initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 1 | // Copyright 2008, Google Inc. |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are |
| 6 | // met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright |
| 9 | // notice, this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above |
| 11 | // copyright notice, this list of conditions and the following disclaimer |
| 12 | // in the documentation and/or other materials provided with the |
| 13 | // distribution. |
| 14 | // * Neither the name of Google Inc. nor the names of its |
| 15 | // contributors may be used to endorse or promote products derived from |
| 16 | // this software without specific prior written permission. |
| 17 | // |
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | |
| 30 | #include <algorithm> |
| 31 | |
| 32 | #include "base/message_loop.h" |
| 33 | |
| 34 | #include "base/logging.h" |
| 35 | #include "base/string_util.h" |
| 36 | #include "base/thread_local_storage.h" |
| 37 | #include "base/win_util.h" |
| 38 | |
| 39 | // a TLS index to the message loop for the current thread |
| 40 | // Note that if we start doing complex stuff in other static initializers |
| 41 | // this could cause problems. |
| 42 | /*static*/ TLSSlot MessageLoop::tls_index_ = ThreadLocalStorage::Alloc(); |
| 43 | |
| 44 | //------------------------------------------------------------------------------ |
| 45 | |
| 46 | static const wchar_t kWndClass[] = L"Chrome_MessageLoopWindow"; |
| 47 | |
| 48 | // Windows Message numbers handled by WindowMessageProc. |
| 49 | |
| 50 | // Message sent to get an additional time slice for pumping (processing) another |
| 51 | // task (a series of such messages creates a continuous task pump). |
| 52 | static const int kMsgPumpATask = WM_USER + 1; |
| 53 | |
| 54 | // Message sent by Quit() to cause our main message pump to terminate as soon as |
| 55 | // all pending task and message queues have been emptied. |
| 56 | static const int kMsgQuit = WM_USER + 2; |
| 57 | |
| 58 | // Logical events for Histogram profiling. Run with -message-loop-histogrammer |
| 59 | // to get an accounting of messages and actions taken on each thread. |
| 60 | static const int kTaskRunEvent = WM_USER + 16; // 0x411 |
| 61 | static const int kSleepingApcEvent = WM_USER + 17; // 0x411 |
| 62 | static const int kPollingSignalEvent = WM_USER + 18; // 0x412 |
| 63 | static const int kSleepingSignalEvent = WM_USER + 19; // 0x413 |
| 64 | static const int kTimerEvent = WM_USER + 20; // 0x414 |
| 65 | |
| 66 | // Provide range of message IDs for use in histogramming and debug display. |
| 67 | static const int kLeastNonZeroMessageId = 1; |
| 68 | static const int kMaxMessageId = 1099; |
| 69 | static const int kNumberOfDistinctMessagesDisplayed = 1100; |
| 70 | |
| 71 | //------------------------------------------------------------------------------ |
| 72 | |
| 73 | static LRESULT CALLBACK MessageLoopWndProc(HWND hwnd, UINT message, |
| 74 | WPARAM wparam, LPARAM lparam) { |
| 75 | switch (message) { |
| 76 | case kMsgQuit: |
| 77 | case kMsgPumpATask: { |
| 78 | UINT_PTR message_loop_id = static_cast<UINT_PTR>(wparam); |
| 79 | MessageLoop* current_message_loop = |
| 80 | reinterpret_cast<MessageLoop*>(message_loop_id); |
| 81 | DCHECK(MessageLoop::current() == current_message_loop); |
| 82 | return current_message_loop->MessageWndProc(hwnd, message, wparam, |
| 83 | lparam); |
| 84 | } |
| 85 | } |
| 86 | return ::DefWindowProc(hwnd, message, wparam, lparam); |
| 87 | } |
| 88 | |
| 89 | #ifndef NDEBUG |
| 90 | // Force exercise of polling model. |
| 91 | #define CHROME_MAXIMUM_WAIT_OBJECTS 8 |
| 92 | #else |
| 93 | #define CHROME_MAXIMUM_WAIT_OBJECTS MAXIMUM_WAIT_OBJECTS |
| 94 | #endif |
| 95 | |
| 96 | //------------------------------------------------------------------------------ |
| 97 | // A strategy of -1 uses the default case. All strategies are selected as |
| 98 | // positive integers. |
| 99 | // static |
| 100 | int MessageLoop::strategy_selector_ = -1; |
| 101 | |
| 102 | // static |
| 103 | void MessageLoop::SetStrategy(int strategy) { |
| 104 | DCHECK(-1 == strategy_selector_); |
| 105 | strategy_selector_ = strategy; |
| 106 | } |
| 107 | |
| 108 | //------------------------------------------------------------------------------ |
| 109 | // Upon a SEH exception in this thread, it restores the original unhandled |
| 110 | // exception filter. |
| 111 | static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) { |
| 112 | ::SetUnhandledExceptionFilter(old_filter); |
| 113 | return EXCEPTION_CONTINUE_SEARCH; |
| 114 | } |
| 115 | |
| 116 | // Retrieves a pointer to the current unhandled exception filter. There |
| 117 | // is no standalone getter method. |
| 118 | static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() { |
| 119 | LPTOP_LEVEL_EXCEPTION_FILTER top_filter = NULL; |
| 120 | top_filter = ::SetUnhandledExceptionFilter(0); |
| 121 | ::SetUnhandledExceptionFilter(top_filter); |
| 122 | return top_filter; |
| 123 | } |
| 124 | |
| 125 | //------------------------------------------------------------------------------ |
| 126 | |
| 127 | MessageLoop::MessageLoop() : message_hwnd_(NULL), |
| 128 | exception_restoration_(false), |
| 129 | nestable_tasks_allowed_(true), |
| 130 | dispatcher_(NULL), |
| 131 | quit_received_(false), |
| 132 | quit_now_(false), |
| 133 | task_pump_message_pending_(false), |
| 134 | run_depth_(0) { |
| 135 | DCHECK(tls_index_) << "static initializer failed"; |
| 136 | DCHECK(!current()) << "should only have one message loop per thread"; |
| 137 | ThreadLocalStorage::Set(tls_index_, this); |
| 138 | InitMessageWnd(); |
| 139 | } |
| 140 | |
| 141 | MessageLoop::~MessageLoop() { |
| 142 | DCHECK(this == current()); |
| 143 | ThreadLocalStorage::Set(tls_index_, NULL); |
| 144 | DCHECK(!dispatcher_); |
| 145 | DCHECK(!quit_received_ && !quit_now_); |
| 146 | // Most tasks that have not been Run() are deleted in the |timer_manager_| |
| 147 | // destructor after we remove our tls index. We delete the tasks in our |
| 148 | // queues here so their destuction is similar to the tasks in the |
| 149 | // |timer_manager_|. |
| 150 | DeletePendingTasks(); |
| 151 | ReloadWorkQueue(); |
| 152 | DeletePendingTasks(); |
| 153 | } |
| 154 | |
| 155 | void MessageLoop::SetThreadName(const std::string& thread_name) { |
| 156 | DCHECK(thread_name_.empty()); |
| 157 | thread_name_ = thread_name; |
| 158 | StartHistogrammer(); |
| 159 | } |
| 160 | |
| 161 | void MessageLoop::AddObserver(Observer *obs) { |
| 162 | DCHECK(this == current()); |
| 163 | observers_.AddObserver(obs); |
| 164 | } |
| 165 | |
| 166 | void MessageLoop::RemoveObserver(Observer *obs) { |
| 167 | DCHECK(this == current()); |
| 168 | observers_.RemoveObserver(obs); |
| 169 | } |
| 170 | |
| 171 | void MessageLoop::Run() { |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 172 | Run(NULL); |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 173 | } |
| 174 | |
| 175 | // Runs the loop in two different SEH modes: |
| 176 | // enable_SEH_restoration_ = false : any unhandled exception goes to the last |
| 177 | // one that calls SetUnhandledExceptionFilter(). |
| 178 | // enable_SEH_restoration_ = true : any unhandled exception goes to the filter |
| 179 | // that was existed before the loop was run. |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 180 | void MessageLoop::Run(Dispatcher* dispatcher) { |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 181 | if (exception_restoration_) { |
| 182 | LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter(); |
| 183 | __try { |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 184 | RunInternal(dispatcher); |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 185 | } __except(SEHFilter(current_filter)) { |
| 186 | } |
| 187 | } else { |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 188 | RunInternal(dispatcher); |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 189 | } |
| 190 | } |
| 191 | |
| 192 | //------------------------------------------------------------------------------ |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 193 | // Methods supporting various strategies for servicing the numerous queues. |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 194 | // IF this was just a simple PeekMessage() loop (servicing all passible work |
| 195 | // queues), then Windows would try to achieve the following order according to |
| 196 | // MSDN documentation about PeekMessage with no filter): |
| 197 | // * Sent messages |
| 198 | // * Posted messages |
| 199 | // * Sent messages (again) |
| 200 | // * WM_PAINT messages |
| 201 | // * WM_TIMER messages |
| 202 | // |
| 203 | // Summary: none of the above classes is starved, and sent messages has twice |
| 204 | // the chance of being processed (i.e., reduced service time). |
| 205 | |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 206 | void MessageLoop::RunInternal(Dispatcher* dispatcher) { |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 207 | // Preserve ability to be called recursively. |
| 208 | ScopedStateSave save(this); // State is restored on exit. |
| 209 | dispatcher_ = dispatcher; |
| 210 | StartHistogrammer(); |
| 211 | |
| 212 | DCHECK(this == current()); |
| 213 | // |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 214 | // Process all pending messages and signaled objects. |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 215 | // |
| 216 | // Flush these queues before exiting due to a kMsgQuit or else we risk not |
| 217 | // shutting down properly as some operations may depend on further event |
| 218 | // processing. (Note: some tests may use quit_now_ to exit more swiftly, |
| 219 | // and leave messages pending, so don't assert the above fact). |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 220 | // |
| 221 | |
| 222 | RunTraditional(); |
| 223 | DCHECK(quit_received_ || quit_now_); |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 224 | } |
| 225 | |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 226 | typedef bool (MessageLoop::*ProcessingMethod)(); |
| 227 | typedef ProcessingMethod ProcessingMethods[]; |
| 228 | |
| 229 | void MessageLoop::RunTraditional() { |
| 230 | run_depth_++; |
| 231 | for (;;) { |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 232 | // If we do any work, we may create more messages etc., and more work |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 233 | // may possibly be waiting in another task group. In addition, each method |
| 234 | // call here typically limits work to 1 (worst case 2) items. As a result, |
| 235 | // when we (for example) ProcessNextWindowsMessage() there is a good chance |
| 236 | // there are still more waiting (same thing for ProcessNextDeferredTask(), |
| 237 | // which responds to only one signaled object.). On the other hand, when |
| 238 | // any of these methods return having done no work, then it is pretty |
| 239 | // unlikely that calling them again quickly will find any work to do. |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 240 | // Finally, if they all say they had no work, then it is a good time to |
| 241 | // consider sleeping (waiting) for more work. |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 242 | bool more_work_is_plausible = false; |
| 243 | more_work_is_plausible |= ProcessNextWindowsMessage(); |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 244 | if (quit_now_) |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 245 | break; |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 246 | |
| 247 | more_work_is_plausible |= ProcessNextDeferredTask(); |
| 248 | more_work_is_plausible |= ProcessNextObject(); |
| 249 | if (more_work_is_plausible) |
| 250 | continue; |
| 251 | |
| 252 | if (quit_received_) |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 253 | break; |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 254 | |
| 255 | // Run any timer that is ready to run. It may create messages etc. |
| 256 | if (ProcessSomeTimers()) |
| 257 | continue; |
| 258 | |
| 259 | // We run delayed non nestable tasks only after all nestable tasks have |
| 260 | // run, to preserve FIFO ordering. |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 261 | more_work_is_plausible = ProcessNextDelayedNonNestableTask(); |
| 262 | if (more_work_is_plausible) |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 263 | continue; |
| 264 | |
| 265 | // We service APCs in WaitForWork, without returning. |
| 266 | WaitForWork(); // Wait (sleep) until we have work to do again. |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 267 | } |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 268 | |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 269 | run_depth_--; |
| 270 | } |
[email protected] | 7622bd0 | 2008-07-30 06:58:56 | [diff] [blame] | 271 | |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 272 | bool MessageLoop::ProcessNextDelayedNonNestableTask() { |
| 273 | if (run_depth_ != 1) |
| 274 | return false; |
| 275 | |
| 276 | if (delayed_non_nestable_queue_.Empty()) |
| 277 | return false; |
| 278 | |
| 279 | RunTask(delayed_non_nestable_queue_.Pop()); |
| 280 | return true; |
| 281 | } |
| 282 | |
[email protected] | b8f2fe5d | 2008-07-30 07:50:53 | [diff] [blame^] | 283 | //------------------------------------------------------------------------------ |
| 284 | // Wrapper functions for use in above message loop frameworks. |
| 285 | |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 286 | bool MessageLoop::ProcessNextDeferredTask() { |
| 287 | ReloadWorkQueue(); |
| 288 | return QueueOrRunTask(NULL); |
| 289 | } |
| 290 | |
| 291 | bool MessageLoop::ProcessSomeTimers() { |
| 292 | return timer_manager_.RunSomePendingTimers(); |
| 293 | } |
| 294 | |
| 295 | //------------------------------------------------------------------------------ |
| 296 | |
| 297 | void MessageLoop::Quit() { |
| 298 | EnsureMessageGetsPosted(kMsgQuit); |
| 299 | } |
| 300 | |
| 301 | bool MessageLoop::WatchObject(HANDLE object, Watcher* watcher) { |
| 302 | DCHECK(this == current()); |
| 303 | DCHECK(object); |
| 304 | DCHECK_NE(object, INVALID_HANDLE_VALUE); |
| 305 | |
| 306 | std::vector<HANDLE>::iterator it = find(objects_.begin(), objects_.end(), |
| 307 | object); |
| 308 | if (watcher) { |
| 309 | if (it == objects_.end()) { |
| 310 | static size_t warning_multiple = 1; |
| 311 | if (objects_.size() >= warning_multiple * MAXIMUM_WAIT_OBJECTS / 2) { |
| 312 | LOG(INFO) << "More than " << warning_multiple * MAXIMUM_WAIT_OBJECTS / 2 |
| 313 | << " objects being watched"; |
| 314 | // This DCHECK() is an artificial limitation, meant to warn us if we |
| 315 | // start creating too many objects. It can safely be raised to a higher |
| 316 | // level, and the program is designed to handle much larger values. |
| 317 | // Before raising this limit, make sure that there is a very good reason |
| 318 | // (in your debug testing) to be watching this many objects. |
| 319 | DCHECK(2 <= warning_multiple); |
| 320 | ++warning_multiple; |
| 321 | } |
| 322 | objects_.push_back(object); |
| 323 | watchers_.push_back(watcher); |
| 324 | } else { |
| 325 | watchers_[it - objects_.begin()] = watcher; |
| 326 | } |
| 327 | } else if (it != objects_.end()) { |
| 328 | std::vector<HANDLE>::difference_type index = it - objects_.begin(); |
| 329 | objects_.erase(it); |
| 330 | watchers_.erase(watchers_.begin() + index); |
| 331 | } |
| 332 | return true; |
| 333 | } |
| 334 | |
| 335 | // Possibly called on a background thread! |
| 336 | void MessageLoop::PostDelayedTask(const tracked_objects::Location& from_here, |
| 337 | Task* task, int delay_ms) { |
| 338 | task->SetBirthPlace(from_here); |
| 339 | DCHECK(delay_ms >= 0); |
| 340 | DCHECK(!task->is_owned_by_message_loop()); |
| 341 | task->set_posted_task_delay(delay_ms); |
| 342 | DCHECK(task->is_owned_by_message_loop()); |
| 343 | PostTaskInternal(task); |
| 344 | } |
| 345 | |
| 346 | void MessageLoop::PostTaskInternal(Task* task) { |
| 347 | // Warning: Don't try to short-circuit, and handle this thread's tasks more |
| 348 | // directly, as it could starve handling of foreign threads. Put every task |
| 349 | // into this queue. |
| 350 | |
| 351 | // Local stack variables to use IF we need to process after releasing locks. |
| 352 | HWND message_hwnd; |
| 353 | { |
| 354 | AutoLock lock1(incoming_queue_lock_); |
| 355 | bool was_empty = incoming_queue_.Empty(); |
| 356 | incoming_queue_.Push(task); |
| 357 | if (!was_empty) |
| 358 | return; // Someone else should have started the sub-pump. |
| 359 | |
| 360 | // We may have to start the sub-pump. |
| 361 | AutoLock lock2(task_pump_message_lock_); |
| 362 | if (task_pump_message_pending_) |
| 363 | return; // Someone else continued the pumping. |
| 364 | task_pump_message_pending_ = true; // We'll send one. |
| 365 | message_hwnd = message_hwnd_; |
| 366 | } // Release both locks. |
| 367 | // We may have just posted a kMsgQuit, and so this instance may now destroyed! |
| 368 | // Do not invoke non-static methods, or members in any way! |
| 369 | |
| 370 | // PostMessage may fail, as the hwnd may have vanished due to kMsgQuit. |
| 371 | PostMessage(message_hwnd, kMsgPumpATask, reinterpret_cast<UINT_PTR>(this), 0); |
| 372 | } |
| 373 | |
| 374 | void MessageLoop::InitMessageWnd() { |
| 375 | HINSTANCE hinst = GetModuleHandle(NULL); |
| 376 | |
| 377 | WNDCLASSEX wc = {0}; |
| 378 | wc.cbSize = sizeof(wc); |
| 379 | wc.lpfnWndProc = MessageLoopWndProc; |
| 380 | wc.hInstance = hinst; |
| 381 | wc.lpszClassName = kWndClass; |
| 382 | RegisterClassEx(&wc); |
| 383 | |
| 384 | message_hwnd_ = CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, |
| 385 | hinst, 0); |
| 386 | DCHECK(message_hwnd_); |
| 387 | } |
| 388 | |
| 389 | LRESULT MessageLoop::MessageWndProc(HWND hwnd, UINT message, |
| 390 | WPARAM wparam, LPARAM lparam) { |
| 391 | DCHECK(hwnd == message_hwnd_); |
| 392 | switch (message) { |
| 393 | case kMsgPumpATask: { |
| 394 | ProcessPumpReplacementMessage(); // Avoid starving paint and timer. |
| 395 | if (!nestable_tasks_allowed_) |
| 396 | return 0; |
| 397 | PumpATaskDuringWndProc(); |
| 398 | return 0; |
| 399 | } |
| 400 | |
| 401 | case kMsgQuit: { |
initial.commit | d7cae12 | 2008-07-26 21:49:38 | [diff] [blame] | 402 | quit_received_ = true; |
| 403 | return 0; |
| 404 | } |
| 405 | } |
| 406 | return ::DefWindowProc(hwnd, message, wparam, lparam); |
| 407 | } |
| 408 | |
| 409 | void MessageLoop::WillProcessMessage(const MSG& msg) { |
| 410 | FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg)); |
| 411 | } |
| 412 | |
| 413 | void MessageLoop::DidProcessMessage(const MSG& msg) { |
| 414 | FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg)); |
| 415 | } |
| 416 | |
| 417 | void MessageLoop::SetNestableTasksAllowed(bool allowed) { |
| 418 | nestable_tasks_allowed_ = allowed; |
| 419 | if (!nestable_tasks_allowed_) |
| 420 | return; |
| 421 | // Start the native pump if we are not already pumping. |
| 422 | EnsurePumpATaskWasPosted(); |
| 423 | } |
| 424 | |
| 425 | bool MessageLoop::NestableTasksAllowed() const { |
| 426 | return nestable_tasks_allowed_; |
| 427 | } |
| 428 | |
| 429 | |
| 430 | bool MessageLoop::ProcessNextWindowsMessage() { |
| 431 | MSG msg; |
| 432 | if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { |
| 433 | return ProcessMessageHelper(msg); |
| 434 | } |
| 435 | return false; |
| 436 | } |
| 437 | |
| 438 | bool MessageLoop::ProcessMessageHelper(const MSG& msg) { |
| 439 | HistogramEvent(msg.message); |
| 440 | |
| 441 | if (WM_QUIT == msg.message) { |
| 442 | // Repost the QUIT message so that it will be retrieved by the primary |
| 443 | // GetMessage() loop. |
| 444 | quit_now_ = true; |
| 445 | PostQuitMessage(static_cast<int>(msg.wParam)); |
| 446 | return false; |
| 447 | } |
| 448 | |
| 449 | // While running our main message pump, we discard kMsgPumpATask messages. |
| 450 | if (msg.message == kMsgPumpATask && msg.hwnd == message_hwnd_) |
| 451 | return ProcessPumpReplacementMessage(); |
| 452 | |
| 453 | WillProcessMessage(msg); |
| 454 | |
| 455 | if (dispatcher_) { |
| 456 | if (!dispatcher_->Dispatch(msg)) |
| 457 | quit_now_ = true; |
| 458 | } else { |
| 459 | TranslateMessage(&msg); |
| 460 | DispatchMessage(&msg); |
| 461 | } |
| 462 | |
| 463 | DidProcessMessage(msg); |
| 464 | return true; |
| 465 | } |
| 466 | |
| 467 | bool MessageLoop::ProcessPumpReplacementMessage() { |
| 468 | MSG msg; |
| 469 | bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)); |
| 470 | DCHECK(!have_message || kMsgPumpATask != msg.message |
| 471 | || msg.hwnd != message_hwnd_); |
| 472 | { |
| 473 | // Since we discarded a kMsgPumpATask message, we must update the flag. |
| 474 | AutoLock lock(task_pump_message_lock_); |
| 475 | DCHECK(task_pump_message_pending_); |
| 476 | task_pump_message_pending_ = false; |
| 477 | } |
| 478 | return have_message && ProcessMessageHelper(msg); |
| 479 | } |
| 480 | |
| 481 | // Create a mini-message-pump to force immediate processing of only Windows |
| 482 | // WM_PAINT messages. |
| 483 | void MessageLoop::PumpOutPendingPaintMessages() { |
| 484 | // Don't provide an infinite loop, but do enough peeking to get the job done. |
| 485 | // Actual common max is 4 peeks, but we'll be a little safe here. |
| 486 | const int kMaxPeekCount = 20; |
| 487 | int peek_count; |
| 488 | bool win2k(true); |
| 489 | if (win_util::GetWinVersion() > win_util::WINVERSION_2000) |
| 490 | win2k = false; |
| 491 | for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { |
| 492 | MSG msg; |
| 493 | if (win2k) { |
| 494 | if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE)) |
| 495 | break; |
| 496 | } else { |
| 497 | if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) |
| 498 | break; |
| 499 | } |
| 500 | ProcessMessageHelper(msg); |
| 501 | if (quit_now_ ) // Handle WM_QUIT. |
| 502 | break; |
| 503 | } |
| 504 | // Histogram what was really being used, to help to adjust kMaxPeekCount. |
| 505 | DHISTOGRAM_COUNTS(L"Loop.PumpOutPendingPaintMessages Peeks", peek_count); |
| 506 | } |
| 507 | |
| 508 | //------------------------------------------------------------------------------ |
| 509 | // If we handle more than the OS limit on the number of objects that can be |
| 510 | // waited for, we'll need to poll (sequencing through subsets of the objects |
| 511 | // that can be passed in a single OS wait call). The following is the polling |
| 512 | // interval used in that (unusual) case. (I don't have a lot of justifcation |
| 513 | // for the specific value, but it needed to be short enough that it would not |
| 514 | // add a lot of latency, and long enough that we wouldn't thrash the CPU for no |
| 515 | // reason... especially considering the silly user probably has a million tabs |
| 516 | // open, etc.) |
| 517 | static const int kMultipleWaitPollingInterval = 20; |
| 518 | |
| 519 | void MessageLoop::WaitForWork() { |
| 520 | bool original_can_run = nestable_tasks_allowed_; |
| 521 | int wait_flags = original_can_run ? MWMO_ALERTABLE | MWMO_INPUTAVAILABLE |
| 522 | : MWMO_INPUTAVAILABLE; |
| 523 | |
| 524 | bool use_polling = false; // Poll if too many objects for one OS Wait call. |
| 525 | for (;;) { |
| 526 | // Do initialization here, in case APC modifies object list. |
| 527 | size_t total_objs = original_can_run ? objects_.size() : 0; |
| 528 | |
| 529 | int delay; |
| 530 | size_t polling_index = 0; // The first unprocessed object index. |
| 531 | do { |
| 532 | size_t objs_len = |
| 533 | (polling_index < total_objs) ? total_objs - polling_index : 0; |
| 534 | if (objs_len >= CHROME_MAXIMUM_WAIT_OBJECTS) { |
| 535 | objs_len = CHROME_MAXIMUM_WAIT_OBJECTS - 1; |
| 536 | use_polling = true; |
| 537 | } |
| 538 | HANDLE* objs = objs_len ? polling_index + &objects_.front() : NULL; |
| 539 | |
| 540 | // Only wait up to the time needed by the timer manager to fire the next |
| 541 | // set of timers. |
| 542 | delay = timer_manager_.GetCurrentDelay(); |
| 543 | if (use_polling && delay > kMultipleWaitPollingInterval) |
| 544 | delay = kMultipleWaitPollingInterval; |
| 545 | if (delay < 0) // Negative value means no timers waiting. |
| 546 | delay = INFINITE; |
| 547 | |
| 548 | DWORD result; |
| 549 | result = MsgWaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs, |
| 550 | delay, QS_ALLINPUT, wait_flags); |
| 551 | |
| 552 | if (WAIT_IO_COMPLETION == result) { |
| 553 | HistogramEvent(kSleepingApcEvent); |
| 554 | // We'll loop here when we service an APC. At it currently stands, |
| 555 | // *ONLY* the IO thread uses *any* APCs, so this should have no impact |
| 556 | // on the UI thread. |
| 557 | break; // Break to outer loop, and waitforwork() again. |
| 558 | } |
| 559 | |
| 560 | // Use unsigned type to simplify range detection; |
| 561 | size_t signaled_index = result - WAIT_OBJECT_0; |
| 562 | if (signaled_index < objs_len) { |
| 563 | SignalWatcher(polling_index + signaled_index); |
| 564 | HistogramEvent(kSleepingSignalEvent); |
| 565 | return; // We serviced a signaled object. |
| 566 | } |
| 567 | |
| 568 | if (objs_len == signaled_index) |
| 569 | return; // A WM_* message is available. |
| 570 | |
| 571 | DCHECK_NE(WAIT_FAILED, result) << GetLastError(); |
| 572 | |
| 573 | DCHECK(!objs || result == WAIT_TIMEOUT); |
| 574 | if (!use_polling) |
| 575 | return; |
| 576 | polling_index += objs_len; |
| 577 | } while (polling_index < total_objs); |
| 578 | // For compatibility, we didn't return sooner. This made us do *some* wait |
| 579 | // call(s) before returning. This will probably change in next rev. |
| 580 | if (!delay || !timer_manager_.GetCurrentDelay()) |
| 581 | return; // No work done, but timer is ready to fire. |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | // Note: MsgWaitMultipleObjects() can't take a nil list, and that is why I had |
| 586 | // to use SleepEx() to handle APCs when there were no objects. |
| 587 | bool MessageLoop::ProcessNextObject() { |
| 588 | if (!nestable_tasks_allowed_) |
| 589 | return false; |
| 590 | |
| 591 | size_t total_objs = objects_.size(); |
| 592 | if (!total_objs) { |
| 593 | return false; |
| 594 | } |
| 595 | |
| 596 | size_t polling_index = 0; // The first unprocessed object index. |
| 597 | do { |
| 598 | DCHECK(polling_index < total_objs); |
| 599 | size_t objs_len = total_objs - polling_index; |
| 600 | if (objs_len >= CHROME_MAXIMUM_WAIT_OBJECTS) |
| 601 | objs_len = CHROME_MAXIMUM_WAIT_OBJECTS - 1; |
| 602 | HANDLE* objs = polling_index + &objects_.front(); |
| 603 | |
| 604 | // Identify 1 pending object, or allow an IO APC to be completed. |
| 605 | DWORD result = WaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs, |
| 606 | FALSE, // 1 signal is sufficient. |
| 607 | 0, // Wait 0ms. |
| 608 | false); // Not alertable (no APC). |
| 609 | |
| 610 | // Use unsigned type to simplify range detection; |
| 611 | size_t signaled_index = result - WAIT_OBJECT_0; |
| 612 | if (signaled_index < objs_len) { |
| 613 | SignalWatcher(polling_index + signaled_index); |
| 614 | HistogramEvent(kPollingSignalEvent); |
| 615 | return true; // We serviced a signaled object. |
| 616 | } |
| 617 | |
| 618 | // If an handle is invalid, it will be WAIT_FAILED. |
| 619 | DCHECK_EQ(WAIT_TIMEOUT, result) << GetLastError(); |
| 620 | polling_index += objs_len; |
| 621 | } while (polling_index < total_objs); |
| 622 | return false; // We serviced nothing. |
| 623 | } |
| 624 | |
| 625 | bool MessageLoop::SignalWatcher(size_t object_index) { |
| 626 | BeforeTaskRunSetup(); |
| 627 | DCHECK(objects_.size() > object_index); |
| 628 | // On reception of OnObjectSignaled() to a Watcher object, it may call |
| 629 | // WatchObject(). watchers_ and objects_ will be modified. This is |
| 630 | // expected, so don't be afraid if, while tracing a OnObjectSignaled() |
| 631 | // function, the corresponding watchers_[result] is inexistant. |
| 632 | watchers_[object_index]->OnObjectSignaled(objects_[object_index]); |
| 633 | // Signaled objects tend to be removed from the watch list, and then added |
| 634 | // back (appended). As a result, they move to the end of the objects_ array, |
| 635 | // and this should make their service "fair" (no HANDLEs should be starved). |
| 636 | AfterTaskRunRestore(); |
| 637 | return true; |
| 638 | } |
| 639 | |
| 640 | bool MessageLoop::RunTimerTask(Timer* timer) { |
| 641 | HistogramEvent(kTimerEvent); |
| 642 | Task* task = timer->task(); |
| 643 | if (task->is_owned_by_message_loop()) { |
| 644 | // We constructed it through PostTask(). |
| 645 | DCHECK(!timer->repeating()); |
| 646 | timer->set_task(NULL); |
| 647 | delete timer; |
| 648 | return QueueOrRunTask(task); |
| 649 | } else { |
| 650 | // This is an unknown timer task, and we *can't* delay running it, as a |
| 651 | // user might try to cancel it with TimerManager at any moment. |
| 652 | DCHECK(nestable_tasks_allowed_); |
| 653 | RunTask(task); |
| 654 | return true; |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | void MessageLoop::DiscardTimer(Timer* timer) { |
| 659 | Task* task = timer->task(); |
| 660 | if (task->is_owned_by_message_loop()) { |
| 661 | DCHECK(!timer->repeating()); |
| 662 | timer->set_task(NULL); |
| 663 | delete timer; // We constructed it through PostDelayedTask(). |
| 664 | delete task; // We were given ouwnership in PostTask(). |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | bool MessageLoop::QueueOrRunTask(Task* new_task) { |
| 669 | if (!nestable_tasks_allowed_) { |
| 670 | // Task can't be executed right now. Add it to the queue. |
| 671 | if (new_task) |
| 672 | work_queue_.Push(new_task); |
| 673 | return false; |
| 674 | } |
| 675 | |
| 676 | // Queue new_task first so we execute the task in FIFO order. |
| 677 | if (new_task) |
| 678 | work_queue_.Push(new_task); |
| 679 | |
| 680 | // Execute oldest task. |
| 681 | while (!work_queue_.Empty()) { |
| 682 | Task* task = work_queue_.Pop(); |
| 683 | if (task->nestable() || run_depth_ == 1) { |
| 684 | RunTask(task); |
| 685 | // Show that we ran a task (Note: a new one might arrive as a |
| 686 | // consequence!). |
| 687 | return true; |
| 688 | } else { |
| 689 | // We couldn't run the task now because we're in a nested message loop |
| 690 | // and the task isn't nestable. |
| 691 | delayed_non_nestable_queue_.Push(task); |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | // Nothing happened. |
| 696 | return false; |
| 697 | } |
| 698 | |
| 699 | void MessageLoop::RunTask(Task* task) { |
| 700 | BeforeTaskRunSetup(); |
| 701 | HistogramEvent(kTaskRunEvent); |
| 702 | // task may self-delete during Run() if we don't happen to own it. |
| 703 | // ...so check *before* we Run, since we can't check after. |
| 704 | bool we_own_task = task->is_owned_by_message_loop(); |
| 705 | task->Run(); |
| 706 | if (we_own_task) |
| 707 | task->RecycleOrDelete(); // Relinquish control, and probably delete. |
| 708 | AfterTaskRunRestore(); |
| 709 | } |
| 710 | |
| 711 | void MessageLoop::BeforeTaskRunSetup() { |
| 712 | DCHECK(nestable_tasks_allowed_); |
| 713 | // Execute the task and assume the worst: It is probably not reentrant. |
| 714 | nestable_tasks_allowed_ = false; |
| 715 | } |
| 716 | |
| 717 | void MessageLoop::AfterTaskRunRestore() { |
| 718 | nestable_tasks_allowed_ = true; |
| 719 | } |
| 720 | |
| 721 | void MessageLoop::PumpATaskDuringWndProc() { |
| 722 | // TODO(jar): Perchance we should check on signaled objects here?? |
| 723 | // Signals are generally starved during a native message loop. Even if we |
| 724 | // try to service a signaled object now, we wouldn't automatically get here |
| 725 | // (i.e., the native pump would not re-start) when the next object was |
| 726 | // signaled. If we really want to avoid starving signaled objects, we need |
| 727 | // to translate them into Tasks that can be passed in via PostTask. |
| 728 | // If these native message loops (and sub-pumping activities) are short |
| 729 | // lived, then the starvation won't be that long :-/. |
| 730 | |
| 731 | if (!ProcessNextDeferredTask()) |
| 732 | return; // Nothing to do, so lets stop the sub-pump. |
| 733 | |
| 734 | // We ran a task, so make sure we come back and try to run more tasks. |
| 735 | EnsurePumpATaskWasPosted(); |
| 736 | } |
| 737 | |
| 738 | void MessageLoop::EnsurePumpATaskWasPosted() { |
| 739 | { |
| 740 | AutoLock lock(task_pump_message_lock_); |
| 741 | if (task_pump_message_pending_) |
| 742 | return; // Someone else continued the pumping. |
| 743 | task_pump_message_pending_ = true; // We'll send one. |
| 744 | } |
| 745 | EnsureMessageGetsPosted(kMsgPumpATask); |
| 746 | } |
| 747 | |
| 748 | void MessageLoop::EnsureMessageGetsPosted(int message) const { |
| 749 | const int kRetryCount = 30; |
| 750 | const int kSleepDurationWhenFailing = 100; |
| 751 | for (int i = 0; i < kRetryCount; ++i) { |
| 752 | // Posting to our own windows should always succeed. If it doesn't we're in |
| 753 | // big trouble. |
| 754 | if (PostMessage(message_hwnd_, message, |
| 755 | reinterpret_cast<UINT_PTR>(this), 0)) |
| 756 | return; |
| 757 | Sleep(kSleepDurationWhenFailing); |
| 758 | } |
| 759 | LOG(FATAL) << "Crash with last error " << GetLastError(); |
| 760 | int* p = NULL; |
| 761 | *p = 0; // Crash. |
| 762 | } |
| 763 | |
| 764 | void MessageLoop::ReloadWorkQueue() { |
| 765 | // We can improve performance of our loading tasks from incoming_queue_ to |
| 766 | // work_queue_ by wating until the last minute (work_queue_ is empty) to load. |
| 767 | // That reduces the number of locks-per-task significantly when our queues get |
| 768 | // large. The optimization is disabled on threads that make use of the |
| 769 | // priority queue (prioritization requires all our tasks to be in the |
| 770 | // work_queue_ ASAP). |
| 771 | if (!work_queue_.Empty() && !work_queue_.use_priority_queue()) |
| 772 | return; // Wait till we *really* need to lock and load. |
| 773 | |
| 774 | // Acquire all we can from the inter-thread queue with one lock acquisition. |
| 775 | TaskQueue new_task_list; // Null terminated list. |
| 776 | { |
| 777 | AutoLock lock(incoming_queue_lock_); |
| 778 | if (incoming_queue_.Empty()) |
| 779 | return; |
| 780 | std::swap(incoming_queue_, new_task_list); |
| 781 | DCHECK(incoming_queue_.Empty()); |
| 782 | } // Release lock. |
| 783 | |
| 784 | while (!new_task_list.Empty()) { |
| 785 | Task* task = new_task_list.Pop(); |
| 786 | DCHECK(task->is_owned_by_message_loop()); |
| 787 | |
| 788 | if (task->posted_task_delay() > 0) |
| 789 | timer_manager_.StartTimer(task->posted_task_delay(), task, false); |
| 790 | else |
| 791 | work_queue_.Push(task); |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | void MessageLoop::DeletePendingTasks() { |
| 796 | /* Comment this out as it's causing crashes. |
| 797 | while (!work_queue_.Empty()) { |
| 798 | Task* task = work_queue_.Pop(); |
| 799 | if (task->is_owned_by_message_loop()) |
| 800 | delete task; |
| 801 | } |
| 802 | |
| 803 | while (!delayed_non_nestable_queue_.Empty()) { |
| 804 | Task* task = delayed_non_nestable_queue_.Pop(); |
| 805 | if (task->is_owned_by_message_loop()) |
| 806 | delete task; |
| 807 | } |
| 808 | */ |
| 809 | } |
| 810 | |
| 811 | //------------------------------------------------------------------------------ |
| 812 | // Implementation of the work_queue_ as a ProiritizedTaskQueue |
| 813 | |
| 814 | void MessageLoop::PrioritizedTaskQueue::push(Task * task) { |
| 815 | queue_.push(PrioritizedTask(task, --next_sequence_number_)); |
| 816 | } |
| 817 | |
| 818 | bool MessageLoop::PrioritizedTaskQueue::PrioritizedTask::operator < ( |
| 819 | PrioritizedTask const & right) const { |
| 820 | int compare = task_->priority_ - right.task_->priority_; |
| 821 | if (compare) |
| 822 | return compare < 0; |
| 823 | // Don't compare directly, but rather subtract. This handles overflow |
| 824 | // as sequence numbers wrap around. |
| 825 | compare = sequence_number_ - right.sequence_number_; |
| 826 | DCHECK(compare); // Sequence number are unique for a "long time." |
| 827 | // Make sure we don't starve anything with a low priority. |
| 828 | CHECK(INT_MAX/8 > compare); // We don't get close to wrapping. |
| 829 | CHECK(INT_MIN/8 < compare); // We don't get close to wrapping. |
| 830 | return compare < 0; |
| 831 | } |
| 832 | |
| 833 | //------------------------------------------------------------------------------ |
| 834 | // Implementation of a TaskQueue as a null terminated list, with end pointers. |
| 835 | |
| 836 | void MessageLoop::TaskQueue::Push(Task* task) { |
| 837 | if (!first_) |
| 838 | first_ = task; |
| 839 | else |
| 840 | last_->set_next_task(task); |
| 841 | last_ = task; |
| 842 | } |
| 843 | |
| 844 | Task* MessageLoop::TaskQueue::Pop() { |
| 845 | DCHECK((!first_) == !last_); |
| 846 | Task* task = first_; |
| 847 | if (first_) { |
| 848 | first_ = task->next_task(); |
| 849 | if (!first_) |
| 850 | last_ = NULL; |
| 851 | else |
| 852 | task->set_next_task(NULL); |
| 853 | } |
| 854 | return task; |
| 855 | } |
| 856 | |
| 857 | //------------------------------------------------------------------------------ |
| 858 | // Implementation of a Task queue that automatically switches into a priority |
| 859 | // queue if it observes any non-zero priorities on tasks. |
| 860 | |
| 861 | void MessageLoop::OptionallyPrioritizedTaskQueue::Push(Task* task) { |
| 862 | if (use_priority_queue_) { |
| 863 | prioritized_queue_.push(task); |
| 864 | } else { |
| 865 | queue_.Push(task); |
| 866 | if (task->priority()) { |
| 867 | use_priority_queue_ = true; // From now on. |
| 868 | while (!queue_.Empty()) |
| 869 | prioritized_queue_.push(queue_.Pop()); |
| 870 | } |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | Task* MessageLoop::OptionallyPrioritizedTaskQueue::Pop() { |
| 875 | if (!use_priority_queue_) |
| 876 | return queue_.Pop(); |
| 877 | Task* task = prioritized_queue_.front(); |
| 878 | prioritized_queue_.pop(); |
| 879 | return task; |
| 880 | } |
| 881 | |
| 882 | bool MessageLoop::OptionallyPrioritizedTaskQueue::Empty() { |
| 883 | if (use_priority_queue_) |
| 884 | return prioritized_queue_.empty(); |
| 885 | return queue_.Empty(); |
| 886 | } |
| 887 | |
| 888 | //------------------------------------------------------------------------------ |
| 889 | // Method and data for histogramming events and actions taken by each instance |
| 890 | // on each thread. |
| 891 | |
| 892 | // static |
| 893 | bool MessageLoop::enable_histogrammer_ = false; |
| 894 | |
| 895 | // static |
| 896 | void MessageLoop::EnableHistogrammer(bool enable) { |
| 897 | enable_histogrammer_ = enable; |
| 898 | } |
| 899 | |
| 900 | void MessageLoop::StartHistogrammer() { |
| 901 | if (enable_histogrammer_ && !message_histogram_.get() |
| 902 | && StatisticsRecorder::WasStarted()) { |
| 903 | message_histogram_.reset(new LinearHistogram( |
| 904 | ASCIIToWide("MsgLoop:" + thread_name_).c_str(), |
| 905 | kLeastNonZeroMessageId, |
| 906 | kMaxMessageId, |
| 907 | kNumberOfDistinctMessagesDisplayed)); |
| 908 | message_histogram_->SetFlags(message_histogram_->kHexRangePrintingFlag); |
| 909 | message_histogram_->SetRangeDescriptions(event_descriptions_); |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | void MessageLoop::HistogramEvent(int event) { |
| 914 | if (message_histogram_.get()) |
| 915 | message_histogram_->Add(event); |
| 916 | } |
| 917 | |
| 918 | // Add one undocumented windows message to clean up our display. |
| 919 | #ifndef WM_SYSTIMER |
| 920 | #define WM_SYSTIMER 0x118 |
| 921 | #endif |
| 922 | |
| 923 | // Provide a macro that takes an expression (such as a constant, or macro |
| 924 | // constant) and creates a pair to initalize an array of pairs. In this case, |
| 925 | // our pair consists of the expressions value, and the "stringized" version |
| 926 | // of the expression (i.e., the exrpression put in quotes). For example, if |
| 927 | // we have: |
| 928 | // #define FOO 2 |
| 929 | // #define BAR 5 |
| 930 | // then the following: |
| 931 | // VALUE_TO_NUMBER_AND_NAME(FOO + BAR) |
| 932 | // will expand to: |
| 933 | // {7, "FOO + BAR"} |
| 934 | // We use the resulting array as an argument to our histogram, which reads the |
| 935 | // number as a bucket identifier, and proceeds to use the corresponding name |
| 936 | // in the pair (i.e., the quoted string) when printing out a histogram. |
| 937 | #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name}, |
| 938 | |
| 939 | |
| 940 | // static |
| 941 | const LinearHistogram::DescriptionPair MessageLoop::event_descriptions_[] = { |
| 942 | // Only provide an extensive list in debug mode. In release mode, we have to |
| 943 | // read the octal values.... but we save about 450 strings, each of length |
| 944 | // 10 from our binary image. |
| 945 | #ifndef NDEBUG |
| 946 | // Prepare to include a list of names provided in a special header file4. |
| 947 | #define A_NAMED_MESSAGE_FROM_WINUSER_H VALUE_TO_NUMBER_AND_NAME |
| 948 | #include "base/windows_message_list.h" |
| 949 | #undef A_NAMED_MESSAGE_FROM_WINUSER_H |
| 950 | // Add an undocumented message that appeared in our list :-/. |
| 951 | VALUE_TO_NUMBER_AND_NAME(WM_SYSTIMER) |
| 952 | #endif // NDEBUG |
| 953 | |
| 954 | // Provide some pretty print capability in our histogram for our internal |
| 955 | // messages. |
| 956 | |
| 957 | // Values we use for WM_USER+n |
| 958 | VALUE_TO_NUMBER_AND_NAME(kMsgPumpATask) |
| 959 | VALUE_TO_NUMBER_AND_NAME(kMsgQuit) |
| 960 | |
| 961 | // A few events we handle (kindred to messages), and used to profile actions. |
| 962 | VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent) |
| 963 | VALUE_TO_NUMBER_AND_NAME(kSleepingApcEvent) |
| 964 | VALUE_TO_NUMBER_AND_NAME(kSleepingSignalEvent) |
| 965 | VALUE_TO_NUMBER_AND_NAME(kPollingSignalEvent) |
| 966 | VALUE_TO_NUMBER_AND_NAME(kTimerEvent) |
| 967 | |
| 968 | {-1, NULL} // The list must be null terminated, per API to histogram. |
| 969 | }; |