| /* |
| * MPEG-4 Parametric Stereo decoding functions |
| * Copyright (c) 2010 Alex Converse <[email protected]> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Note: Rounding-to-nearest used unless otherwise stated |
| * |
| */ |
| |
| #include <stdint.h> |
| #include "libavutil/common.h" |
| #include "libavutil/mathematics.h" |
| #include "libavutil/mem_internal.h" |
| #include "aacps.h" |
| #if USE_FIXED |
| #include "aacps_fixed_tablegen.h" |
| #else |
| #include "libavutil/internal.h" |
| #include "aacps_tablegen.h" |
| #endif /* USE_FIXED */ |
| |
| static const INTFLOAT g1_Q2[] = { |
| Q31(0.0f), Q31(0.01899487526049f), Q31(0.0f), Q31(-0.07293139167538f), |
| Q31(0.0f), Q31(0.30596630545168f), Q31(0.5f) |
| }; |
| |
| static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist) |
| { |
| int i; |
| for (i = 0; i < PS_MAX_NR_IPDOPD; i++) { |
| opd_hist[i] = 0; |
| ipd_hist[i] = 0; |
| } |
| } |
| |
| /** Split one subband into 2 subsubbands with a symmetric real filter. |
| * The filter must have its non-center even coefficients equal to zero. */ |
| static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], |
| const INTFLOAT filter[7], int len, int reverse) |
| { |
| int i, j; |
| for (i = 0; i < len; i++, in++) { |
| INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase |
| INT64FLOAT re_op = 0.0f; //real out of phase |
| INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase |
| INT64FLOAT im_op = 0.0f; //imag out of phase |
| for (j = 0; j < 6; j += 2) { |
| re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]); |
| im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]); |
| } |
| |
| #if USE_FIXED |
| re_op = (re_op + 0x40000000) >> 31; |
| im_op = (im_op + 0x40000000) >> 31; |
| #endif /* USE_FIXED */ |
| |
| out[ reverse][i][0] = (INTFLOAT)(re_in + re_op); |
| out[ reverse][i][1] = (INTFLOAT)(im_in + im_op); |
| out[!reverse][i][0] = (INTFLOAT)(re_in - re_op); |
| out[!reverse][i][1] = (INTFLOAT)(im_in - im_op); |
| } |
| } |
| |
| /** Split one subband into 6 subsubbands with a complex filter */ |
| static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], |
| TABLE_CONST INTFLOAT (*filter)[8][2], int len) |
| { |
| int i; |
| int N = 8; |
| LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]); |
| |
| for (i = 0; i < len; i++, in++) { |
| dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N); |
| out[0][i][0] = temp[6][0]; |
| out[0][i][1] = temp[6][1]; |
| out[1][i][0] = temp[7][0]; |
| out[1][i][1] = temp[7][1]; |
| out[2][i][0] = temp[0][0]; |
| out[2][i][1] = temp[0][1]; |
| out[3][i][0] = temp[1][0]; |
| out[3][i][1] = temp[1][1]; |
| out[4][i][0] = temp[2][0] + temp[5][0]; |
| out[4][i][1] = temp[2][1] + temp[5][1]; |
| out[5][i][0] = temp[3][0] + temp[4][0]; |
| out[5][i][1] = temp[3][1] + temp[4][1]; |
| } |
| } |
| |
| static void hybrid4_8_12_cx(PSDSPContext *dsp, |
| INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], |
| TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++, in++) { |
| dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N); |
| } |
| } |
| |
| static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2], |
| INTFLOAT in[5][44][2], INTFLOAT L[2][38][64], |
| int is34, int len) |
| { |
| int i, j; |
| for (i = 0; i < 5; i++) { |
| for (j = 0; j < 38; j++) { |
| in[i][j+6][0] = L[0][j][i]; |
| in[i][j+6][1] = L[1][j][i]; |
| } |
| } |
| if (is34) { |
| hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len); |
| hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len); |
| hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len); |
| hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len); |
| hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len); |
| dsp->hybrid_analysis_ileave(out + 27, L, 5, len); |
| } else { |
| hybrid6_cx(dsp, in[0], out, f20_0_8, len); |
| hybrid2_re(in[1], out+6, g1_Q2, len, 1); |
| hybrid2_re(in[2], out+8, g1_Q2, len, 0); |
| dsp->hybrid_analysis_ileave(out + 7, L, 3, len); |
| } |
| //update in_buf |
| for (i = 0; i < 5; i++) { |
| memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0])); |
| } |
| } |
| |
| static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64], |
| INTFLOAT in[91][32][2], int is34, int len) |
| { |
| int i, n; |
| if (is34) { |
| for (n = 0; n < len; n++) { |
| memset(out[0][n], 0, 5*sizeof(out[0][n][0])); |
| memset(out[1][n], 0, 5*sizeof(out[1][n][0])); |
| for (i = 0; i < 12; i++) { |
| out[0][n][0] += (UINTFLOAT)in[ i][n][0]; |
| out[1][n][0] += (UINTFLOAT)in[ i][n][1]; |
| } |
| for (i = 0; i < 8; i++) { |
| out[0][n][1] += (UINTFLOAT)in[12+i][n][0]; |
| out[1][n][1] += (UINTFLOAT)in[12+i][n][1]; |
| } |
| for (i = 0; i < 4; i++) { |
| out[0][n][2] += (UINTFLOAT)in[20+i][n][0]; |
| out[1][n][2] += (UINTFLOAT)in[20+i][n][1]; |
| out[0][n][3] += (UINTFLOAT)in[24+i][n][0]; |
| out[1][n][3] += (UINTFLOAT)in[24+i][n][1]; |
| out[0][n][4] += (UINTFLOAT)in[28+i][n][0]; |
| out[1][n][4] += (UINTFLOAT)in[28+i][n][1]; |
| } |
| } |
| dsp->hybrid_synthesis_deint(out, in + 27, 5, len); |
| } else { |
| for (n = 0; n < len; n++) { |
| out[0][n][0] = (UINTFLOAT)in[0][n][0] + in[1][n][0] + in[2][n][0] + |
| (UINTFLOAT)in[3][n][0] + in[4][n][0] + in[5][n][0]; |
| out[1][n][0] = (UINTFLOAT)in[0][n][1] + in[1][n][1] + in[2][n][1] + |
| (UINTFLOAT)in[3][n][1] + in[4][n][1] + in[5][n][1]; |
| out[0][n][1] = (UINTFLOAT)in[6][n][0] + in[7][n][0]; |
| out[1][n][1] = (UINTFLOAT)in[6][n][1] + in[7][n][1]; |
| out[0][n][2] = (UINTFLOAT)in[8][n][0] + in[9][n][0]; |
| out[1][n][2] = (UINTFLOAT)in[8][n][1] + in[9][n][1]; |
| } |
| dsp->hybrid_synthesis_deint(out, in + 7, 3, len); |
| } |
| } |
| |
| /// All-pass filter decay slope |
| #define DECAY_SLOPE Q30(0.05f) |
| /// Number of frequency bands that can be addressed by the parameter index, b(k) |
| static const int NR_PAR_BANDS[] = { 20, 34 }; |
| static const int NR_IPDOPD_BANDS[] = { 11, 17 }; |
| /// Number of frequency bands that can be addressed by the sub subband index, k |
| static const int NR_BANDS[] = { 71, 91 }; |
| /// Start frequency band for the all-pass filter decay slope |
| static const int DECAY_CUTOFF[] = { 10, 32 }; |
| /// Number of all-pass filer bands |
| static const int NR_ALLPASS_BANDS[] = { 30, 50 }; |
| /// First stereo band using the short one sample delay |
| static const int SHORT_DELAY_BAND[] = { 42, 62 }; |
| |
| /** Table 8.46 */ |
| static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full) |
| { |
| int b; |
| if (full) |
| b = 9; |
| else { |
| b = 4; |
| par_mapped[10] = 0; |
| } |
| for (; b >= 0; b--) { |
| par_mapped[2*b+1] = par_mapped[2*b] = par[b]; |
| } |
| } |
| |
| static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full) |
| { |
| par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3; |
| par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3; |
| par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3; |
| par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3; |
| par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2; |
| par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2; |
| par_mapped[ 6] = par[10]; |
| par_mapped[ 7] = par[11]; |
| par_mapped[ 8] = ( par[12] + par[13]) / 2; |
| par_mapped[ 9] = ( par[14] + par[15]) / 2; |
| par_mapped[10] = par[16]; |
| if (full) { |
| par_mapped[11] = par[17]; |
| par_mapped[12] = par[18]; |
| par_mapped[13] = par[19]; |
| par_mapped[14] = ( par[20] + par[21]) / 2; |
| par_mapped[15] = ( par[22] + par[23]) / 2; |
| par_mapped[16] = ( par[24] + par[25]) / 2; |
| par_mapped[17] = ( par[26] + par[27]) / 2; |
| par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4; |
| par_mapped[19] = ( par[32] + par[33]) / 2; |
| } |
| } |
| |
| static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC]) |
| { |
| #if USE_FIXED |
| par[ 0] = (int)(((int64_t)(par[ 0] + (unsigned)(par[ 1]>>1)) * 1431655765 + \ |
| 0x40000000) >> 31); |
| par[ 1] = (int)(((int64_t)((par[ 1]>>1) + (unsigned)par[ 2]) * 1431655765 + \ |
| 0x40000000) >> 31); |
| par[ 2] = (int)(((int64_t)(par[ 3] + (unsigned)(par[ 4]>>1)) * 1431655765 + \ |
| 0x40000000) >> 31); |
| par[ 3] = (int)(((int64_t)((par[ 4]>>1) + (unsigned)par[ 5]) * 1431655765 + \ |
| 0x40000000) >> 31); |
| #else |
| par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f; |
| par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f; |
| par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f; |
| par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f; |
| #endif /* USE_FIXED */ |
| par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]); |
| par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]); |
| par[ 6] = par[10]; |
| par[ 7] = par[11]; |
| par[ 8] = AAC_HALF_SUM(par[12], par[13]); |
| par[ 9] = AAC_HALF_SUM(par[14], par[15]); |
| par[10] = par[16]; |
| par[11] = par[17]; |
| par[12] = par[18]; |
| par[13] = par[19]; |
| par[14] = AAC_HALF_SUM(par[20], par[21]); |
| par[15] = AAC_HALF_SUM(par[22], par[23]); |
| par[16] = AAC_HALF_SUM(par[24], par[25]); |
| par[17] = AAC_HALF_SUM(par[26], par[27]); |
| #if USE_FIXED |
| par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2)); |
| #else |
| par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f; |
| #endif /* USE_FIXED */ |
| par[19] = AAC_HALF_SUM(par[32], par[33]); |
| } |
| |
| static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full) |
| { |
| if (full) { |
| par_mapped[33] = par[9]; |
| par_mapped[32] = par[9]; |
| par_mapped[31] = par[9]; |
| par_mapped[30] = par[9]; |
| par_mapped[29] = par[9]; |
| par_mapped[28] = par[9]; |
| par_mapped[27] = par[8]; |
| par_mapped[26] = par[8]; |
| par_mapped[25] = par[8]; |
| par_mapped[24] = par[8]; |
| par_mapped[23] = par[7]; |
| par_mapped[22] = par[7]; |
| par_mapped[21] = par[7]; |
| par_mapped[20] = par[7]; |
| par_mapped[19] = par[6]; |
| par_mapped[18] = par[6]; |
| par_mapped[17] = par[5]; |
| par_mapped[16] = par[5]; |
| } else { |
| par_mapped[16] = 0; |
| } |
| par_mapped[15] = par[4]; |
| par_mapped[14] = par[4]; |
| par_mapped[13] = par[4]; |
| par_mapped[12] = par[4]; |
| par_mapped[11] = par[3]; |
| par_mapped[10] = par[3]; |
| par_mapped[ 9] = par[2]; |
| par_mapped[ 8] = par[2]; |
| par_mapped[ 7] = par[2]; |
| par_mapped[ 6] = par[2]; |
| par_mapped[ 5] = par[1]; |
| par_mapped[ 4] = par[1]; |
| par_mapped[ 3] = par[1]; |
| par_mapped[ 2] = par[0]; |
| par_mapped[ 1] = par[0]; |
| par_mapped[ 0] = par[0]; |
| } |
| |
| static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full) |
| { |
| if (full) { |
| par_mapped[33] = par[19]; |
| par_mapped[32] = par[19]; |
| par_mapped[31] = par[18]; |
| par_mapped[30] = par[18]; |
| par_mapped[29] = par[18]; |
| par_mapped[28] = par[18]; |
| par_mapped[27] = par[17]; |
| par_mapped[26] = par[17]; |
| par_mapped[25] = par[16]; |
| par_mapped[24] = par[16]; |
| par_mapped[23] = par[15]; |
| par_mapped[22] = par[15]; |
| par_mapped[21] = par[14]; |
| par_mapped[20] = par[14]; |
| par_mapped[19] = par[13]; |
| par_mapped[18] = par[12]; |
| par_mapped[17] = par[11]; |
| } |
| par_mapped[16] = par[10]; |
| par_mapped[15] = par[ 9]; |
| par_mapped[14] = par[ 9]; |
| par_mapped[13] = par[ 8]; |
| par_mapped[12] = par[ 8]; |
| par_mapped[11] = par[ 7]; |
| par_mapped[10] = par[ 6]; |
| par_mapped[ 9] = par[ 5]; |
| par_mapped[ 8] = par[ 5]; |
| par_mapped[ 7] = par[ 4]; |
| par_mapped[ 6] = par[ 4]; |
| par_mapped[ 5] = par[ 3]; |
| par_mapped[ 4] = (par[ 2] + par[ 3]) / 2; |
| par_mapped[ 3] = par[ 2]; |
| par_mapped[ 2] = par[ 1]; |
| par_mapped[ 1] = (par[ 0] + par[ 1]) / 2; |
| par_mapped[ 0] = par[ 0]; |
| } |
| |
| static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC]) |
| { |
| par[33] = par[19]; |
| par[32] = par[19]; |
| par[31] = par[18]; |
| par[30] = par[18]; |
| par[29] = par[18]; |
| par[28] = par[18]; |
| par[27] = par[17]; |
| par[26] = par[17]; |
| par[25] = par[16]; |
| par[24] = par[16]; |
| par[23] = par[15]; |
| par[22] = par[15]; |
| par[21] = par[14]; |
| par[20] = par[14]; |
| par[19] = par[13]; |
| par[18] = par[12]; |
| par[17] = par[11]; |
| par[16] = par[10]; |
| par[15] = par[ 9]; |
| par[14] = par[ 9]; |
| par[13] = par[ 8]; |
| par[12] = par[ 8]; |
| par[11] = par[ 7]; |
| par[10] = par[ 6]; |
| par[ 9] = par[ 5]; |
| par[ 8] = par[ 5]; |
| par[ 7] = par[ 4]; |
| par[ 6] = par[ 4]; |
| par[ 5] = par[ 3]; |
| par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]); |
| par[ 3] = par[ 2]; |
| par[ 2] = par[ 1]; |
| par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]); |
| } |
| |
| static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34) |
| { |
| LOCAL_ALIGNED_16(INTFLOAT, power, [34], [PS_QMF_TIME_SLOTS]); |
| LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]); |
| INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg; |
| INTFLOAT *power_smooth = ps->power_smooth; |
| INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth; |
| INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay; |
| INTFLOAT (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay; |
| #if !USE_FIXED |
| const float transient_impact = 1.5f; |
| const float a_smooth = 0.25f; ///< Smoothing coefficient |
| #endif /* USE_FIXED */ |
| const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20; |
| int i, k, m, n; |
| int n0 = 0, nL = 32; |
| const INTFLOAT peak_decay_factor = Q31(0.76592833836465f); |
| |
| memset(power, 0, 34 * sizeof(*power)); |
| |
| if (is34 != ps->common.is34bands_old) { |
| memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg)); |
| memset(ps->power_smooth, 0, sizeof(ps->power_smooth)); |
| memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth)); |
| memset(ps->delay, 0, sizeof(ps->delay)); |
| memset(ps->ap_delay, 0, sizeof(ps->ap_delay)); |
| } |
| |
| for (k = 0; k < NR_BANDS[is34]; k++) { |
| int i = k_to_i[k]; |
| ps->dsp.add_squares(power[i], s[k], nL - n0); |
| } |
| |
| //Transient detection |
| #if USE_FIXED |
| for (i = 0; i < NR_PAR_BANDS[is34]; i++) { |
| for (n = n0; n < nL; n++) { |
| int decayed_peak; |
| decayed_peak = (int)(((int64_t)peak_decay_factor * \ |
| peak_decay_nrg[i] + 0x40000000) >> 31); |
| peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]); |
| power_smooth[i] += (power[i][n] + 2LL - power_smooth[i]) >> 2; |
| peak_decay_diff_smooth[i] += (peak_decay_nrg[i] + 2LL - power[i][n] - \ |
| peak_decay_diff_smooth[i]) >> 2; |
| |
| if (peak_decay_diff_smooth[i]) { |
| transient_gain[i][n] = FFMIN(power_smooth[i]*43691LL / peak_decay_diff_smooth[i], 1<<16); |
| } else |
| transient_gain[i][n] = 1 << 16; |
| } |
| } |
| #else |
| for (i = 0; i < NR_PAR_BANDS[is34]; i++) { |
| for (n = n0; n < nL; n++) { |
| float decayed_peak = peak_decay_factor * peak_decay_nrg[i]; |
| float denom; |
| peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]); |
| power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]); |
| peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]); |
| denom = transient_impact * peak_decay_diff_smooth[i]; |
| transient_gain[i][n] = (denom > power_smooth[i]) ? |
| power_smooth[i] / denom : 1.0f; |
| } |
| } |
| |
| #endif /* USE_FIXED */ |
| //Decorrelation and transient reduction |
| // PS_AP_LINKS - 1 |
| // ----- |
| // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k] |
| //H[k][z] = z^-2 * phi_fract[k] * | | ---------------------------------------------------------------- |
| // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m] |
| // m = 0 |
| //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z] |
| for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) { |
| int b = k_to_i[k]; |
| #if USE_FIXED |
| int g_decay_slope; |
| |
| if (k - DECAY_CUTOFF[is34] <= 0) { |
| g_decay_slope = 1 << 30; |
| } |
| else if (k - DECAY_CUTOFF[is34] >= 20) { |
| g_decay_slope = 0; |
| } |
| else { |
| g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]); |
| } |
| #else |
| float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]); |
| g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f); |
| #endif /* USE_FIXED */ |
| memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); |
| memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); |
| for (m = 0; m < PS_AP_LINKS; m++) { |
| memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0])); |
| } |
| ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k], |
| phi_fract[is34][k], |
| (const INTFLOAT (*)[2]) Q_fract_allpass[is34][k], |
| transient_gain[b], g_decay_slope, nL - n0); |
| } |
| for (; k < SHORT_DELAY_BAND[is34]; k++) { |
| int i = k_to_i[k]; |
| memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); |
| memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); |
| //H = delay 14 |
| ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14, |
| transient_gain[i], nL - n0); |
| } |
| for (; k < NR_BANDS[is34]; k++) { |
| int i = k_to_i[k]; |
| memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); |
| memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); |
| //H = delay 1 |
| ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1, |
| transient_gain[i], nL - n0); |
| } |
| } |
| |
| static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], |
| int8_t (*par)[PS_MAX_NR_IIDICC], |
| int num_par, int num_env, int full) |
| { |
| int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; |
| int e; |
| if (num_par == 20 || num_par == 11) { |
| for (e = 0; e < num_env; e++) { |
| map_idx_20_to_34(par_mapped[e], par[e], full); |
| } |
| } else if (num_par == 10 || num_par == 5) { |
| for (e = 0; e < num_env; e++) { |
| map_idx_10_to_34(par_mapped[e], par[e], full); |
| } |
| } else { |
| *p_par_mapped = par; |
| } |
| } |
| |
| static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], |
| int8_t (*par)[PS_MAX_NR_IIDICC], |
| int num_par, int num_env, int full) |
| { |
| int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; |
| int e; |
| if (num_par == 34 || num_par == 17) { |
| for (e = 0; e < num_env; e++) { |
| map_idx_34_to_20(par_mapped[e], par[e], full); |
| } |
| } else if (num_par == 10 || num_par == 5) { |
| for (e = 0; e < num_env; e++) { |
| map_idx_10_to_20(par_mapped[e], par[e], full); |
| } |
| } else { |
| *p_par_mapped = par; |
| } |
| } |
| |
| static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34) |
| { |
| int e, b, k; |
| |
| PSCommonContext *const ps2 = &ps->common; |
| INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11; |
| INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12; |
| INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21; |
| INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22; |
| int8_t *opd_hist = ps->opd_hist; |
| int8_t *ipd_hist = ps->ipd_hist; |
| int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; |
| int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; |
| int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; |
| int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; |
| int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf; |
| int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf; |
| int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf; |
| int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf; |
| const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20; |
| TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps2->icc_mode < 3) ? HA : HB; |
| |
| //Remapping |
| if (ps2->num_env_old) { |
| memcpy(H11[0][0], H11[0][ps2->num_env_old], sizeof(H11[0][0])); |
| memcpy(H11[1][0], H11[1][ps2->num_env_old], sizeof(H11[1][0])); |
| memcpy(H12[0][0], H12[0][ps2->num_env_old], sizeof(H12[0][0])); |
| memcpy(H12[1][0], H12[1][ps2->num_env_old], sizeof(H12[1][0])); |
| memcpy(H21[0][0], H21[0][ps2->num_env_old], sizeof(H21[0][0])); |
| memcpy(H21[1][0], H21[1][ps2->num_env_old], sizeof(H21[1][0])); |
| memcpy(H22[0][0], H22[0][ps2->num_env_old], sizeof(H22[0][0])); |
| memcpy(H22[1][0], H22[1][ps2->num_env_old], sizeof(H22[1][0])); |
| } |
| |
| if (is34) { |
| remap34(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1); |
| remap34(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1); |
| if (ps2->enable_ipdopd) { |
| remap34(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); |
| remap34(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); |
| } |
| if (!ps2->is34bands_old) { |
| map_val_20_to_34(H11[0][0]); |
| map_val_20_to_34(H11[1][0]); |
| map_val_20_to_34(H12[0][0]); |
| map_val_20_to_34(H12[1][0]); |
| map_val_20_to_34(H21[0][0]); |
| map_val_20_to_34(H21[1][0]); |
| map_val_20_to_34(H22[0][0]); |
| map_val_20_to_34(H22[1][0]); |
| ipdopd_reset(ipd_hist, opd_hist); |
| } |
| } else { |
| remap20(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1); |
| remap20(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1); |
| if (ps2->enable_ipdopd) { |
| remap20(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); |
| remap20(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); |
| } |
| if (ps2->is34bands_old) { |
| map_val_34_to_20(H11[0][0]); |
| map_val_34_to_20(H11[1][0]); |
| map_val_34_to_20(H12[0][0]); |
| map_val_34_to_20(H12[1][0]); |
| map_val_34_to_20(H21[0][0]); |
| map_val_34_to_20(H21[1][0]); |
| map_val_34_to_20(H22[0][0]); |
| map_val_34_to_20(H22[1][0]); |
| ipdopd_reset(ipd_hist, opd_hist); |
| } |
| } |
| |
| //Mixing |
| for (e = 0; e < ps2->num_env; e++) { |
| for (b = 0; b < NR_PAR_BANDS[is34]; b++) { |
| INTFLOAT h11, h12, h21, h22; |
| h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][0]; |
| h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][1]; |
| h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][2]; |
| h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][3]; |
| |
| if (!PS_BASELINE && ps2->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) { |
| //The spec say says to only run this smoother when enable_ipdopd |
| //is set but the reference decoder appears to run it constantly |
| INTFLOAT h11i, h12i, h21i, h22i; |
| INTFLOAT ipd_adj_re, ipd_adj_im; |
| int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b]; |
| int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b]; |
| INTFLOAT opd_re = pd_re_smooth[opd_idx]; |
| INTFLOAT opd_im = pd_im_smooth[opd_idx]; |
| INTFLOAT ipd_re = pd_re_smooth[ipd_idx]; |
| INTFLOAT ipd_im = pd_im_smooth[ipd_idx]; |
| opd_hist[b] = opd_idx & 0x3F; |
| ipd_hist[b] = ipd_idx & 0x3F; |
| |
| ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im); |
| ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im); |
| h11i = AAC_MUL30(h11, opd_im); |
| h11 = AAC_MUL30(h11, opd_re); |
| h12i = AAC_MUL30(h12, ipd_adj_im); |
| h12 = AAC_MUL30(h12, ipd_adj_re); |
| h21i = AAC_MUL30(h21, opd_im); |
| h21 = AAC_MUL30(h21, opd_re); |
| h22i = AAC_MUL30(h22, ipd_adj_im); |
| h22 = AAC_MUL30(h22, ipd_adj_re); |
| H11[1][e+1][b] = h11i; |
| H12[1][e+1][b] = h12i; |
| H21[1][e+1][b] = h21i; |
| H22[1][e+1][b] = h22i; |
| } |
| H11[0][e+1][b] = h11; |
| H12[0][e+1][b] = h12; |
| H21[0][e+1][b] = h21; |
| H22[0][e+1][b] = h22; |
| } |
| for (k = 0; k < NR_BANDS[is34]; k++) { |
| LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]); |
| LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]); |
| int start = ps2->border_position[e]; |
| int stop = ps2->border_position[e+1]; |
| INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1); |
| #if USE_FIXED |
| width = FFMIN(2U*width, INT_MAX); |
| #endif |
| b = k_to_i[k]; |
| h[0][0] = H11[0][e][b]; |
| h[0][1] = H12[0][e][b]; |
| h[0][2] = H21[0][e][b]; |
| h[0][3] = H22[0][e][b]; |
| if (!PS_BASELINE && ps2->enable_ipdopd) { |
| //Is this necessary? ps_04_new seems unchanged |
| if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) { |
| h[1][0] = -H11[1][e][b]; |
| h[1][1] = -H12[1][e][b]; |
| h[1][2] = -H21[1][e][b]; |
| h[1][3] = -H22[1][e][b]; |
| } else { |
| h[1][0] = H11[1][e][b]; |
| h[1][1] = H12[1][e][b]; |
| h[1][2] = H21[1][e][b]; |
| h[1][3] = H22[1][e][b]; |
| } |
| } |
| //Interpolation |
| h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width); |
| h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width); |
| h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width); |
| h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width); |
| if (!PS_BASELINE && ps2->enable_ipdopd) { |
| h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width); |
| h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width); |
| h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width); |
| h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width); |
| } |
| if (stop - start) |
| ps->dsp.stereo_interpolate[!PS_BASELINE && ps2->enable_ipdopd]( |
| l[k] + 1 + start, r[k] + 1 + start, |
| h, h_step, stop - start); |
| } |
| } |
| } |
| |
| int AAC_RENAME(ff_ps_apply)(PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top) |
| { |
| INTFLOAT (*Lbuf)[32][2] = ps->Lbuf; |
| INTFLOAT (*Rbuf)[32][2] = ps->Rbuf; |
| const int len = 32; |
| int is34 = ps->common.is34bands; |
| |
| top += NR_BANDS[is34] - 64; |
| memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0])); |
| if (top < NR_ALLPASS_BANDS[is34]) |
| memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0])); |
| |
| hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len); |
| decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34); |
| stereo_processing(ps, Lbuf, Rbuf, is34); |
| hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len); |
| hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len); |
| |
| return 0; |
| } |
| |
| av_cold void AAC_RENAME(ff_ps_init)(void) { |
| ps_tableinit(); |
| } |