the string. |
| size_t offset; |
| }; |
| |
| static bool CompareParameter(const ReplacementOffset& elem1, |
| const ReplacementOffset& elem2) { |
| return elem1.parameter < elem2.parameter; |
| } |
| |
| // Generalized string-to-number conversion. |
| // |
| // StringToNumberTraits should provide: |
| // - a typedef for string_type, the STL string type used as input. |
| // - a typedef for value_type, the target numeric type. |
| // - a static function, convert_func, which dispatches to an appropriate |
| // strtol-like function and returns type value_type. |
| // - a static function, valid_func, which validates |input| and returns a bool |
| // indicating whether it is in proper form. This is used to check for |
| // conditions that convert_func tolerates but should result in |
| // StringToNumber returning false. For strtol-like funtions, valid_func |
| // should check for leading whitespace. |
| template<typename StringToNumberTraits> |
| bool StringToNumber(const typename StringToNumberTraits::string_type& input, |
| typename StringToNumberTraits::value_type* output) { |
| typedef StringToNumberTraits traits; |
| |
| errno = 0; // Thread-safe? It is on at least Mac, Linux, and Windows. |
| typename traits::string_type::value_type* endptr = NULL; |
| typename traits::value_type value = traits::convert_func(input.c_str(), |
| &endptr); |
| *output = value; |
| |
| // Cases to return false: |
| // - If errno is ERANGE, there was an overflow or underflow. |
| // - If the input string is empty, there was nothing to parse. |
| // - If endptr does not point to the end of the string, there are either |
| // characters remaining in the string after a parsed number, or the string |
| // does not begin with a parseable number. endptr is compared to the |
| // expected end given the string's stated length to correctly catch cases |
| // where the string contains embedded NUL characters. |
| // - valid_func determines that the input is not in preferred form. |
| return errno == 0 && |
| !input.empty() && |
| input.c_str() + input.length() == endptr && |
| traits::valid_func(input); |
| } |
| |
| static int strtoi(const char *nptr, char **endptr, int base) { |
| long res = strtol(nptr, endptr, base); |
| #if __LP64__ |
| // Long is 64-bits, we have to handle under/overflow ourselves. |
| if (res > kint32max) { |
| res = kint32max; |
| errno = ERANGE; |
| } else if (res < kint32min) { |
| res = kint32min; |
| errno = ERANGE; |
| } |
| #endif |
| return static_cast<int>(res); |
| } |
| |
| static unsigned int strtoui(const char *nptr, char **endptr, int base) { |
| unsigned long res = strtoul(nptr, endptr, base); |
| #if __LP64__ |
| // Long is 64-bits, we have to handle under/overflow ourselves. Test to see |
| // if the result can fit into 32-bits (as signed or unsigned). |
| if (static_cast<int>(static_cast<long>(res)) != static_cast<long>(res) && |
| static_cast<unsigned int>(res) != res) { |
| res = kuint32max; |
| errno = ERANGE; |
| } |
| #endif |
| return static_cast<unsigned int>(res); |
| } |
| |
| class StringToIntTraits { |
| public: |
| typedef std::string string_type; |
| typedef int value_type; |
| static const int kBase = 10; |
| static inline value_type convert_func(const string_type::value_type* str, |
| string_type::value_type** endptr) { |
| return strtoi(str, endptr, kBase); |
| } |
| static inline bool valid_func(const string_type& str) { |
| return !str.empty() && !isspace(str[0]); |
| } |
| }; |
| |
| class String16ToIntTraits { |
| public: |
| typedef string16 string_type; |
| typedef int value_type; |
| static const int kBase = 10; |
| static inline value_type convert_func(const string_type::value_type* str, |
| string_type::value_type** endptr) { |
| #if defined(WCHAR_T_IS_UTF16) |
| return wcstol(str, endptr, kBase); |
| #elif defined(WCHAR_T_IS_UTF32) |
| std::string ascii_string = UTF16ToASCII(string16(str)); |
| char* ascii_end = NULL; |
| value_type ret = strtoi(ascii_string.c_str(), &ascii_end, kBase); |
| if (ascii_string.c_str() + ascii_string.length() == ascii_end) { |
| *endptr = |
| const_cast<string_type::value_type*>(str) + ascii_string.length(); |
| } |
| return ret; |
| #endif |
| } |
| static inline bool valid_func(const string_type& str) { |
| return !str.empty() && !iswspace(str[0]); |
| } |
| }; |
| |
| class StringToInt64Traits { |
| public: |
| typedef std::string string_type; |
| typedef int64 value_type; |
| static const int kBase = 10; |
| static inline value_type convert_func(const string_type::value_type* str, |
| string_type::value_type** endptr) { |
| #ifdef OS_WIN |
| return _strtoi64(str, endptr, kBase); |
| #else // assume OS_POSIX |
| return strtoll(str, endptr, kBase); |
| #endif |
| } |
| static inline bool valid_func(const string_type& str) { |
| return !str.empty() && !isspace(str[0]); |
| } |
| }; |
| |
| class String16ToInt64Traits { |
| public: |
| typedef string16 string_type; |
| typedef int64 value_type; |
| static const int kBase = 10; |
| static inline value_type convert_func(const string_type::value_type* str, |
| string_type::value_type** endptr) { |
| #ifdef OS_WIN |
| return _wcstoi64(str, endptr, kBase); |
| #else // assume OS_POSIX |
| std::string ascii_string = UTF16ToASCII(string16(str)); |
| char* ascii_end = NULL; |
| value_type ret = strtoll(ascii_string.c_str(), &ascii_end, kBase); |
| if (ascii_string.c_str() + ascii_string.length() == ascii_end) { |
| *endptr = |
| const_cast<string_type::value_type*>(str) + ascii_string.length(); |
| } |
| return ret; |
| #endif |
| } |
| static inline bool valid_func(const string_type& str) { |
| return !str.empty() && !iswspace(str[0]); |
| } |
| }; |
| |
| // For the HexString variants, use the unsigned variants like strtoul for |
| // convert_func so that input like "0x80000000" doesn't result in an overflow. |
| |
| class HexStringToIntTraits { |
| public: |
| typedef std::string string_type; |
| typedef int value_type; |
| static const int kBase = 16; |
| static inline value_type convert_func(const string_type::value_type* str, |
| string_type::value_type** endptr) { |
| return strtoui(str, endptr, kBase); |
| } |
| static inline bool valid_func(const string_type& str) { |
| return !str.empty() && !isspace(str[0]); |
| } |
| }; |
| |
| class HexString16ToIntTraits { |
| public: |
| typedef string16 string_type; |
| typedef int value_type; |
| static const int kBase = 16; |
| static inline value_type convert_func(const string_type::value_type* str, |
| string_type::value_type** endptr) { |
| #if defined(WCHAR_T_IS_UTF16) |
| return wcstoul(str, endptr, kBase); |
| #elif defined(WCHAR_T_IS_UTF32) |
| std::string ascii_string = UTF16ToASCII(string16(str)); |
| char* ascii_end = NULL; |
| value_type ret = strtoui(ascii_string.c_str(), &ascii_end, kBase); |
| if (ascii_string.c_str() + ascii_string.length() == ascii_end) { |
| *endptr = |
| const_cast<string_type::value_type*>(str) + ascii_string.length(); |
| } |
| return ret; |
| #endif |
| } |
| static inline bool valid_func(const string_type& str) { |
| return !str.empty() && !iswspace(str[0]); |
| } |
| }; |
| |
| class StringToDoubleTraits { |
| public: |
| typedef std::string string_type; |
| typedef double value_type; |
| static inline value_type convert_func(const string_type::value_type* str, |
| string_type::value_type** endptr) { |
| return dmg_fp::strtod(str, endptr); |
| } |
| static inline bool valid_func(const string_type& str) { |
| return !str.empty() && !isspace(str[0]); |
| } |
| }; |
| |
| class String16ToDoubleTraits { |
| public: |
| typedef string16 string_type; |
| typedef double value_type; |
| static inline value_type convert_func(const string_type::value_type* str, |
| string_type::value_type** endptr) { |
| // Because dmg_fp::strtod does not like char16, we convert it to ASCII. |
| // In theory, this should be safe, but it's possible that 16-bit chars |
| // might get ignored by accident causing something to be parsed when it |
| // shouldn't. |
| std::string ascii_string = UTF16ToASCII(string16(str)); |
| char* ascii_end = NULL; |
| value_type ret = dmg_fp::strtod(ascii_string.c_str(), &ascii_end); |
| if (ascii_string.c_str() + ascii_string.length() == ascii_end) { |
| // Put endptr at end of input string, so it's not recognized as an error. |
| *endptr = |
| const_cast<string_type::value_type*>(str) + ascii_string.length(); |
| } |
| |
| return ret; |
| } |
| static inline bool valid_func(const string_type& str) { |
| return !str.empty() && !iswspace(str[0]); |
| } |
| }; |
| |
| } // namespace |
| |
| |
| namespace base { |
| |
| bool IsWprintfFormatPortable(const wchar_t* format) { |
| for (const wchar_t* position = format; *position != '\0'; ++position) { |
| |
| if (*position == '%') { |
| bool in_specification = true; |
| bool modifier_l = false; |
| while (in_specification) { |
| // Eat up characters until reaching a known specifier. |
| if (*++position == '\0') { |
| // The format string ended in the middle of a specification. Call |
| // it portable because no unportable specifications were found. The |
| // string is equally broken on all platforms. |
| return true; |
| } |
| |
| if (*position == 'l') { |
| // 'l' is the only thing that can save the 's' and 'c' specifiers. |
| modifier_l = true; |
| } else if (((*position == 's' || *position == 'c') && !modifier_l) || |
| *position == 'S' || *position == 'C' || *position == 'F' || |
| *position == 'D' || *position == 'O' || *position == 'U') { |
| // Not portable. |
| return false; |
| } |
| |
| if (wcschr(L"diouxXeEfgGaAcspn%", *position)) { |
| // Portable, keep scanning the rest of the format string. |
| in_specification = false; |
| } |
| } |
| } |
| |
| } |
| |
| return true; |
| } |
| |
| |
| } // namespace base |
| |
| |
| const std::string& EmptyString() { |
| return Singleton<EmptyStrings>::get()->s; |
| } |
| |
| const std::wstring& EmptyWString() { |
| return Singleton<EmptyStrings>::get()->ws; |
| } |
| |
| const string16& EmptyString16() { |
| return Singleton<EmptyStrings>::get()->s16; |
| } |
| |
| const wchar_t kWhitespaceWide[] = { |
| 0x0009, // <control-0009> to <control-000D> |
| 0x000A, |
| 0x000B, |
| 0x000C, |
| 0x000D, |
| 0x0020, // Space |
| 0x0085, // <control-0085> |
| 0x00A0, // No-Break Space |
| 0x1680, // Ogham Space Mark |
| 0x180E, // Mongolian Vowel Separator |
| 0x2000, // En Quad to Hair Space |
| 0x2001, |
| 0x2002, |
| 0x2003, |
| 0x2004, |
| 0x2005, |
| 0x2006, |
| 0x2007, |
| 0x2008, |
| 0x2009, |
| 0x200A, |
| 0x200C, // Zero Width Non-Joiner |
| 0x2028, // Line Separator |
| 0x2029, // Paragraph Separator |
| 0x202F, // Narrow No-Break Space |
| 0x205F, // Medium Mathematical Space |
| 0x3000, // Ideographic Space |
| 0 |
| }; |
| const char kWhitespaceASCII[] = { |
| 0x09, // <control-0009> to <control-000D> |
| 0x0A, |
| 0x0B, |
| 0x0C, |
| 0x0D, |
| 0x20, // Space |
| 0 |
| }; |
| |
| template<typename STR> |
| TrimPositions TrimStringT(const STR& input, |
| const typename STR::value_type trim_chars[], |
| TrimPositions positions, |
| STR* output) { |
| // Find the edges of leading/trailing whitespace as desired. |
| const typename STR::size_type last_char = input.length() - 1; |
| const typename STR::size_type first_good_char = (positions & TRIM_LEADING) ? |
| input.find_first_not_of(trim_chars) : 0; |
| const typename STR::size_type last_good_char = (positions & TRIM_TRAILING) ? |
| input.find_last_not_of(trim_chars) : last_char; |
| |
| // When the string was all whitespace, report that we stripped off whitespace |
| // from whichever position the caller was interested in. For empty input, we |
| // stripped no whitespace, but we still need to clear |output|. |
| if (input.empty() || |
| (first_good_char == STR::npos) || (last_good_char == STR::npos)) { |
| bool input_was_empty = input.empty(); // in case output == &input |
| output->clear(); |
| return input_was_empty ? TRIM_NONE : positions; |
| } |
| |
| // Trim the whitespace. |
| *output = |
| input.substr(first_good_char, last_good_char - first_good_char + 1); |
| |
| // Return where we trimmed from. |
| return static_cast<TrimPositions>( |
| ((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) | |
| ((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING)); |
| } |
| |
| bool TrimString(const std::wstring& input, |
| const wchar_t trim_chars[], |
| std::wstring* output) { |
| return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE; |
| } |
| |
| bool TrimString(const std::string& input, |
| const char trim_chars[], |
| std::string* output) { |
| return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE; |
| } |
| |
| TrimPositions TrimWhitespace(const std::wstring& input, |
| TrimPositions positions, |
| std::wstring* output) { |
| return TrimStringT(input, kWhitespaceWide, positions, output); |
| } |
| |
| TrimPositions TrimWhitespaceASCII(const std::string& input, |
| TrimPositions positions, |
| std::string* output) { |
| return TrimStringT(input, kWhitespaceASCII, positions, output); |
| } |
| |
| // This function is only for backward-compatibility. |
| // To be removed when all callers are updated. |
| TrimPositions TrimWhitespace(const std::string& input, |
| TrimPositions positions, |
| std::string* output) { |
| return TrimWhitespaceASCII(input, positions, output); |
| } |
| |
| template<typename STR> |
| STR CollapseWhitespaceT(const STR& text, |
| bool trim_sequences_with_line_breaks) { |
| STR result; |
| result.resize(text.size()); |
| |
| // Set flags to pretend we're already in a trimmed whitespace sequence, so we |
| // will trim any leading whitespace. |
| bool in_whitespace = true; |
| bool already_trimmed = true; |
| |
| int chars_written = 0; |
| for (typename STR::const_iterator i(text.begin()); i != text.end(); ++i) { |
| if (IsWhitespace(*i)) { |
| if (!in_whitespace) { |
| // Reduce all whitespace sequences to a single space. |
| in_whitespace = true; |
| result[chars_written++] = L' '; |
| } |
| if (trim_sequences_with_line_breaks && !already_trimmed && |
| ((*i == '\n') || (*i == '\r'))) { |
| // Whitespace sequences containing CR or LF are eliminated entirely. |
| already_trimmed = true; |
| --chars_written; |
| } |
| } else { |
| // Non-whitespace chracters are copied straight across. |
| in_whitespace = false; |
| already_trimmed = false; |
| result[chars_written++] = *i; |
| } |
| } |
| |
| if (in_whitespace && !already_trimmed) { |
| // Any trailing whitespace is eliminated. |
| --chars_written; |
| } |
| |
| result.resize(chars_written); |
| return result; |
| } |
| |
| std::wstring CollapseWhitespace(const std::wstring& text, |
| bool trim_sequences_with_line_breaks) { |
| return CollapseWhitespaceT(text, trim_sequences_with_line_breaks); |
| } |
| |
| std::string CollapseWhitespaceASCII(const std::string& text, |
| bool trim_sequences_with_line_breaks) { |
| return CollapseWhitespaceT(text, trim_sequences_with_line_breaks); |
| } |
| |
| std::string WideToASCII(const std::wstring& wide) { |
| DCHECK(IsStringASCII(wide)) << wide; |
| return std::string(wide.begin(), wide.end()); |
| } |
| |
| std::wstring ASCIIToWide(const base::StringPiece& ascii) { |
| DCHECK(IsStringASCII(ascii)) << ascii; |
| return std::wstring(ascii.begin(), ascii.end()); |
| } |
| |
| std::string UTF16ToASCII(const string16& utf16) { |
| DCHECK(IsStringASCII(utf16)) << utf16; |
| return std::string(utf16.begin(), utf16.end()); |
| } |
| |
| string16 ASCIIToUTF16(const base::StringPiece& ascii) { |
| DCHECK(IsStringASCII(ascii)) << ascii; |
| return string16(ascii.begin(), ascii.end()); |
| } |
| |
| // Latin1 is just the low range of Unicode, so we can copy directly to convert. |
| bool WideToLatin1(const std::wstring& wide, std::string* latin1) { |
| std::string output; |
| output.resize(wide.size()); |
| latin1->clear(); |
| for (size_t i = 0; i < wide.size(); i++) { |
| if (wide[i] > 255) |
| return false; |
| output[i] = static_cast<char>(wide[i]); |
| } |
| latin1->swap(output); |
| return true; |
| } |
| |
| bool IsString8Bit(const std::wstring& str) { |
| for (size_t i = 0; i < str.length(); i++) { |
| if (str[i] > 255) |
| return false; |
| } |
| return true; |
| } |
| |
| template<class STR> |
| static bool DoIsStringASCII(const STR& str) { |
| for (size_t i = 0; i < str.length(); i++) { |
| typename ToUnsigned<typename STR::value_type>::Unsigned c = str[i]; |
| if (c > 0x7F) |
| return false; |
| } |
| return true; |
| } |
| |
| bool IsStringASCII(const std::wstring& str) { |
| return DoIsStringASCII(str); |
| } |
| |
| #if !defined(WCHAR_T_IS_UTF16) |
| bool IsStringASCII(const string16& str) { |
| return DoIsStringASCII(str); |
| } |
| #endif |
| |
| bool IsStringASCII(const base::StringPiece& str) { |
| return DoIsStringASCII(str); |
| } |
| |
| // Helper functions that determine whether the given character begins a |
| // UTF-8 sequence of bytes with the given length. A character satisfies |
| // "IsInUTF8Sequence" if it is anything but the first byte in a multi-byte |
| // character. |
| static inline bool IsBegin2ByteUTF8(int c) { |
| return (c & 0xE0) == 0xC0; |
| } |
| static inline bool IsBegin3ByteUTF8(int c) { |
| return (c & 0xF0) == 0xE0; |
| } |
| static inline bool IsBegin4ByteUTF8(int c) { |
| return (c & 0xF8) == 0xF0; |
| } |
| static inline bool IsInUTF8Sequence(int c) { |
| return (c & 0xC0) == 0x80; |
| } |
| |
| // This function was copied from Mozilla, with modifications. The original code |
| // was 'IsUTF8' in xpcom/string/src/nsReadableUtils.cpp. The license block for |
| // this function is: |
| // This function subject to the Mozilla Public License Version |
| // 1.1 (the "License"); you may not use this code except in compliance with |
| // the License. You may obtain a copy of the License at |
| // http://www.mozilla.org/MPL/ |
| // |
| // Software distributed under the License is distributed on an "AS IS" basis, |
| // WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
| // for the specific language governing rights and limitations under the |
| // License. |
| // |
| // The Original Code is mozilla.org code. |
| // |
| // The Initial Developer of the Original Code is |
| // Netscape Communications Corporation. |
| // Portions created by the Initial Developer are Copyright (C) 2000 |
| // the Initial Developer. All Rights Reserved. |
| // |
| // Contributor(s): |
| // Scott Collins <[email protected]> (original author) |
| // |
| // This is a template so that it can be run on wide and 8-bit strings. We want |
| // to run it on wide strings when we have input that we think may have |
| // originally been UTF-8, but has been converted to wide characters because |
| // that's what we (and Windows) use internally. |
| template<typename CHAR> |
| static bool IsStringUTF8T(const CHAR* str, int length) { |
| bool overlong = false; |
| bool surrogate = false; |
| bool nonchar = false; |
| |
| // overlong byte upper bound |
| typename ToUnsigned<CHAR>::Unsigned olupper = 0; |
| |
| // surrogate byte lower bound |
| typename ToUnsigned<CHAR>::Unsigned slower = 0; |
| |
| // incremented when inside a multi-byte char to indicate how many bytes |
| // are left in the sequence |
| int positions_left = 0; |
| |
| for (int i = 0; i < length; i++) { |
| // This whole function assume an unsigned value so force its conversion to |
| // an unsigned value. |
| typename ToUnsigned<CHAR>::Unsigned c = str[i]; |
| if (c < 0x80) |
| continue; // ASCII |
| |
| if (c <= 0xC1) { |
| // [80-BF] where not expected, [C0-C1] for overlong |
| return false; |
| } else if (IsBegin2ByteUTF8(c)) { |
| positions_left = 1; |
| } else if (IsBegin3ByteUTF8(c)) { |
| positions_left = 2; |
| if (c == 0xE0) { |
| // to exclude E0[80-9F][80-BF] |
| overlong = true; |
| olupper = 0x9F; |
| } else if (c == 0xED) { |
| // ED[A0-BF][80-BF]: surrogate codepoint |
| surrogate = true; |
| slower = 0xA0; |
| } else if (c == 0xEF) { |
| // EF BF [BE-BF] : non-character |
| // TODO(jungshik): EF B7 [90-AF] should be checked as well. |
| nonchar = true; |
| } |
| } else if (c <= 0xF4) { |
| positions_left = 3; |
| nonchar = true; |
| if (c == 0xF0) { |
| // to exclude F0[80-8F][80-BF]{2} |
| overlong = true; |
| olupper = 0x8F; |
| } else if (c == 0xF4) { |
| // to exclude F4[90-BF][80-BF] |
| // actually not surrogates but codepoints beyond 0x10FFFF |
| surrogate = true; |
| slower = 0x90; |
| } |
| } else { |
| return false; |
| } |
| |
| // eat the rest of this multi-byte character |
| while (positions_left) { |
| positions_left--; |
| i++; |
| c = str[i]; |
| if (!c) |
| return false; // end of string but not end of character sequence |
| |
| // non-character : EF BF [BE-BF] or F[0-7] [89AB]F BF [BE-BF] |
| if (nonchar && ((!positions_left && c < 0xBE) || |
| (positions_left == 1 && c != 0xBF) || |
| (positions_left == 2 && 0x0F != (0x0F & c) ))) { |
| nonchar = false; |
| } |
| if (!IsInUTF8Sequence(c) || (overlong && c <= olupper) || |
| (surrogate && slower <= c) || (nonchar && !positions_left) ) { |
| return false; |
| } |
| overlong = surrogate = false; |
| } |
| } |
| return true; |
| } |
| |
| bool IsStringUTF8(const std::string& str) { |
| return IsStringUTF8T(str.data(), str.length()); |
| } |
| |
| bool IsStringWideUTF8(const std::wstring& str) { |
| return IsStringUTF8T(str.data(), str.length()); |
| } |
| |
| template<typename Iter> |
| static inline bool DoLowerCaseEqualsASCII(Iter a_begin, |
| Iter a_end, |
| const char* b) { |
| for (Iter it = a_begin; it != a_end; ++it, ++b) { |
| if (!*b || ToLowerASCII(*it) != *b) |
| return false; |
| } |
| return *b == 0; |
| } |
| |
| // Front-ends for LowerCaseEqualsASCII. |
| bool LowerCaseEqualsASCII(const std::string& a, const char* b) { |
| return DoLowerCaseEqualsASCII(a.begin(), a.end(), b); |
| } |
| |
| bool LowerCaseEqualsASCII(const std::wstring& a, const char* b) { |
| return DoLowerCaseEqualsASCII(a.begin(), a.end(), b); |
| } |
| |
| bool LowerCaseEqualsASCII(std::string::const_iterator a_begin, |
| std::string::const_iterator a_end, |
| const char* b) { |
| return DoLowerCaseEqualsASCII(a_begin, a_end, b); |
| } |
| |
| bool LowerCaseEqualsASCII(std::wstring::const_iterator a_begin, |
| std::wstring::const_iterator a_end, |
| const char* b) { |
| return DoLowerCaseEqualsASCII(a_begin, a_end, b); |
| } |
| bool LowerCaseEqualsASCII(const char* a_begin, |
| const char* a_end, |
| const char* b) { |
| return DoLowerCaseEqualsASCII(a_begin, a_end, b); |
| } |
| bool LowerCaseEqualsASCII(const wchar_t* a_begin, |
| const wchar_t* a_end, |
| const char* b) { |
| return DoLowerCaseEqualsASCII(a_begin, a_end, b); |
| } |
| |
| bool EqualsASCII(const string16& a, const base::StringPiece& b) { |
| if (a.length() != b.length()) |
| return false; |
| return std::equal(b.begin(), b.end(), a.begin()); |
| } |
| |
| bool StartsWithASCII(const std::string& str, |
| const std::string& search, |
| bool case_sensitive) { |
| if (case_sensitive) |
| return str.compare(0, search.length(), search) == 0; |
| else |
| return base::strncasecmp(str.c_str(), search.c_str(), search.length()) == 0; |
| } |
| |
| bool StartsWith(const std::wstring& str, |
| const std::wstring& search, |
| bool case_sensitive) { |
| if (case_sensitive) |
| return str.compare(0, search.length(), search) == 0; |
| else { |
| if (search.size() > str.size()) |
| return false; |
| return std::equal(search.begin(), search.end(), str.begin(), |
| CaseInsensitiveCompare<wchar_t>()); |
| } |
| } |
| |
| bool EndsWith(const std::wstring& str, |
| const std::wstring& search, |
| bool case_sensitive) { |
| std::wstring::size_type str_length = str.length(); |
| std::wstring::size_type search_length = search.length(); |
| if (search_length > str_length) |
| return false; |
| if (case_sensitive) { |
| return str.compare(str_length - search_length, search_length, search) == 0; |
| } else { |
| return std::equal(search.begin(), search.end(), |
| str.begin() + (str_length - search_length), |
| CaseInsensitiveCompare<wchar_t>()); |
| } |
| } |
| |
| DataUnits GetByteDisplayUnits(int64 bytes) { |
| // The byte thresholds at which we display amounts. A byte count is displayed |
| // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1]. |
| // This must match the DataUnits enum. |
| static const int64 kUnitThresholds[] = { |
| 0, // DATA_UNITS_BYTE, |
| 3*1024, // DATA_UNITS_KILOBYTE, |
| 2*1024*1024, // DATA_UNITS_MEGABYTE, |
| 1024*1024*1024 // DATA_UNITS_GIGABYTE, |
| }; |
| |
| if (bytes < 0) { |
| NOTREACHED() << "Negative bytes value"; |
| return DATA_UNITS_BYTE; |
| } |
| |
| int unit_index = arraysize(kUnitThresholds); |
| while (--unit_index > 0) { |
| if (bytes >= kUnitThresholds[unit_index]) |
| break; |
| } |
| |
| DCHECK(unit_index >= DATA_UNITS_BYTE && unit_index <= DATA_UNITS_GIGABYTE); |
| return DataUnits(unit_index); |
| } |
| |
| // TODO(mpcomplete): deal with locale |
| // Byte suffixes. This must match the DataUnits enum. |
| static const wchar_t* const kByteStrings[] = { |
| L"B", |
| L"kB", |
| L"MB", |
| L"GB" |
| }; |
| |
| static const wchar_t* const kSpeedStrings[] = { |
| L"B/s", |
| L"kB/s", |
| L"MB/s", |
| L"GB/s" |
| }; |
| |
| std::wstring FormatBytesInternal(int64 bytes, |
| DataUnits units, |
| bool show_units, |
| const wchar_t* const* suffix) { |
| if (bytes < 0) { |
| NOTREACHED() << "Negative bytes value"; |
| return std::wstring(); |
| } |
| |
| DCHECK(units >= DATA_UNITS_BYTE && units <= DATA_UNITS_GIGABYTE); |
| |
| // Put the quantity in the right units. |
| double unit_amount = static_cast<double>(bytes); |
| for (int i = 0; i < units; ++i) |
| unit_amount /= 1024.0; |
| |
| wchar_t tmp[64]; |
| // If the first decimal digit is 0, don't show it. |
| double int_part; |
| double fractional_part = modf(unit_amount, &int_part); |
| modf(fractional_part * 10, &int_part); |
| if (int_part == 0) { |
| base::swprintf(tmp, arraysize(tmp), |
| L"%lld", static_cast<int64>(unit_amount)); |
| } else { |
| base::swprintf(tmp, arraysize(tmp), L"%.1lf", unit_amount); |
| } |
| |
| std::wstring ret(tmp); |
| if (show_units) { |
| ret += L" "; |
| ret += suffix[units]; |
| } |
| |
| return ret; |
| } |
| |
| std::wstring FormatBytes(int64 bytes, DataUnits units, bool show_units) { |
| return FormatBytesInternal(bytes, units, show_units, kByteStrings); |
| } |
| |
| std::wstring FormatSpeed(int64 bytes, DataUnits units, bool show_units) { |
| return FormatBytesInternal(bytes, units, show_units, kSpeedStrings); |
| } |
| |
| template<class StringType> |
| void DoReplaceSubstringsAfterOffset(StringType* str, |
| typename StringType::size_type start_offset, |
| const StringType& find_this, |
| const StringType& replace_with, |
| bool replace_all) { |
| if ((start_offset == StringType::npos) || (start_offset >= str->length())) |
| return; |
| |
| DCHECK(!find_this.empty()); |
| for (typename StringType::size_type offs(str->find(find_this, start_offset)); |
| offs != StringType::npos; offs = str->find(find_this, offs)) { |
| str->replace(offs, find_this.length(), replace_with); |
| offs += replace_with.length(); |
| |
| if (!replace_all) |
| break; |
| } |
| } |
| |
| void ReplaceFirstSubstringAfterOffset(string16* str, |
| string16::size_type start_offset, |
| const string16& find_this, |
| const string16& replace_with) { |
| DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with, |
| false); // replace first instance |
| } |
| |
| void ReplaceFirstSubstringAfterOffset(std::string* str, |
| std::string::size_type start_offset, |
| const std::string& find_this, |
| const std::string& replace_with) { |
| DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with, |
| false); // replace first instance |
| } |
| |
| void ReplaceSubstringsAfterOffset(string16* str, |
| string16::size_type start_offset, |
| const string16& find_this, |
| const string16& replace_with) { |
| DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with, |
| true); // replace all instances |
| } |
| |
| void ReplaceSubstringsAfterOffset(std::string* str, |
| std::string::size_type start_offset, |
| const std::string& find_this, |
| const std::string& replace_with) { |
| DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with, |
| true); // replace all instances |
| } |
| |
| // Overloaded wrappers around vsnprintf and vswprintf. The buf_size parameter |
| // is the size of the buffer. These return the number of characters in the |
| // formatted string excluding the NUL terminator. If the buffer is not |
| // large enough to accommodate the formatted string without truncation, they |
| // return the number of characters that would be in the fully-formatted string |
| // (vsnprintf, and vswprintf on Windows), or -1 (vswprintf on POSIX platforms). |
| inline int vsnprintfT(char* buffer, |
| size_t buf_size, |
| const char* format, |
| va_list argptr) { |
| return base::vsnprintf(buffer, buf_size, format, argptr); |
| } |
| |
| inline int vsnprintfT(wchar_t* buffer, |
| size_t buf_size, |
| const wchar_t* format, |
| va_list argptr) { |
| return base::vswprintf(buffer, buf_size, format, argptr); |
| } |
| |
| // Templatized backend for StringPrintF/StringAppendF. This does not finalize |
| // the va_list, the caller is expected to do that. |
| template <class StringType> |
| static void StringAppendVT(StringType* dst, |
| const typename StringType::value_type* format, |
| va_list ap) { |
| // First try with a small fixed size buffer. |
| // This buffer size should be kept in sync with StringUtilTest.GrowBoundary |
| // and StringUtilTest.StringPrintfBounds. |
| typename StringType::value_type stack_buf[1024]; |
| |
| va_list ap_copy; |
| GG_VA_COPY(ap_copy, ap); |
| |
| #if !defined(OS_WIN) |
| errno = 0; |
| #endif |
| int result = vsnprintfT(stack_buf, arraysize(stack_buf), format, ap_copy); |
| va_end(ap_copy); |
| |
| if (result >= 0 && result < static_cast<int>(arraysize(stack_buf))) { |
| // It fit. |
| dst->append(stack_buf, result); |
| return; |
| } |
| |
| // Repeatedly increase buffer size until it fits. |
| int mem_length = arraysize(stack_buf); |
| while (true) { |
| if (result < 0) { |
| #if !defined(OS_WIN) |
| // On Windows, vsnprintfT always returns the number of characters in a |
| // fully-formatted string, so if we reach this point, something else is |
| // wrong and no amount of buffer-doubling is going to fix it. |
| if (errno != 0 && errno != EOVERFLOW) |
| #endif |
| { |
| // If an error other than overflow occurred, it's never going to work. |
| DLOG(WARNING) << "Unable to printf the requested string due to error."; |
| return; |
| } |
| // Try doubling the buffer size. |
| mem_length *= 2; |
| } else { |
| // We need exactly "result + 1" characters. |
| mem_length = result + 1; |
| } |
| |
| if (mem_length > 32 * 1024 * 1024) { |
| // That should be plenty, don't try anything larger. This protects |
| // against huge allocations when using vsnprintfT implementations that |
| // return -1 for reasons other than overflow without setting errno. |
| DLOG(WARNING) << "Unable to printf the requested string due to size."; |
| return; |
| } |
| |
| std::vector<typename StringType::value_type> mem_buf(mem_length); |
| |
| // NOTE: You can only use a va_list once. Since we're in a while loop, we |
| // need to make a new copy each time so we don't use up the original. |
| GG_VA_COPY(ap_copy, ap); |
| result = vsnprintfT(&mem_buf[0], mem_length, format, ap_copy); |
| va_end(ap_copy); |
| |
| if ((result >= 0) && (result < mem_length)) { |
| // It fit. |
| dst->append(&mem_buf[0], result); |
| return; |
| } |
| } |
| } |
| |
| namespace { |
| |
| template <typename STR, typename INT, typename UINT, bool NEG> |
| struct IntToStringT { |
| |
| // This is to avoid a compiler warning about unary minus on unsigned type. |
| // For example, say you had the following code: |
| // template <typename INT> |
| // INT abs(INT value) { return value < 0 ? -value : value; } |
| // Even though if INT is unsigned, it's impossible for value < 0, so the |
| // unary minus will never be taken, the compiler will still generate a |
| // warning. We do a little specialization dance... |
| template <typename INT2, typename UINT2, bool NEG2> |
| struct ToUnsignedT { }; |
| |
| template <typename INT2, typename UINT2> |
| struct ToUnsignedT<INT2, UINT2, false> { |
| static UINT2 ToUnsigned(INT2 value) { |
| return static_cast<UINT2>(value); |
| } |
| }; |
| |
| template <typename INT2, typename UINT2> |
| struct ToUnsignedT<INT2, UINT2, true> { |
| static UINT2 ToUnsigned(INT2 value) { |
| return static_cast<UINT2>(value < 0 ? -value : value); |
| } |
| }; |
| |
| static STR IntToString(INT value) { |
| // log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4. |
| // So round up to allocate 3 output characters per byte, plus 1 for '-'. |
| const int kOutputBufSize = 3 * sizeof(INT) + 1; |
| |
| // Allocate the whole string right away, we will right back to front, and |
| // then return the substr of what we ended up using. |
| STR outbuf(kOutputBufSize, 0); |
| |
| bool is_neg = value < 0; |
| // Even though is_neg will never be true when INT is parameterized as |
| // unsigned, even the presence of the unary operation causes a warning. |
| UINT res = ToUnsignedT<INT, UINT, NEG>::ToUnsigned(value); |
| |
| for (typename STR::iterator it = outbuf.end();;) { |
| --it; |
| DCHECK(it != outbuf.begin()); |
| *it = static_cast<typename STR::value_type>((res % 10) + '0'); |
| res /= 10; |
| |
| // We're done.. |
| if (res == 0) { |
| if (is_neg) { |
| --it; |
| DCHECK(it != outbuf.begin()); |
| *it = static_cast<typename STR::value_type>('-'); |
| } |
| return STR(it, outbuf.end()); |
| } |
| } |
| NOTREACHED(); |
| return STR(); |
| } |
| }; |
| |
| } |
| |
| std::string IntToString(int value) { |
| return IntToStringT<std::string, int, unsigned int, true>:: |
| IntToString(value); |
| } |
| std::wstring IntToWString(int value) { |
| return IntToStringT<std::wstring, int, unsigned int, true>:: |
| IntToString(value); |
| } |
| string16 IntToString16(int value) { |
| return IntToStringT<string16, int, unsigned int, true>:: |
| IntToString(value); |
| } |
| std::string UintToString(unsigned int value) { |
| return IntToStringT<std::string, unsigned int, unsigned int, false>:: |
| IntToString(value); |
| } |
| std::wstring UintToWString(unsigned int value) { |
| return IntToStringT<std::wstring, unsigned int, unsigned int, false>:: |
| IntToString(value); |
| } |
| string16 UintToString16(unsigned int value) { |
| return IntToStringT<string16, unsigned int, unsigned int, false>:: |
| IntToString(value); |
| } |
| std::string Int64ToString(int64 value) { |
| return IntToStringT<std::string, int64, uint64, true>:: |
| IntToString(value); |
| } |
| std::wstring Int64ToWString(int64 value) { |
| return IntToStringT<std::wstring, int64, uint64, true>:: |
| IntToString(value); |
| } |
| std::string Uint64ToString(uint64 value) { |
| return IntToStringT<std::string, uint64, uint64, false>:: |
| IntToString(value); |
| } |
| std::wstring Uint64ToWString(uint64 value) { |
| return IntToStringT<std::wstring, uint64, uint64, false>:: |
| IntToString(value); |
| } |
| |
| std::string DoubleToString(double value) { |
| // According to g_fmt.cc, it is sufficient to declare a buffer of size 32. |
| char buffer[32]; |
| dmg_fp::g_fmt(buffer, value); |
| return std::string(buffer); |
| } |
| |
| std::wstring DoubleToWString(double value) { |
| return ASCIIToWide(DoubleToString(value)); |
| } |
| |
| void StringAppendV(std::string* dst, const char* format, va_list ap) { |
| StringAppendVT(dst, format, ap); |
| } |
| |
| void StringAppendV(std::wstring* dst, const wchar_t* format, va_list ap) { |
| StringAppendVT(dst, format, ap); |
| } |
| |
| std::string StringPrintf(const char* format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| std::string result; |
| StringAppendV(&result, format, ap); |
| va_end(ap); |
| return result; |
| } |
| |
| std::wstring StringPrintf(const wchar_t* format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| std::wstring result; |
| StringAppendV(&result, format, ap); |
| va_end(ap); |
| return result; |
| } |
| |
| const std::string& SStringPrintf(std::string* dst, const char* format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| dst->clear(); |
| StringAppendV(dst, format, ap); |
| va_end(ap); |
| return *dst; |
| } |
| |
| const std::wstring& SStringPrintf(std::wstring* dst, |
| const wchar_t* format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| dst->clear(); |
| StringAppendV(dst, format, ap); |
| va_end(ap); |
| return *dst; |
| } |
| |
| void StringAppendF(std::string* dst, const char* format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| StringAppendV(dst, format, ap); |
| va_end(ap); |
| } |
| |
| void StringAppendF(std::wstring* dst, const wchar_t* format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| StringAppendV(dst, format, ap); |
| va_end(ap); |
| } |
| |
| template<typename STR> |
| static void SplitStringT(const STR& str, |
| const typename STR::value_type s, |
| bool trim_whitespace, |
| std::vector<STR>* r) { |
| size_t last = 0; |
| size_t i; |
| size_t c = str.size(); |
| for (i = 0; i <= c; ++i) { |
| if (i == c || str[i] == s) { |
| size_t len = i - last; |
| STR tmp = str.substr(last, len); |
| if (trim_whitespace) { |
| STR t_tmp; |
| TrimWhitespace(tmp, TRIM_ALL, &t_tmp); |
| r->push_back(t_tmp); |
| } else { |
| r->push_back(tmp); |
| } |
| last = i + 1; |
| } |
| } |
| } |
| |
| void SplitString(const std::wstring& str, |
| wchar_t s, |
| std::vector<std::wstring>* r) { |
| SplitStringT(str, s, true, r); |
| } |
| |
| void SplitString(const std::string& str, |
| char s, |
| std::vector<std::string>* r) { |
| SplitStringT(str, s, true, r); |
| } |
| |
| void SplitStringDontTrim(const std::wstring& str, |
| wchar_t s, |
| std::vector<std::wstring>* r) { |
| SplitStringT(str, s, false, r); |
| } |
| |
| void SplitStringDontTrim(const std::string& str, |
| char s, |
| std::vector<std::string>* r) { |
| SplitStringT(str, s, false, r); |
| } |
| |
| template<typename STR> |
| static STR JoinStringT(const std::vector<STR>& parts, |
| typename STR::value_type sep) { |
| if (parts.size() == 0) return STR(); |
| |
| STR result(parts[0]); |
| typename std::vector<STR>::const_iterator iter = parts.begin(); |
| ++iter; |
| |
| for (; iter != parts.end(); ++iter) { |
| result += sep; |
| result += *iter; |
| } |
| |
| return result; |
| } |
| |
| std::string JoinString(const std::vector<std::string>& parts, char sep) { |
| return JoinStringT(parts, sep); |
| } |
| |
| std::wstring JoinString(const std::vector<std::wstring>& parts, wchar_t sep) { |
| return JoinStringT(parts, sep); |
| } |
| |
| template<typename STR> |
| void SplitStringAlongWhitespaceT(const STR& str, std::vector<STR>* result) { |
| const size_t length = str.length(); |
| if (!length) |
| return; |
| |
| bool last_was_ws = false; |
| size_t last_non_ws_start = 0; |
| for (size_t i = 0; i < length; ++i) { |
| switch(str[i]) { |
| // HTML 5 defines whitespace as: space, tab, LF, line tab, FF, or CR. |
| case L' ': |
| case L'\t': |
| case L'\xA': |
| case L'\xB': |
| case L'\xC': |
| case L'\xD': |
| if (!last_was_ws) { |
| if (i > 0) { |
| result->push_back( |
| str.substr(last_non_ws_start, i - last_non_ws_start)); |
| } |
| last_was_ws = true; |
| } |
| break; |
| |
| default: // Not a space character. |
| if (last_was_ws) { |
| last_was_ws = false; |
| last_non_ws_start = i; |
| } |
| break; |
| } |
| } |
| if (!last_was_ws) { |
| result->push_back( |
| str.substr(last_non_ws_start, length - last_non_ws_start)); |
| } |
| } |
| |
| void SplitStringAlongWhitespace(const std::wstring& str, |
| std::vector<std::wstring>* result) { |
| SplitStringAlongWhitespaceT(str, result); |
| } |
| |
| void SplitStringAlongWhitespace(const std::string& str, |
| std::vector<std::string>* result) { |
| SplitStringAlongWhitespaceT(str, result); |
| } |
| |
| template<class StringType> |
| StringType DoReplaceStringPlaceholders(const StringType& format_string, |
| const std::vector<StringType>& subst, |
| std::vector<size_t>* offsets) { |
| int substitutions = subst.size(); |
| DCHECK(substitutions < 10); |
| |
| int sub_length = 0; |
| for (typename std::vector<StringType>::const_iterator iter = subst.begin(); |
| iter != subst.end(); |
| ++iter) { |
| sub_length += (*iter).length(); |
| } |
| |
| StringType formatted; |
| formatted.reserve(format_string.length() + sub_length); |
| |
| std::vector<ReplacementOffset> r_offsets; |
| for (typename StringType::const_iterator i = format_string.begin(); |
| i != format_string.end(); ++i) { |
| if ('$' == *i) { |
| if (i + 1 != format_string.end()) { |
| ++i; |
| DCHECK('$' == *i || '1' <= *i) << "Invalid placeholder: " << *i; |
| if ('$' == *i) { |
| formatted.push_back('$'); |
| } else { |
| int index = *i - '1'; |
| if (offsets) { |
| ReplacementOffset r_offset(index, |
| static_cast<int>(formatted.size())); |
| r_offsets.insert(std::lower_bound(r_offsets.begin(), |
| r_offsets.end(), r_offset, |
| &CompareParameter), |
| r_offset); |
| } |
| if (index < substitutions) |
| formatted.append(subst.at(index)); |
| } |
| } |
| } else { |
| formatted.push_back(*i); |
| } |
| } |
| if (offsets) { |
| for (std::vector<ReplacementOffset>::const_iterator i = r_offsets.begin(); |
| i != r_offsets.end(); ++i) { |
| offsets->push_back(i->offset); |
| } |
| } |
| return formatted; |
| } |
| |
| string16 ReplaceStringPlaceholders(const string16& format_string, |
| const std::vector<string16>& subst, |
| std::vector<size_t>* offsets) { |
| return DoReplaceStringPlaceholders(format_string, subst, offsets); |
| } |
| |
| std::string ReplaceStringPlaceholders(const std::string& format_string, |
| const std::vector<std::string>& subst, |
| std::vector<size_t>* offsets) { |
| return DoReplaceStringPlaceholders(format_string, subst, offsets); |
| } |
| |
| string16 ReplaceStringPlaceholders(const string16& format_string, |
| const string16& a, |
| size_t* offset) { |
| std::vector<size_t> offsets; |
| std::vector<string16> subst; |
| subst.push_back(a); |
| string16 result = ReplaceStringPlaceholders(format_string, subst, &offsets); |
| |
| DCHECK(offsets.size() == 1); |
| if (offset) { |
| *offset = offsets[0]; |
| } |
| return result; |
| } |
| |
| template <class CHAR> |
| static bool IsWildcard(CHAR character) { |
| return character == '*' || character == '?'; |
| } |
| |
| // Move the strings pointers to the point where they start to differ. |
| template <class CHAR> |
| static void EatSameChars(const CHAR** pattern, const CHAR** string) { |
| bool escaped = false; |
| while (**pattern && **string) { |
| if (!escaped && IsWildcard(**pattern)) { |
| // We don't want to match wildcard here, except if it's escaped. |
| return; |
| } |
| |
| // Check if the escapement char is found. If so, skip it and move to the |
| // next character. |
| if (!escaped && **pattern == L'\\') { |
| escaped = true; |
| (*pattern)++; |
| continue; |
| } |
| |
| // Check if the chars match, if so, increment the ptrs. |
| if (**pattern == **string) { |
| (*pattern)++; |
| (*string)++; |
| } else { |
| // Uh ho, it did not match, we are done. If the last char was an |
| // escapement, that means that it was an error to advance the ptr here, |
| // let's put it back where it was. This also mean that the MatchPattern |
| // function will return false because if we can't match an escape char |
| // here, then no one will. |
| if (escaped) { |
| (*pattern)--; |
| } |
| return; |
| } |
| |
| escaped = false; |
| } |
| } |
| |
| template <class CHAR> |
| static void EatWildcard(const CHAR** pattern) { |
| while(**pattern) { |
| if (!IsWildcard(**pattern)) |
| return; |
| (*pattern)++; |
| } |
| } |
| |
| template <class CHAR> |
| static bool MatchPatternT(const CHAR* eval, const CHAR* pattern) { |
| // Eat all the matching chars. |
| EatSameChars(&pattern, &eval); |
| |
| // If the string is empty, then the pattern must be empty too, or contains |
| // only wildcards. |
| if (*eval == 0) { |
| EatWildcard(&pattern); |
| if (*pattern) |
| return false; |
| return true; |
| } |
| |
| // Pattern is empty but not string, this is not a match. |
| if (*pattern == 0) |
| return false; |
| |
| // If this is a question mark, then we need to compare the rest with |
| // the current string or the string with one character eaten. |
| if (pattern[0] == '?') { |
| if (MatchPatternT(eval, pattern + 1) || |
| MatchPatternT(eval + 1, pattern + 1)) |
| return true; |
| } |
| |
| // This is a *, try to match all the possible substrings with the remainder |
| // of the pattern. |
| if (pattern[0] == '*') { |
| while (*eval) { |
| if (MatchPatternT(eval, pattern + 1)) |
| return true; |
| eval++; |
| } |
| |
| // We reached the end of the string, let see if the pattern contains only |
| // wildcards. |
| if (*eval == 0) { |
| EatWildcard(&pattern); |
| if (*pattern) |
| return false; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool MatchPattern(const std::wstring& eval, const std::wstring& pattern) { |
| return MatchPatternT(eval.c_str(), pattern.c_str()); |
| } |
| |
| bool MatchPattern(const std::string& eval, const std::string& pattern) { |
| return MatchPatternT(eval.c_str(), pattern.c_str()); |
| } |
| |
| bool StringToInt(const std::string& input, int* output) { |
| return StringToNumber<StringToIntTraits>(input, output); |
| } |
| |
| bool StringToInt(const string16& input, int* output) { |
| return StringToNumber<String16ToIntTraits>(input, output); |
| } |
| |
| bool StringToInt64(const std::string& input, int64* output) { |
| return StringToNumber<StringToInt64Traits>(input, output); |
| } |
| |
| bool StringToInt64(const string16& input, int64* output) { |
| return StringToNumber<String16ToInt64Traits>(input, output); |
| } |
| |
| bool HexStringToInt(const std::string& input, int* output) { |
| return StringToNumber<HexStringToIntTraits>(input, output); |
| } |
| |
| bool HexStringToInt(const string16& input, int* output) { |
| return StringToNumber<HexString16ToIntTraits>(input, output); |
| } |
| |
| namespace { |
| |
| template<class CHAR> |
| bool HexDigitToIntT(const CHAR digit, uint8* val) { |
| if (digit >= '0' && digit <= '9') |
| *val = digit - '0'; |
| else if (digit >= 'a' && digit <= 'f') |
| *val = 10 + digit - 'a'; |
| else if (digit >= 'A' && digit <= 'F') |
| *val = 10 + digit - 'A'; |
| else |
| return false; |
| return true; |
| } |
| |
| template<typename STR> |
| bool HexStringToBytesT(const STR& input, std::vector<uint8>* output) { |
| DCHECK(output->size() == 0); |
| int count = input.size(); |
| if (count == 0 || (count % 2) != 0) |
| return false; |
| for (int i = 0; i < count / 2; ++i) { |
| uint8 msb = 0; // most significant 4 bits |
| uint8 lsb = 0; // least significant 4 bits |
| if (!HexDigitToIntT(input[i * 2], &msb) || |
| !HexDigitToIntT(input[i * 2 + 1], &lsb)) |
| return false; |
| output->push_back((msb << 4) | lsb); |
| } |
| return true; |
| } |
| |
| } // namespace |
| |
| bool HexStringToBytes(const std::string& input, std::vector<uint8>* output) { |
| return HexStringToBytesT(input, output); |
| } |
| |
| bool HexStringToBytes(const string16& input, std::vector<uint8>* output) { |
| return HexStringToBytesT(input, output); |
| } |
| |
| int StringToInt(const std::string& value) { |
| int result; |
| StringToInt(value, &result); |
| return result; |
| } |
| |
| int StringToInt(const string16& value) { |
| int result; |
| StringToInt(value, &result); |
| return result; |
| } |
| |
| int64 StringToInt64(const std::string& value) { |
| int64 result; |
| StringToInt64(value, &result); |
| return result; |
| } |
| |
| int64 StringToInt64(const string16& value) { |
| int64 result; |
| StringToInt64(value, &result); |
| return result; |
| } |
| |
| int HexStringToInt(const std::string& value) { |
| int result; |
| HexStringToInt(value, &result); |
| return result; |
| } |
| |
| int HexStringToInt(const string16& value) { |
| int result; |
| HexStringToInt(value, &result); |
| return result; |
| } |
| |
| bool StringToDouble(const std::string& input, double* output) { |
| return StringToNumber<StringToDoubleTraits>(input, output); |
| } |
| |
| bool StringToDouble(const string16& input, double* output) { |
| return StringToNumber<String16ToDoubleTraits>(input, output); |
| } |
| |
| double StringToDouble(const std::string& value) { |
| double result; |
| StringToDouble(value, &result); |
| return result; |
| } |
| |
| double StringToDouble(const string16& value) { |
| double result; |
| StringToDouble(value, &result); |
| return result; |
| } |
| |
| // The following code is compatible with the OpenBSD lcpy interface. See: |
| // http://www.gratisoft.us/todd/papers/strlcpy.html |
| // ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c |
| |
| namespace { |
| |
| template <typename CHAR> |
| size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) { |
| for (size_t i = 0; i < dst_size; ++i) { |
| if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL. |
| return i; |
| } |
| |
| // We were left off at dst_size. We over copied 1 byte. Null terminate. |
| if (dst_size != 0) |
| dst[dst_size - 1] = 0; |
| |
| // Count the rest of the |src|, and return it's length in characters. |
| while (src[dst_size]) ++dst_size; |
| return dst_size; |
| } |
| |
| } // namespace |
| |
| size_t base::strlcpy(char* dst, const char* src, size_t dst_size) { |
| return lcpyT<char>(dst, src, dst_size); |
| } |
| size_t base::wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) { |
| return lcpyT<wchar_t>(dst, src, dst_size); |
| } |
| |
| bool ElideString(const std::wstring& input, int max_len, std::wstring* output) { |
| DCHECK(max_len >= 0); |
| if (static_cast<int>(input.length()) <= max_len) { |
| output->assign(input); |
| return false; |
| } |
| |
| switch (max_len) { |
| case 0: |
| output->clear(); |
| break; |
| case 1: |
| output->assign(input.substr(0, 1)); |
| break; |
| case 2: |
| output->assign(input.substr(0, 2)); |
| break; |
| case 3: |
| output->assign(input.substr(0, 1) + L"." + |
| input.substr(input.length() - 1)); |
| break; |
| case 4: |
| output->assign(input.substr(0, 1) + L".." + |
| input.substr(input.length() - 1)); |
| break; |
| default: { |
| int rstr_len = (max_len - 3) / 2; |
| int lstr_len = rstr_len + ((max_len - 3) % 2); |
| output->assign(input.substr(0, lstr_len) + L"..." + |
| input.substr(input.length() - rstr_len)); |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| std::string HexEncode(const void* bytes, size_t size) { |
| static const char kHexChars[] = "0123456789ABCDEF"; |
| |
| // Each input byte creates two output hex characters. |
| std::string ret(size * 2, '\0'); |
| |
| for (size_t i = 0; i < size; ++i) { |
| char b = reinterpret_cast<const char*>(bytes)[i]; |
| ret[(i * 2)] = kHexChars[(b >> 4) & 0xf]; |
| ret[(i * 2) + 1] = kHexChars[b & 0xf]; |
| } |
| return ret; |
| } |