blob: 63b83a625b47107dd1ae33149b61569698c57bce [file] [log] [blame] [edit]
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include "config_components.h"
#include "libavutil/avassert.h"
#include "libavutil/imgutils.h"
#include "libavutil/hwcontext.h"
#include "libavutil/hwcontext_amf.h"
#include "libavutil/hwcontext_amf_internal.h"
#if CONFIG_D3D11VA
#include "libavutil/hwcontext_d3d11va.h"
#endif
#if CONFIG_DXVA2
#define COBJMACROS
#include "libavutil/hwcontext_dxva2.h"
#endif
#include "libavutil/mem.h"
#include "libavutil/pixdesc.h"
#include "libavutil/time.h"
#include "amfenc.h"
#include "encode.h"
#include "internal.h"
#include "libavutil/mastering_display_metadata.h"
#define AMF_AV_FRAME_REF L"av_frame_ref"
static int amf_save_hdr_metadata(AVCodecContext *avctx, const AVFrame *frame, AMFHDRMetadata *hdrmeta)
{
AVFrameSideData *sd_display;
AVFrameSideData *sd_light;
AVMasteringDisplayMetadata *display_meta;
AVContentLightMetadata *light_meta;
sd_display = av_frame_get_side_data(frame, AV_FRAME_DATA_MASTERING_DISPLAY_METADATA);
if (sd_display) {
display_meta = (AVMasteringDisplayMetadata *)sd_display->data;
if (display_meta->has_luminance) {
const unsigned int luma_den = 10000;
hdrmeta->maxMasteringLuminance =
(amf_uint32)(luma_den * av_q2d(display_meta->max_luminance));
hdrmeta->minMasteringLuminance =
FFMIN((amf_uint32)(luma_den * av_q2d(display_meta->min_luminance)), hdrmeta->maxMasteringLuminance);
}
if (display_meta->has_primaries) {
const unsigned int chroma_den = 50000;
hdrmeta->redPrimary[0] =
FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[0][0])), chroma_den);
hdrmeta->redPrimary[1] =
FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[0][1])), chroma_den);
hdrmeta->greenPrimary[0] =
FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[1][0])), chroma_den);
hdrmeta->greenPrimary[1] =
FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[1][1])), chroma_den);
hdrmeta->bluePrimary[0] =
FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[2][0])), chroma_den);
hdrmeta->bluePrimary[1] =
FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->display_primaries[2][1])), chroma_den);
hdrmeta->whitePoint[0] =
FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->white_point[0])), chroma_den);
hdrmeta->whitePoint[1] =
FFMIN((amf_uint16)(chroma_den * av_q2d(display_meta->white_point[1])), chroma_den);
}
sd_light = av_frame_get_side_data(frame, AV_FRAME_DATA_CONTENT_LIGHT_LEVEL);
if (sd_light) {
light_meta = (AVContentLightMetadata *)sd_light->data;
if (light_meta) {
hdrmeta->maxContentLightLevel = (amf_uint16)light_meta->MaxCLL;
hdrmeta->maxFrameAverageLightLevel = (amf_uint16)light_meta->MaxFALL;
}
}
return 0;
}
return 1;
}
#if CONFIG_D3D11VA
#include <d3d11.h>
#endif
#ifdef _WIN32
#include "compat/w32dlfcn.h"
#else
#include <dlfcn.h>
#endif
#define FFMPEG_AMF_WRITER_ID L"ffmpeg_amf"
#define PTS_PROP L"PtsProp"
const enum AVPixelFormat ff_amf_pix_fmts[] = {
AV_PIX_FMT_NV12,
AV_PIX_FMT_YUV420P,
#if CONFIG_D3D11VA
AV_PIX_FMT_D3D11,
#endif
#if CONFIG_DXVA2
AV_PIX_FMT_DXVA2_VLD,
#endif
AV_PIX_FMT_P010,
AV_PIX_FMT_AMF_SURFACE,
AV_PIX_FMT_BGR0,
AV_PIX_FMT_RGB0,
AV_PIX_FMT_BGRA,
AV_PIX_FMT_ARGB,
AV_PIX_FMT_RGBA,
AV_PIX_FMT_X2BGR10,
AV_PIX_FMT_RGBAF16,
AV_PIX_FMT_NONE
};
static int amf_init_encoder(AVCodecContext *avctx)
{
AMFEncoderContext *ctx = avctx->priv_data;
const wchar_t *codec_id = NULL;
AMF_RESULT res;
enum AVPixelFormat pix_fmt;
AVHWDeviceContext *hw_device_ctx = (AVHWDeviceContext*)ctx->device_ctx_ref->data;
AVAMFDeviceContext *amf_device_ctx = (AVAMFDeviceContext *)hw_device_ctx->hwctx;
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
codec_id = AMFVideoEncoderVCE_AVC;
break;
case AV_CODEC_ID_HEVC:
codec_id = AMFVideoEncoder_HEVC;
break;
case AV_CODEC_ID_AV1 :
codec_id = AMFVideoEncoder_AV1;
break;
default:
break;
}
AMF_RETURN_IF_FALSE(ctx, codec_id != NULL, AVERROR(EINVAL), "Codec %d is not supported\n", avctx->codec->id);
if (avctx->hw_frames_ctx)
pix_fmt = ((AVHWFramesContext*)avctx->hw_frames_ctx->data)->sw_format;
else
pix_fmt = avctx->pix_fmt;
if (pix_fmt == AV_PIX_FMT_P010) {
AMF_RETURN_IF_FALSE(ctx, amf_device_ctx->version >= AMF_MAKE_FULL_VERSION(1, 4, 32, 0), AVERROR_UNKNOWN, "10-bit encoder is not supported by AMD GPU drivers versions lower than 23.30.\n");
}
ctx->format = av_av_to_amf_format(pix_fmt);
AMF_RETURN_IF_FALSE(ctx, ctx->format != AMF_SURFACE_UNKNOWN, AVERROR(EINVAL),
"Format %s is not supported\n", av_get_pix_fmt_name(pix_fmt));
res = amf_device_ctx->factory->pVtbl->CreateComponent(amf_device_ctx->factory, amf_device_ctx->context, codec_id, &ctx->encoder);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_ENCODER_NOT_FOUND, "CreateComponent(%ls) failed with error %d\n", codec_id, res);
ctx->submitted_frame = 0;
ctx->encoded_frame = 0;
ctx->eof = 0;
return 0;
}
int av_cold ff_amf_encode_close(AVCodecContext *avctx)
{
AMFEncoderContext *ctx = avctx->priv_data;
if (ctx->encoder) {
ctx->encoder->pVtbl->Terminate(ctx->encoder);
ctx->encoder->pVtbl->Release(ctx->encoder);
ctx->encoder = NULL;
}
av_buffer_unref(&ctx->device_ctx_ref);
av_fifo_freep2(&ctx->timestamp_list);
return 0;
}
static int amf_copy_surface(AVCodecContext *avctx, const AVFrame *frame,
AMFSurface* surface)
{
AMFPlane *plane;
uint8_t *dst_data[4] = {0};
int dst_linesize[4] = {0};
int planes;
int i;
planes = (int)surface->pVtbl->GetPlanesCount(surface);
av_assert0(planes < FF_ARRAY_ELEMS(dst_data));
for (i = 0; i < planes; i++) {
plane = surface->pVtbl->GetPlaneAt(surface, i);
dst_data[i] = plane->pVtbl->GetNative(plane);
dst_linesize[i] = plane->pVtbl->GetHPitch(plane);
}
av_image_copy2(dst_data, dst_linesize,
frame->data, frame->linesize, frame->format,
avctx->width, avctx->height);
return 0;
}
static int amf_copy_buffer(AVCodecContext *avctx, AVPacket *pkt, AMFBuffer *buffer)
{
AMFEncoderContext *ctx = avctx->priv_data;
int ret;
AMFVariantStruct var = {0};
int64_t timestamp = AV_NOPTS_VALUE;
int64_t size = buffer->pVtbl->GetSize(buffer);
if ((ret = ff_get_encode_buffer(avctx, pkt, size, 0)) < 0) {
return ret;
}
memcpy(pkt->data, buffer->pVtbl->GetNative(buffer), size);
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
buffer->pVtbl->GetProperty(buffer, AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE, &var);
if(var.int64Value == AMF_VIDEO_ENCODER_OUTPUT_DATA_TYPE_IDR) {
pkt->flags = AV_PKT_FLAG_KEY;
}
break;
case AV_CODEC_ID_HEVC:
buffer->pVtbl->GetProperty(buffer, AMF_VIDEO_ENCODER_HEVC_OUTPUT_DATA_TYPE, &var);
if (var.int64Value == AMF_VIDEO_ENCODER_HEVC_OUTPUT_DATA_TYPE_IDR) {
pkt->flags = AV_PKT_FLAG_KEY;
}
break;
case AV_CODEC_ID_AV1:
buffer->pVtbl->GetProperty(buffer, AMF_VIDEO_ENCODER_AV1_OUTPUT_FRAME_TYPE, &var);
if (var.int64Value == AMF_VIDEO_ENCODER_AV1_OUTPUT_FRAME_TYPE_KEY) {
pkt->flags = AV_PKT_FLAG_KEY;
}
default:
break;
}
buffer->pVtbl->GetProperty(buffer, PTS_PROP, &var);
pkt->pts = var.int64Value; // original pts
AMF_RETURN_IF_FALSE(ctx, av_fifo_read(ctx->timestamp_list, &timestamp, 1) >= 0,
AVERROR_UNKNOWN, "timestamp_list is empty\n");
// calc dts shift if max_b_frames > 0
if ((ctx->max_b_frames > 0 || ((ctx->pa_adaptive_mini_gop == 1) ? true : false)) && ctx->dts_delay == 0) {
int64_t timestamp_last = AV_NOPTS_VALUE;
size_t can_read = av_fifo_can_read(ctx->timestamp_list);
AMF_RETURN_IF_FALSE(ctx, can_read > 0, AVERROR_UNKNOWN,
"timestamp_list is empty while max_b_frames = %d\n", avctx->max_b_frames);
av_fifo_peek(ctx->timestamp_list, &timestamp_last, 1, can_read - 1);
if (timestamp < 0 || timestamp_last < AV_NOPTS_VALUE) {
return AVERROR(ERANGE);
}
ctx->dts_delay = timestamp_last - timestamp;
}
pkt->dts = timestamp - ctx->dts_delay;
return 0;
}
// amfenc API implementation
int ff_amf_encode_init(AVCodecContext *avctx)
{
int ret;
AMFEncoderContext *ctx = avctx->priv_data;
AVHWDeviceContext *hwdev_ctx = NULL;
// hardcoded to current HW queue size - will auto-realloc if too small
ctx->timestamp_list = av_fifo_alloc2(avctx->max_b_frames + 16, sizeof(int64_t),
AV_FIFO_FLAG_AUTO_GROW);
if (!ctx->timestamp_list) {
return AVERROR(ENOMEM);
}
ctx->dts_delay = 0;
ctx->hwsurfaces_in_queue = 0;
if (avctx->hw_device_ctx) {
hwdev_ctx = (AVHWDeviceContext*)avctx->hw_device_ctx->data;
if (hwdev_ctx->type == AV_HWDEVICE_TYPE_AMF)
{
ctx->device_ctx_ref = av_buffer_ref(avctx->hw_device_ctx);
}
else {
ret = av_hwdevice_ctx_create_derived(&ctx->device_ctx_ref, AV_HWDEVICE_TYPE_AMF, avctx->hw_device_ctx, 0);
AMF_RETURN_IF_FALSE(avctx, ret == 0, ret, "Failed to create derived AMF device context: %s\n", av_err2str(ret));
}
} else if (avctx->hw_frames_ctx) {
AVHWFramesContext *frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
if (frames_ctx->device_ref ) {
if (frames_ctx->format == AV_PIX_FMT_AMF_SURFACE) {
ctx->device_ctx_ref = av_buffer_ref(frames_ctx->device_ref);
}
else {
ret = av_hwdevice_ctx_create_derived(&ctx->device_ctx_ref, AV_HWDEVICE_TYPE_AMF, frames_ctx->device_ref, 0);
AMF_RETURN_IF_FALSE(avctx, ret == 0, ret, "Failed to create derived AMF device context: %s\n", av_err2str(ret));
}
}
}
else {
ret = av_hwdevice_ctx_create(&ctx->device_ctx_ref, AV_HWDEVICE_TYPE_AMF, NULL, NULL, 0);
AMF_RETURN_IF_FALSE(avctx, ret == 0, ret, "Failed to create hardware device context (AMF) : %s\n", av_err2str(ret));
}
if ((ret = amf_init_encoder(avctx)) == 0) {
return 0;
}
ff_amf_encode_close(avctx);
return ret;
}
static AMF_RESULT amf_set_property_buffer(AMFSurface *object, const wchar_t *name, AMFBuffer *val)
{
AMF_RESULT res;
AMFVariantStruct var;
res = AMFVariantInit(&var);
if (res == AMF_OK) {
AMFGuid guid_AMFInterface = IID_AMFInterface();
AMFInterface *amf_interface;
res = val->pVtbl->QueryInterface(val, &guid_AMFInterface, (void**)&amf_interface);
if (res == AMF_OK) {
res = AMFVariantAssignInterface(&var, amf_interface);
amf_interface->pVtbl->Release(amf_interface);
}
if (res == AMF_OK) {
res = object->pVtbl->SetProperty(object, name, var);
}
AMFVariantClear(&var);
}
return res;
}
static AMF_RESULT amf_store_attached_frame_ref(const AVFrame *frame, AMFSurface *surface)
{
AMF_RESULT res = AMF_FAIL;
int64_t data;
AVFrame *frame_ref = av_frame_clone(frame);
if (frame_ref) {
memcpy(&data, &frame_ref, sizeof(frame_ref)); // store pointer in 8 bytes
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_AV_FRAME_REF, data);
}
return res;
}
static AMF_RESULT amf_release_attached_frame_ref(AMFBuffer *buffer)
{
AMFVariantStruct var = {0};
AMF_RESULT res = buffer->pVtbl->GetProperty(buffer, AMF_AV_FRAME_REF, &var);
if(res == AMF_OK && var.int64Value){
AVFrame *frame_ref;
memcpy(&frame_ref, &var.int64Value, sizeof(frame_ref));
av_frame_free(&frame_ref);
}
return res;
}
int ff_amf_receive_packet(AVCodecContext *avctx, AVPacket *avpkt)
{
AMFEncoderContext *ctx = avctx->priv_data;
AVHWDeviceContext *hw_device_ctx = (AVHWDeviceContext*)ctx->device_ctx_ref->data;
AVAMFDeviceContext *amf_device_ctx = (AVAMFDeviceContext *)hw_device_ctx->hwctx;
AMFSurface *surface;
AMF_RESULT res;
int ret;
AMF_RESULT res_query;
AMFData *data = NULL;
AVFrame *frame = av_frame_alloc();
int block_and_wait;
int input_full = 0;
int hw_surface = 0;
int64_t pts = 0;
int max_b_frames = ctx->max_b_frames < 0 ? 0 : ctx->max_b_frames;
if (!ctx->encoder){
av_frame_free(&frame);
return AVERROR(EINVAL);
}
ret = ff_encode_get_frame(avctx, frame);
if(ret < 0){
if(ret != AVERROR_EOF){
av_frame_free(&frame);
if(ret == AVERROR(EAGAIN)){
if(ctx->submitted_frame <= ctx->encoded_frame + max_b_frames + 1) // too soon to poll
return ret;
}
}
}
if(ret != AVERROR(EAGAIN)){
if (!frame->buf[0]) { // submit drain
if (!ctx->eof) { // submit drain one time only
if(!ctx->delayed_drain) {
res = ctx->encoder->pVtbl->Drain(ctx->encoder);
if (res == AMF_INPUT_FULL) {
ctx->delayed_drain = 1; // input queue is full: resubmit Drain() in receive loop
} else {
if (res == AMF_OK) {
ctx->eof = 1; // drain started
}
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "Drain() failed with error %d\n", res);
}
}
}
} else { // submit frame
// prepare surface from frame
switch (frame->format) {
#if CONFIG_D3D11VA
case AV_PIX_FMT_D3D11:
{
static const GUID AMFTextureArrayIndexGUID = { 0x28115527, 0xe7c3, 0x4b66, { 0x99, 0xd3, 0x4f, 0x2a, 0xe6, 0xb4, 0x7f, 0xaf } };
ID3D11Texture2D *texture = (ID3D11Texture2D*)frame->data[0]; // actual texture
int index = (intptr_t)frame->data[1]; // index is a slice in texture array is - set to tell AMF which slice to use
av_assert0(frame->hw_frames_ctx && avctx->hw_frames_ctx &&
frame->hw_frames_ctx->data == avctx->hw_frames_ctx->data);
texture->lpVtbl->SetPrivateData(texture, &AMFTextureArrayIndexGUID, sizeof(index), &index);
res = amf_device_ctx->context->pVtbl->CreateSurfaceFromDX11Native(amf_device_ctx->context, texture, &surface, NULL); // wrap to AMF surface
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR(ENOMEM), "CreateSurfaceFromDX11Native() failed with error %d\n", res);
hw_surface = 1;
}
break;
#endif
#if CONFIG_DXVA2
case AV_PIX_FMT_DXVA2_VLD:
{
IDirect3DSurface9 *texture = (IDirect3DSurface9 *)frame->data[3]; // actual texture
res = amf_device_ctx->context->pVtbl->CreateSurfaceFromDX9Native(amf_device_ctx->context, texture, &surface, NULL); // wrap to AMF surface
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR(ENOMEM), "CreateSurfaceFromDX9Native() failed with error %d\n", res);
hw_surface = 1;
}
break;
#endif
case AV_PIX_FMT_AMF_SURFACE:
{
surface = (AMFSurface*)frame->data[0];
surface->pVtbl->Acquire(surface);
hw_surface = 1;
}
break;
default:
{
res = amf_device_ctx->context->pVtbl->AllocSurface(amf_device_ctx->context, AMF_MEMORY_HOST, ctx->format, avctx->width, avctx->height, &surface);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR(ENOMEM), "AllocSurface() failed with error %d\n", res);
amf_copy_surface(avctx, frame, surface);
}
break;
}
if (hw_surface) {
amf_store_attached_frame_ref(frame, surface);
ctx->hwsurfaces_in_queue++;
// input HW surfaces can be vertically aligned by 16; tell AMF the real size
surface->pVtbl->SetCrop(surface, 0, 0, frame->width, frame->height);
}
// HDR10 metadata
if (frame->color_trc == AVCOL_TRC_SMPTE2084) {
AMFBuffer * hdrmeta_buffer = NULL;
res = amf_device_ctx->context->pVtbl->AllocBuffer(amf_device_ctx->context, AMF_MEMORY_HOST, sizeof(AMFHDRMetadata), &hdrmeta_buffer);
if (res == AMF_OK) {
AMFHDRMetadata * hdrmeta = (AMFHDRMetadata*)hdrmeta_buffer->pVtbl->GetNative(hdrmeta_buffer);
if (amf_save_hdr_metadata(avctx, frame, hdrmeta) == 0) {
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
AMF_ASSIGN_PROPERTY_INTERFACE(res, ctx->encoder, AMF_VIDEO_ENCODER_INPUT_HDR_METADATA, hdrmeta_buffer); break;
case AV_CODEC_ID_HEVC:
AMF_ASSIGN_PROPERTY_INTERFACE(res, ctx->encoder, AMF_VIDEO_ENCODER_HEVC_INPUT_HDR_METADATA, hdrmeta_buffer); break;
case AV_CODEC_ID_AV1:
AMF_ASSIGN_PROPERTY_INTERFACE(res, ctx->encoder, AMF_VIDEO_ENCODER_AV1_INPUT_HDR_METADATA, hdrmeta_buffer); break;
}
res = amf_set_property_buffer(surface, L"av_frame_hdrmeta", hdrmeta_buffer);
AMF_RETURN_IF_FALSE(avctx, res == AMF_OK, AVERROR_UNKNOWN, "SetProperty failed for \"av_frame_hdrmeta\" with error %d\n", res);
}
hdrmeta_buffer->pVtbl->Release(hdrmeta_buffer);
}
}
surface->pVtbl->SetPts(surface, frame->pts);
AMF_ASSIGN_PROPERTY_INT64(res, surface, PTS_PROP, frame->pts);
switch (avctx->codec->id) {
case AV_CODEC_ID_H264:
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_INSERT_AUD, !!ctx->aud);
switch (frame->pict_type) {
case AV_PICTURE_TYPE_I:
if (ctx->forced_idr) {
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_INSERT_SPS, 1);
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_INSERT_PPS, 1);
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_PICTURE_TYPE_IDR);
} else {
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_PICTURE_TYPE_I);
}
break;
case AV_PICTURE_TYPE_P:
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_PICTURE_TYPE_P);
break;
case AV_PICTURE_TYPE_B:
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_PICTURE_TYPE_B);
break;
}
break;
case AV_CODEC_ID_HEVC:
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_INSERT_AUD, !!ctx->aud);
switch (frame->pict_type) {
case AV_PICTURE_TYPE_I:
if (ctx->forced_idr) {
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_INSERT_HEADER, 1);
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_HEVC_PICTURE_TYPE_IDR);
} else {
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_HEVC_PICTURE_TYPE_I);
}
break;
case AV_PICTURE_TYPE_P:
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_HEVC_FORCE_PICTURE_TYPE, AMF_VIDEO_ENCODER_HEVC_PICTURE_TYPE_P);
break;
}
break;
case AV_CODEC_ID_AV1:
if (frame->pict_type == AV_PICTURE_TYPE_I) {
if (ctx->forced_idr) {
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_AV1_FORCE_INSERT_SEQUENCE_HEADER, 1);
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_AV1_FORCE_FRAME_TYPE, AMF_VIDEO_ENCODER_AV1_FORCE_FRAME_TYPE_KEY);
} else {
AMF_ASSIGN_PROPERTY_INT64(res, surface, AMF_VIDEO_ENCODER_AV1_FORCE_FRAME_TYPE, AMF_VIDEO_ENCODER_AV1_FORCE_FRAME_TYPE_INTRA_ONLY);
}
}
break;
default:
break;
}
pts = frame->pts;
// submit surface
res = ctx->encoder->pVtbl->SubmitInput(ctx->encoder, (AMFData*)surface);
av_frame_free(&frame);
if (res == AMF_INPUT_FULL) { // handle full queue
//store surface for later submission
input_full = 1;
} else {
surface->pVtbl->Release(surface);
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "SubmitInput() failed with error %d\n", res);
ctx->submitted_frame++;
ret = av_fifo_write(ctx->timestamp_list, &pts, 1);
if (ret < 0)
return ret;
if(ctx->submitted_frame <= ctx->encoded_frame + max_b_frames + 1)
return AVERROR(EAGAIN); // if frame just submiited - don't poll or wait
}
}
}
av_frame_free(&frame);
do {
block_and_wait = 0;
// poll data
res_query = ctx->encoder->pVtbl->QueryOutput(ctx->encoder, &data);
if (data) {
// copy data to packet
AMFBuffer *buffer;
AMFGuid guid = IID_AMFBuffer();
data->pVtbl->QueryInterface(data, &guid, (void**)&buffer); // query for buffer interface
ret = amf_copy_buffer(avctx, avpkt, buffer);
if (amf_release_attached_frame_ref(buffer) == AMF_OK) {
ctx->hwsurfaces_in_queue--;
}
ctx->encoded_frame++;
buffer->pVtbl->Release(buffer);
data->pVtbl->Release(data);
AMF_RETURN_IF_FALSE(ctx, ret >= 0, ret, "amf_copy_buffer() failed with error %d\n", ret);
if (ctx->delayed_drain) { // try to resubmit drain
res = ctx->encoder->pVtbl->Drain(ctx->encoder);
if (res != AMF_INPUT_FULL) {
ctx->delayed_drain = 0;
ctx->eof = 1; // drain started
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "Repeated Drain() failed with error %d\n", res);
} else {
av_log(avctx, AV_LOG_WARNING, "Data acquired but delayed drain submission got AMF_INPUT_FULL- should not happen\n");
}
}
} else if (ctx->delayed_drain || (ctx->eof && res_query != AMF_EOF) || (ctx->hwsurfaces_in_queue >= ctx->hwsurfaces_in_queue_max) || input_full) {
block_and_wait = 1;
// Only sleep if the driver doesn't support waiting in QueryOutput()
// or if we already have output data so we will skip calling it.
if (!ctx->query_timeout_supported || avpkt->data || avpkt->buf) {
av_usleep(1000);
}
}
} while (block_and_wait);
if (res_query == AMF_EOF) {
ret = AVERROR_EOF;
} else if (data == NULL) {
ret = AVERROR(EAGAIN);
} else {
if(input_full) {
// resubmit surface
res = ctx->encoder->pVtbl->SubmitInput(ctx->encoder, (AMFData*)surface);
surface->pVtbl->Release(surface);
if (res == AMF_INPUT_FULL) {
av_log(avctx, AV_LOG_WARNING, "Data acquired but delayed SubmitInput returned AMF_INPUT_FULL- should not happen\n");
} else {
AMF_RETURN_IF_FALSE(ctx, res == AMF_OK, AVERROR_UNKNOWN, "SubmitInput() failed with error %d\n", res);
ret = av_fifo_write(ctx->timestamp_list, &pts, 1);
ctx->submitted_frame++;
if (ret < 0)
return ret;
}
}
ret = 0;
}
return ret;
}
int ff_amf_get_color_profile(AVCodecContext *avctx)
{
amf_int64 color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_UNKNOWN;
if (avctx->color_range == AVCOL_RANGE_JPEG) {
/// Color Space for Full (JPEG) Range
switch (avctx->colorspace) {
case AVCOL_SPC_SMPTE170M:
color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_FULL_601;
break;
case AVCOL_SPC_BT709:
color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_FULL_709;
break;
case AVCOL_SPC_BT2020_NCL:
case AVCOL_SPC_BT2020_CL:
color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_FULL_2020;
break;
}
} else {
/// Color Space for Limited (MPEG) range
switch (avctx->colorspace) {
case AVCOL_SPC_SMPTE170M:
color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_601;
break;
case AVCOL_SPC_BT709:
color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_709;
break;
case AVCOL_SPC_BT2020_NCL:
case AVCOL_SPC_BT2020_CL:
color_profile = AMF_VIDEO_CONVERTER_COLOR_PROFILE_2020;
break;
}
}
return color_profile;
}
const AVCodecHWConfigInternal *const ff_amfenc_hw_configs[] = {
#if CONFIG_D3D11VA
HW_CONFIG_ENCODER_FRAMES(D3D11, D3D11VA),
HW_CONFIG_ENCODER_DEVICE(NONE, D3D11VA),
#endif
#if CONFIG_DXVA2
HW_CONFIG_ENCODER_FRAMES(DXVA2_VLD, DXVA2),
HW_CONFIG_ENCODER_DEVICE(NONE, DXVA2),
#endif
HW_CONFIG_ENCODER_FRAMES(AMF_SURFACE, AMF),
HW_CONFIG_ENCODER_DEVICE(NONE, AMF),
NULL,
};