| /* |
| * Copyright 2002-2008 Xiph.org Foundation |
| * Copyright 2002-2008 Jean-Marc Valin |
| * Copyright 2005-2007 Analog Devices Inc. |
| * Copyright 2005-2008 Commonwealth Scientific and Industrial Research Organisation (CSIRO) |
| * Copyright 1993, 2002, 2006 David Rowe |
| * Copyright 2003 EpicGames |
| * Copyright 1992-1994 Jutta Degener, Carsten Bormann |
| |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| |
| * - Neither the name of the Xiph.org Foundation nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/avassert.h" |
| #include "libavutil/avstring.h" |
| #include "libavutil/float_dsp.h" |
| #include "libavutil/intfloat.h" |
| #include "libavutil/mem.h" |
| #include "avcodec.h" |
| #include "bytestream.h" |
| #include "codec_internal.h" |
| #include "decode.h" |
| #include "get_bits.h" |
| #include "speexdata.h" |
| |
| #define SPEEX_NB_MODES 3 |
| #define SPEEX_INBAND_STEREO 9 |
| |
| #define QMF_ORDER 64 |
| #define NB_ORDER 10 |
| #define NB_FRAME_SIZE 160 |
| #define NB_SUBMODES 9 |
| #define NB_SUBMODE_BITS 4 |
| #define SB_SUBMODE_BITS 3 |
| |
| #define NB_SUBFRAME_SIZE 40 |
| #define NB_NB_SUBFRAMES 4 |
| #define NB_PITCH_START 17 |
| #define NB_PITCH_END 144 |
| |
| #define NB_DEC_BUFFER (NB_FRAME_SIZE + 2 * NB_PITCH_END + NB_SUBFRAME_SIZE + 12) |
| |
| #define SPEEX_MEMSET(dst, c, n) (memset((dst), (c), (n) * sizeof(*(dst)))) |
| #define SPEEX_COPY(dst, src, n) (memcpy((dst), (src), (n) * sizeof(*(dst)))) |
| |
| #define LSP_LINEAR(i) (.25f * (i) + .25f) |
| #define LSP_LINEAR_HIGH(i) (.3125f * (i) + .75f) |
| #define LSP_DIV_256(x) (0.00390625f * (x)) |
| #define LSP_DIV_512(x) (0.001953125f * (x)) |
| #define LSP_DIV_1024(x) (0.0009765625f * (x)) |
| |
| typedef struct LtpParams { |
| const int8_t *gain_cdbk; |
| int gain_bits; |
| int pitch_bits; |
| } LtpParam; |
| |
| static const LtpParam ltp_params_vlbr = { gain_cdbk_lbr, 5, 0 }; |
| static const LtpParam ltp_params_lbr = { gain_cdbk_lbr, 5, 7 }; |
| static const LtpParam ltp_params_med = { gain_cdbk_lbr, 5, 7 }; |
| static const LtpParam ltp_params_nb = { gain_cdbk_nb, 7, 7 }; |
| |
| typedef struct SplitCodebookParams { |
| int subvect_size; |
| int nb_subvect; |
| const signed char *shape_cb; |
| int shape_bits; |
| int have_sign; |
| } SplitCodebookParams; |
| |
| static const SplitCodebookParams split_cb_nb_ulbr = { 20, 2, exc_20_32_table, 5, 0 }; |
| static const SplitCodebookParams split_cb_nb_vlbr = { 10, 4, exc_10_16_table, 4, 0 }; |
| static const SplitCodebookParams split_cb_nb_lbr = { 10, 4, exc_10_32_table, 5, 0 }; |
| static const SplitCodebookParams split_cb_nb_med = { 8, 5, exc_8_128_table, 7, 0 }; |
| static const SplitCodebookParams split_cb_nb = { 5, 8, exc_5_64_table, 6, 0 }; |
| static const SplitCodebookParams split_cb_sb = { 5, 8, exc_5_256_table, 8, 0 }; |
| static const SplitCodebookParams split_cb_high = { 8, 5, hexc_table, 7, 1 }; |
| static const SplitCodebookParams split_cb_high_lbr= { 10, 4, hexc_10_32_table,5, 0 }; |
| |
| /** Quantizes LSPs */ |
| typedef void (*lsp_quant_func)(float *, float *, int, GetBitContext *); |
| |
| /** Decodes quantized LSPs */ |
| typedef void (*lsp_unquant_func)(float *, int, GetBitContext *); |
| |
| /** Long-term predictor quantization */ |
| typedef int (*ltp_quant_func)(float *, float *, float *, |
| float *, float *, float *, |
| const void *, int, int, float, int, int, |
| GetBitContext *, char *, float *, |
| float *, int, int, int, float *); |
| |
| /** Long-term un-quantize */ |
| typedef void (*ltp_unquant_func)(float *, float *, int, int, |
| float, const void *, int, int *, |
| float *, GetBitContext *, int, int, |
| float, int); |
| |
| /** Innovation quantization function */ |
| typedef void (*innovation_quant_func)(float *, float *, |
| float *, float *, const void *, |
| int, int, float *, float *, |
| GetBitContext *, char *, int, int); |
| |
| /** Innovation unquantization function */ |
| typedef void (*innovation_unquant_func)(float *, const void *, int, |
| GetBitContext *, uint32_t *); |
| |
| typedef struct SpeexSubmode { |
| int lbr_pitch; /**< Set to -1 for "normal" modes, otherwise encode pitch using |
| a global pitch and allowing a +- lbr_pitch variation (for |
| low not-rates)*/ |
| int forced_pitch_gain; /**< Use the same (forced) pitch gain for all |
| sub-frames */ |
| int have_subframe_gain; /**< Number of bits to use as sub-frame innovation |
| gain */ |
| int double_codebook; /**< Apply innovation quantization twice for higher |
| quality (and higher bit-rate)*/ |
| lsp_unquant_func lsp_unquant; /**< LSP unquantization function */ |
| |
| ltp_unquant_func ltp_unquant; /**< Long-term predictor (pitch) un-quantizer */ |
| const void *LtpParam; /**< Pitch parameters (options) */ |
| |
| innovation_unquant_func innovation_unquant; /**< Innovation un-quantization */ |
| const void *innovation_params; /**< Innovation quantization parameters*/ |
| |
| float comb_gain; /**< Gain of enhancer comb filter */ |
| } SpeexSubmode; |
| |
| typedef struct SpeexMode { |
| int modeID; /**< ID of the mode */ |
| int (*decode)(AVCodecContext *avctx, void *dec, GetBitContext *gb, float *out); |
| int frame_size; /**< Size of frames used for decoding */ |
| int subframe_size; /**< Size of sub-frames used for decoding */ |
| int lpc_size; /**< Order of LPC filter */ |
| float folding_gain; /**< Folding gain */ |
| const SpeexSubmode *submodes[NB_SUBMODES]; /**< Sub-mode data for the mode */ |
| int default_submode; /**< Default sub-mode to use when decoding */ |
| } SpeexMode; |
| |
| typedef struct DecoderState { |
| const SpeexMode *mode; |
| int modeID; /**< ID of the decoder mode */ |
| int first; /**< Is first frame */ |
| int full_frame_size; /**< Length of full-band frames */ |
| int is_wideband; /**< If wideband is present */ |
| int count_lost; /**< Was the last frame lost? */ |
| int frame_size; /**< Length of high-band frames */ |
| int subframe_size; /**< Length of high-band sub-frames */ |
| int nb_subframes; /**< Number of high-band sub-frames */ |
| int lpc_size; /**< Order of high-band LPC analysis */ |
| float last_ol_gain; /**< Open-loop gain for previous frame */ |
| float *innov_save; /**< If non-NULL, innovation is copied here */ |
| |
| /* This is used in packet loss concealment */ |
| int last_pitch; /**< Pitch of last correctly decoded frame */ |
| float last_pitch_gain; /**< Pitch gain of last correctly decoded frame */ |
| uint32_t seed; /**< Seed used for random number generation */ |
| |
| int encode_submode; |
| const SpeexSubmode *const *submodes; /**< Sub-mode data */ |
| int submodeID; /**< Activated sub-mode */ |
| int lpc_enh_enabled; /**< 1 when LPC enhancer is on, 0 otherwise */ |
| |
| /* Vocoder data */ |
| float voc_m1; |
| float voc_m2; |
| float voc_mean; |
| int voc_offset; |
| |
| int dtx_enabled; |
| int highpass_enabled; /**< Is the input filter enabled */ |
| |
| float *exc; /**< Start of excitation frame */ |
| float mem_hp[2]; /**< High-pass filter memory */ |
| float exc_buf[NB_DEC_BUFFER]; /**< Excitation buffer */ |
| float old_qlsp[NB_ORDER]; /**< Quantized LSPs for previous frame */ |
| float interp_qlpc[NB_ORDER]; /**< Interpolated quantized LPCs */ |
| float mem_sp[NB_ORDER]; /**< Filter memory for synthesis signal */ |
| float g0_mem[QMF_ORDER]; |
| float g1_mem[QMF_ORDER]; |
| float pi_gain[NB_NB_SUBFRAMES]; /**< Gain of LPC filter at theta=pi (fe/2) */ |
| float exc_rms[NB_NB_SUBFRAMES]; /**< RMS of excitation per subframe */ |
| } DecoderState; |
| |
| /* Default handler for user callbacks: skip it */ |
| static int speex_default_user_handler(GetBitContext *gb, void *state, void *data) |
| { |
| const int req_size = get_bits(gb, 4); |
| skip_bits_long(gb, 5 + 8 * req_size); |
| return 0; |
| } |
| |
| typedef struct StereoState { |
| float balance; /**< Left/right balance info */ |
| float e_ratio; /**< Ratio of energies: E(left+right)/[E(left)+E(right)] */ |
| float smooth_left; /**< Smoothed left channel gain */ |
| float smooth_right; /**< Smoothed right channel gain */ |
| } StereoState; |
| |
| typedef struct SpeexContext { |
| AVClass *class; |
| GetBitContext gb; |
| |
| int32_t version_id; /**< Version for Speex (for checking compatibility) */ |
| int32_t rate; /**< Sampling rate used */ |
| int32_t mode; /**< Mode used (0 for narrowband, 1 for wideband) */ |
| int32_t bitstream_version; /**< Version ID of the bit-stream */ |
| int32_t nb_channels; /**< Number of channels decoded */ |
| int32_t bitrate; /**< Bit-rate used */ |
| int32_t frame_size; /**< Size of frames */ |
| int32_t vbr; /**< 1 for a VBR decoding, 0 otherwise */ |
| int32_t frames_per_packet; /**< Number of frames stored per Ogg packet */ |
| int32_t extra_headers; /**< Number of additional headers after the comments */ |
| |
| int pkt_size; |
| |
| StereoState stereo; |
| DecoderState st[SPEEX_NB_MODES]; |
| |
| AVFloatDSPContext *fdsp; |
| } SpeexContext; |
| |
| static void lsp_unquant_lbr(float *lsp, int order, GetBitContext *gb) |
| { |
| int id; |
| |
| for (int i = 0; i < order; i++) |
| lsp[i] = LSP_LINEAR(i); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < 10; i++) |
| lsp[i] += LSP_DIV_256(cdbk_nb[id * 10 + i]); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < 5; i++) |
| lsp[i] += LSP_DIV_512(cdbk_nb_low1[id * 5 + i]); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < 5; i++) |
| lsp[i + 5] += LSP_DIV_512(cdbk_nb_high1[id * 5 + i]); |
| } |
| |
| static void forced_pitch_unquant(float *exc, float *exc_out, int start, int end, |
| float pitch_coef, const void *par, int nsf, |
| int *pitch_val, float *gain_val, GetBitContext *gb, int count_lost, |
| int subframe_offset, float last_pitch_gain, int cdbk_offset) |
| { |
| av_assert0(!isnan(pitch_coef)); |
| pitch_coef = fminf(pitch_coef, .99f); |
| for (int i = 0; i < nsf; i++) { |
| exc_out[i] = exc[i - start] * pitch_coef; |
| exc[i] = exc_out[i]; |
| } |
| pitch_val[0] = start; |
| gain_val[0] = gain_val[2] = 0.f; |
| gain_val[1] = pitch_coef; |
| } |
| |
| static inline float speex_rand(float std, uint32_t *seed) |
| { |
| const uint32_t jflone = 0x3f800000; |
| const uint32_t jflmsk = 0x007fffff; |
| float fran; |
| uint32_t ran; |
| seed[0] = 1664525 * seed[0] + 1013904223; |
| ran = jflone | (jflmsk & seed[0]); |
| fran = av_int2float(ran); |
| fran -= 1.5f; |
| fran *= std; |
| return fran; |
| } |
| |
| static void noise_codebook_unquant(float *exc, const void *par, int nsf, |
| GetBitContext *gb, uint32_t *seed) |
| { |
| for (int i = 0; i < nsf; i++) |
| exc[i] = speex_rand(1.f, seed); |
| } |
| |
| static void split_cb_shape_sign_unquant(float *exc, const void *par, int nsf, |
| GetBitContext *gb, uint32_t *seed) |
| { |
| int subvect_size, nb_subvect, have_sign, shape_bits; |
| const SplitCodebookParams *params; |
| const signed char *shape_cb; |
| int signs[10], ind[10]; |
| |
| params = par; |
| subvect_size = params->subvect_size; |
| nb_subvect = params->nb_subvect; |
| |
| shape_cb = params->shape_cb; |
| have_sign = params->have_sign; |
| shape_bits = params->shape_bits; |
| |
| /* Decode codewords and gains */ |
| for (int i = 0; i < nb_subvect; i++) { |
| signs[i] = have_sign ? get_bits1(gb) : 0; |
| ind[i] = get_bitsz(gb, shape_bits); |
| } |
| /* Compute decoded excitation */ |
| for (int i = 0; i < nb_subvect; i++) { |
| const float s = signs[i] ? -1.f : 1.f; |
| |
| for (int j = 0; j < subvect_size; j++) |
| exc[subvect_size * i + j] += s * 0.03125f * shape_cb[ind[i] * subvect_size + j]; |
| } |
| } |
| |
| #define SUBMODE(x) st->submodes[st->submodeID]->x |
| |
| #define gain_3tap_to_1tap(g) (FFABS(g[1]) + (g[0] > 0.f ? g[0] : -.5f * g[0]) + (g[2] > 0.f ? g[2] : -.5f * g[2])) |
| |
| static void |
| pitch_unquant_3tap(float *exc, float *exc_out, int start, int end, float pitch_coef, |
| const void *par, int nsf, int *pitch_val, float *gain_val, GetBitContext *gb, |
| int count_lost, int subframe_offset, float last_pitch_gain, int cdbk_offset) |
| { |
| int pitch, gain_index, gain_cdbk_size; |
| const int8_t *gain_cdbk; |
| const LtpParam *params; |
| float gain[3]; |
| |
| params = (const LtpParam *)par; |
| gain_cdbk_size = 1 << params->gain_bits; |
| gain_cdbk = params->gain_cdbk + 4 * gain_cdbk_size * cdbk_offset; |
| |
| pitch = get_bitsz(gb, params->pitch_bits); |
| pitch += start; |
| gain_index = get_bitsz(gb, params->gain_bits); |
| gain[0] = 0.015625f * gain_cdbk[gain_index * 4] + .5f; |
| gain[1] = 0.015625f * gain_cdbk[gain_index * 4 + 1] + .5f; |
| gain[2] = 0.015625f * gain_cdbk[gain_index * 4 + 2] + .5f; |
| |
| if (count_lost && pitch > subframe_offset) { |
| float tmp = count_lost < 4 ? last_pitch_gain : 0.5f * last_pitch_gain; |
| float gain_sum; |
| |
| tmp = fminf(tmp, .95f); |
| gain_sum = gain_3tap_to_1tap(gain); |
| |
| if (gain_sum > tmp && gain_sum > 0.f) { |
| float fact = tmp / gain_sum; |
| for (int i = 0; i < 3; i++) |
| gain[i] *= fact; |
| } |
| } |
| |
| pitch_val[0] = pitch; |
| gain_val[0] = gain[0]; |
| gain_val[1] = gain[1]; |
| gain_val[2] = gain[2]; |
| SPEEX_MEMSET(exc_out, 0, nsf); |
| |
| for (int i = 0; i < 3; i++) { |
| int tmp1, tmp3; |
| int pp = pitch + 1 - i; |
| tmp1 = nsf; |
| if (tmp1 > pp) |
| tmp1 = pp; |
| for (int j = 0; j < tmp1; j++) |
| exc_out[j] += gain[2 - i] * exc[j - pp]; |
| tmp3 = nsf; |
| if (tmp3 > pp + pitch) |
| tmp3 = pp + pitch; |
| for (int j = tmp1; j < tmp3; j++) |
| exc_out[j] += gain[2 - i] * exc[j - pp - pitch]; |
| } |
| } |
| |
| static void lsp_unquant_nb(float *lsp, int order, GetBitContext *gb) |
| { |
| int id; |
| |
| for (int i = 0; i < order; i++) |
| lsp[i] = LSP_LINEAR(i); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < 10; i++) |
| lsp[i] += LSP_DIV_256(cdbk_nb[id * 10 + i]); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < 5; i++) |
| lsp[i] += LSP_DIV_512(cdbk_nb_low1[id * 5 + i]); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < 5; i++) |
| lsp[i] += LSP_DIV_1024(cdbk_nb_low2[id * 5 + i]); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < 5; i++) |
| lsp[i + 5] += LSP_DIV_512(cdbk_nb_high1[id * 5 + i]); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < 5; i++) |
| lsp[i + 5] += LSP_DIV_1024(cdbk_nb_high2[id * 5 + i]); |
| } |
| |
| static void lsp_unquant_high(float *lsp, int order, GetBitContext *gb) |
| { |
| int id; |
| |
| for (int i = 0; i < order; i++) |
| lsp[i] = LSP_LINEAR_HIGH(i); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < order; i++) |
| lsp[i] += LSP_DIV_256(high_lsp_cdbk[id * order + i]); |
| |
| id = get_bits(gb, 6); |
| for (int i = 0; i < order; i++) |
| lsp[i] += LSP_DIV_512(high_lsp_cdbk2[id * order + i]); |
| } |
| |
| /* 2150 bps "vocoder-like" mode for comfort noise */ |
| static const SpeexSubmode nb_submode1 = { |
| 0, 1, 0, 0, lsp_unquant_lbr, forced_pitch_unquant, NULL, |
| noise_codebook_unquant, NULL, -1.f |
| }; |
| |
| /* 5.95 kbps very low bit-rate mode */ |
| static const SpeexSubmode nb_submode2 = { |
| 0, 0, 0, 0, lsp_unquant_lbr, pitch_unquant_3tap, <p_params_vlbr, |
| split_cb_shape_sign_unquant, &split_cb_nb_vlbr, .6f |
| }; |
| |
| /* 8 kbps low bit-rate mode */ |
| static const SpeexSubmode nb_submode3 = { |
| -1, 0, 1, 0, lsp_unquant_lbr, pitch_unquant_3tap, <p_params_lbr, |
| split_cb_shape_sign_unquant, &split_cb_nb_lbr, .55f |
| }; |
| |
| /* 11 kbps medium bit-rate mode */ |
| static const SpeexSubmode nb_submode4 = { |
| -1, 0, 1, 0, lsp_unquant_lbr, pitch_unquant_3tap, <p_params_med, |
| split_cb_shape_sign_unquant, &split_cb_nb_med, .45f |
| }; |
| |
| /* 15 kbps high bit-rate mode */ |
| static const SpeexSubmode nb_submode5 = { |
| -1, 0, 3, 0, lsp_unquant_nb, pitch_unquant_3tap, <p_params_nb, |
| split_cb_shape_sign_unquant, &split_cb_nb, .25f |
| }; |
| |
| /* 18.2 high bit-rate mode */ |
| static const SpeexSubmode nb_submode6 = { |
| -1, 0, 3, 0, lsp_unquant_nb, pitch_unquant_3tap, <p_params_nb, |
| split_cb_shape_sign_unquant, &split_cb_sb, .15f |
| }; |
| |
| /* 24.6 kbps high bit-rate mode */ |
| static const SpeexSubmode nb_submode7 = { |
| -1, 0, 3, 1, lsp_unquant_nb, pitch_unquant_3tap, <p_params_nb, |
| split_cb_shape_sign_unquant, &split_cb_nb, 0.05f |
| }; |
| |
| /* 3.95 kbps very low bit-rate mode */ |
| static const SpeexSubmode nb_submode8 = { |
| 0, 1, 0, 0, lsp_unquant_lbr, forced_pitch_unquant, NULL, |
| split_cb_shape_sign_unquant, &split_cb_nb_ulbr, .5f |
| }; |
| |
| static const SpeexSubmode wb_submode1 = { |
| 0, 0, 1, 0, lsp_unquant_high, NULL, NULL, |
| NULL, NULL, -1.f |
| }; |
| |
| static const SpeexSubmode wb_submode2 = { |
| 0, 0, 1, 0, lsp_unquant_high, NULL, NULL, |
| split_cb_shape_sign_unquant, &split_cb_high_lbr, -1.f |
| }; |
| |
| static const SpeexSubmode wb_submode3 = { |
| 0, 0, 1, 0, lsp_unquant_high, NULL, NULL, |
| split_cb_shape_sign_unquant, &split_cb_high, -1.f |
| }; |
| |
| static const SpeexSubmode wb_submode4 = { |
| 0, 0, 1, 1, lsp_unquant_high, NULL, NULL, |
| split_cb_shape_sign_unquant, &split_cb_high, -1.f |
| }; |
| |
| static int nb_decode(AVCodecContext *, void *, GetBitContext *, float *); |
| static int sb_decode(AVCodecContext *, void *, GetBitContext *, float *); |
| |
| static const SpeexMode speex_modes[SPEEX_NB_MODES] = { |
| { |
| .modeID = 0, |
| .decode = nb_decode, |
| .frame_size = NB_FRAME_SIZE, |
| .subframe_size = NB_SUBFRAME_SIZE, |
| .lpc_size = NB_ORDER, |
| .submodes = { |
| NULL, &nb_submode1, &nb_submode2, &nb_submode3, &nb_submode4, |
| &nb_submode5, &nb_submode6, &nb_submode7, &nb_submode8 |
| }, |
| .default_submode = 5, |
| }, |
| { |
| .modeID = 1, |
| .decode = sb_decode, |
| .frame_size = NB_FRAME_SIZE, |
| .subframe_size = NB_SUBFRAME_SIZE, |
| .lpc_size = 8, |
| .folding_gain = 0.9f, |
| .submodes = { |
| NULL, &wb_submode1, &wb_submode2, &wb_submode3, &wb_submode4 |
| }, |
| .default_submode = 3, |
| }, |
| { |
| .modeID = 2, |
| .decode = sb_decode, |
| .frame_size = 320, |
| .subframe_size = 80, |
| .lpc_size = 8, |
| .folding_gain = 0.7f, |
| .submodes = { |
| NULL, &wb_submode1 |
| }, |
| .default_submode = 1, |
| }, |
| }; |
| |
| static float compute_rms(const float *x, int len) |
| { |
| float sum = 0.f; |
| |
| for (int i = 0; i < len; i++) |
| sum += x[i] * x[i]; |
| |
| av_assert0(len > 0); |
| return sqrtf(.1f + sum / len); |
| } |
| |
| static void bw_lpc(float gamma, const float *lpc_in, |
| float *lpc_out, int order) |
| { |
| float tmp = gamma; |
| |
| for (int i = 0; i < order; i++) { |
| lpc_out[i] = tmp * lpc_in[i]; |
| tmp *= gamma; |
| } |
| } |
| |
| static void iir_mem(const float *x, const float *den, |
| float *y, int N, int ord, float *mem) |
| { |
| for (int i = 0; i < N; i++) { |
| float yi = x[i] + mem[0]; |
| float nyi = -yi; |
| for (int j = 0; j < ord - 1; j++) |
| mem[j] = mem[j + 1] + den[j] * nyi; |
| mem[ord - 1] = den[ord - 1] * nyi; |
| y[i] = yi; |
| } |
| } |
| |
| static void highpass(const float *x, float *y, int len, float *mem, int wide) |
| { |
| static const float Pcoef[2][3] = {{ 1.00000f, -1.92683f, 0.93071f }, { 1.00000f, -1.97226f, 0.97332f } }; |
| static const float Zcoef[2][3] = {{ 0.96446f, -1.92879f, 0.96446f }, { 0.98645f, -1.97277f, 0.98645f } }; |
| const float *den, *num; |
| |
| den = Pcoef[wide]; |
| num = Zcoef[wide]; |
| for (int i = 0; i < len; i++) { |
| float yi = num[0] * x[i] + mem[0]; |
| mem[0] = mem[1] + num[1] * x[i] + -den[1] * yi; |
| mem[1] = num[2] * x[i] + -den[2] * yi; |
| y[i] = yi; |
| } |
| } |
| |
| #define median3(a, b, c) \ |
| ((a) < (b) ? ((b) < (c) ? (b) : ((a) < (c) ? (c) : (a))) \ |
| : ((c) < (b) ? (b) : ((c) < (a) ? (c) : (a)))) |
| |
| static int speex_std_stereo(GetBitContext *gb, void *state, void *data) |
| { |
| StereoState *stereo = data; |
| float sign = get_bits1(gb) ? -1.f : 1.f; |
| |
| stereo->balance = exp(sign * .25f * get_bits(gb, 5)); |
| stereo->e_ratio = e_ratio_quant[get_bits(gb, 2)]; |
| |
| return 0; |
| } |
| |
| static int speex_inband_handler(GetBitContext *gb, void *state, StereoState *stereo) |
| { |
| int id = get_bits(gb, 4); |
| |
| if (id == SPEEX_INBAND_STEREO) { |
| return speex_std_stereo(gb, state, stereo); |
| } else { |
| int adv; |
| |
| if (id < 2) |
| adv = 1; |
| else if (id < 8) |
| adv = 4; |
| else if (id < 10) |
| adv = 8; |
| else if (id < 12) |
| adv = 16; |
| else if (id < 14) |
| adv = 32; |
| else |
| adv = 64; |
| skip_bits_long(gb, adv); |
| } |
| return 0; |
| } |
| |
| static void sanitize_values(float *vec, float min_val, float max_val, int len) |
| { |
| for (int i = 0; i < len; i++) { |
| if (!isnormal(vec[i]) || fabsf(vec[i]) < 1e-8f) |
| vec[i] = 0.f; |
| else |
| vec[i] = av_clipf(vec[i], min_val, max_val); |
| } |
| } |
| |
| static void signal_mul(const float *x, float *y, float scale, int len) |
| { |
| for (int i = 0; i < len; i++) |
| y[i] = scale * x[i]; |
| } |
| |
| static float inner_prod(const float *x, const float *y, int len) |
| { |
| float sum = 0.f; |
| |
| for (int i = 0; i < len; i += 8) { |
| float part = 0.f; |
| part += x[i + 0] * y[i + 0]; |
| part += x[i + 1] * y[i + 1]; |
| part += x[i + 2] * y[i + 2]; |
| part += x[i + 3] * y[i + 3]; |
| part += x[i + 4] * y[i + 4]; |
| part += x[i + 5] * y[i + 5]; |
| part += x[i + 6] * y[i + 6]; |
| part += x[i + 7] * y[i + 7]; |
| sum += part; |
| } |
| |
| return sum; |
| } |
| |
| static int interp_pitch(const float *exc, float *interp, int pitch, int len) |
| { |
| float corr[4][7], maxcorr; |
| int maxi, maxj; |
| |
| for (int i = 0; i < 7; i++) |
| corr[0][i] = inner_prod(exc, exc - pitch - 3 + i, len); |
| for (int i = 0; i < 3; i++) { |
| for (int j = 0; j < 7; j++) { |
| int i1, i2; |
| float tmp = 0.f; |
| |
| i1 = 3 - j; |
| if (i1 < 0) |
| i1 = 0; |
| i2 = 10 - j; |
| if (i2 > 7) |
| i2 = 7; |
| for (int k = i1; k < i2; k++) |
| tmp += shift_filt[i][k] * corr[0][j + k - 3]; |
| corr[i + 1][j] = tmp; |
| } |
| } |
| maxi = maxj = 0; |
| maxcorr = corr[0][0]; |
| for (int i = 0; i < 4; i++) { |
| for (int j = 0; j < 7; j++) { |
| if (corr[i][j] > maxcorr) { |
| maxcorr = corr[i][j]; |
| maxi = i; |
| maxj = j; |
| } |
| } |
| } |
| for (int i = 0; i < len; i++) { |
| float tmp = 0.f; |
| if (maxi > 0.f) { |
| for (int k = 0; k < 7; k++) |
| tmp += exc[i - (pitch - maxj + 3) + k - 3] * shift_filt[maxi - 1][k]; |
| } else { |
| tmp = exc[i - (pitch - maxj + 3)]; |
| } |
| interp[i] = tmp; |
| } |
| return pitch - maxj + 3; |
| } |
| |
| static void multicomb(const float *exc, float *new_exc, float *ak, int p, int nsf, |
| int pitch, int max_pitch, float comb_gain) |
| { |
| float old_ener, new_ener; |
| float iexc0_mag, iexc1_mag, exc_mag; |
| float iexc[4 * NB_SUBFRAME_SIZE]; |
| float corr0, corr1, gain0, gain1; |
| float pgain1, pgain2; |
| float c1, c2, g1, g2; |
| float ngain, gg1, gg2; |
| int corr_pitch = pitch; |
| |
| interp_pitch(exc, iexc, corr_pitch, 80); |
| if (corr_pitch > max_pitch) |
| interp_pitch(exc, iexc + nsf, 2 * corr_pitch, 80); |
| else |
| interp_pitch(exc, iexc + nsf, -corr_pitch, 80); |
| |
| iexc0_mag = sqrtf(1000.f + inner_prod(iexc, iexc, nsf)); |
| iexc1_mag = sqrtf(1000.f + inner_prod(iexc + nsf, iexc + nsf, nsf)); |
| exc_mag = sqrtf(1.f + inner_prod(exc, exc, nsf)); |
| corr0 = inner_prod(iexc, exc, nsf); |
| corr1 = inner_prod(iexc + nsf, exc, nsf); |
| if (corr0 > iexc0_mag * exc_mag) |
| pgain1 = 1.f; |
| else |
| pgain1 = (corr0 / exc_mag) / iexc0_mag; |
| if (corr1 > iexc1_mag * exc_mag) |
| pgain2 = 1.f; |
| else |
| pgain2 = (corr1 / exc_mag) / iexc1_mag; |
| gg1 = exc_mag / iexc0_mag; |
| gg2 = exc_mag / iexc1_mag; |
| if (comb_gain > 0.f) { |
| c1 = .4f * comb_gain + .07f; |
| c2 = .5f + 1.72f * (c1 - .07f); |
| } else { |
| c1 = c2 = 0.f; |
| } |
| g1 = 1.f - c2 * pgain1 * pgain1; |
| g2 = 1.f - c2 * pgain2 * pgain2; |
| g1 = fmaxf(g1, c1); |
| g2 = fmaxf(g2, c1); |
| g1 = c1 / g1; |
| g2 = c1 / g2; |
| |
| if (corr_pitch > max_pitch) { |
| gain0 = .7f * g1 * gg1; |
| gain1 = .3f * g2 * gg2; |
| } else { |
| gain0 = .6f * g1 * gg1; |
| gain1 = .6f * g2 * gg2; |
| } |
| for (int i = 0; i < nsf; i++) |
| new_exc[i] = exc[i] + (gain0 * iexc[i]) + (gain1 * iexc[i + nsf]); |
| new_ener = compute_rms(new_exc, nsf); |
| old_ener = compute_rms(exc, nsf); |
| |
| old_ener = fmaxf(old_ener, 1.f); |
| new_ener = fmaxf(new_ener, 1.f); |
| old_ener = fminf(old_ener, new_ener); |
| ngain = old_ener / new_ener; |
| |
| for (int i = 0; i < nsf; i++) |
| new_exc[i] *= ngain; |
| } |
| |
| static void lsp_interpolate(const float *old_lsp, const float *new_lsp, |
| float *lsp, int len, int subframe, |
| int nb_subframes, float margin) |
| { |
| const float tmp = (1.f + subframe) / nb_subframes; |
| |
| for (int i = 0; i < len; i++) { |
| lsp[i] = (1.f - tmp) * old_lsp[i] + tmp * new_lsp[i]; |
| lsp[i] = av_clipf(lsp[i], margin, M_PI - margin); |
| } |
| for (int i = 1; i < len - 1; i++) { |
| lsp[i] = fmaxf(lsp[i], lsp[i - 1] + margin); |
| if (lsp[i] > lsp[i + 1] - margin) |
| lsp[i] = .5f * (lsp[i] + lsp[i + 1] - margin); |
| } |
| } |
| |
| static void lsp_to_lpc(const float *freq, float *ak, int lpcrdr) |
| { |
| float xout1, xout2, xin1, xin2; |
| float *pw, *n0; |
| float Wp[4 * NB_ORDER + 2] = { 0 }; |
| float x_freq[NB_ORDER]; |
| const int m = lpcrdr >> 1; |
| |
| pw = Wp; |
| |
| xin1 = xin2 = 1.f; |
| |
| for (int i = 0; i < lpcrdr; i++) |
| x_freq[i] = -cosf(freq[i]); |
| |
| /* reconstruct P(z) and Q(z) by cascading second order |
| * polynomials in form 1 - 2xz(-1) +z(-2), where x is the |
| * LSP coefficient |
| */ |
| for (int j = 0; j <= lpcrdr; j++) { |
| int i2 = 0; |
| for (int i = 0; i < m; i++, i2 += 2) { |
| n0 = pw + (i * 4); |
| xout1 = xin1 + 2.f * x_freq[i2 ] * n0[0] + n0[1]; |
| xout2 = xin2 + 2.f * x_freq[i2 + 1] * n0[2] + n0[3]; |
| n0[1] = n0[0]; |
| n0[3] = n0[2]; |
| n0[0] = xin1; |
| n0[2] = xin2; |
| xin1 = xout1; |
| xin2 = xout2; |
| } |
| xout1 = xin1 + n0[4]; |
| xout2 = xin2 - n0[5]; |
| if (j > 0) |
| ak[j - 1] = (xout1 + xout2) * 0.5f; |
| n0[4] = xin1; |
| n0[5] = xin2; |
| |
| xin1 = 0.f; |
| xin2 = 0.f; |
| } |
| } |
| |
| static int nb_decode(AVCodecContext *avctx, void *ptr_st, |
| GetBitContext *gb, float *out) |
| { |
| DecoderState *st = ptr_st; |
| float ol_gain = 0, ol_pitch_coef = 0, best_pitch_gain = 0, pitch_average = 0; |
| int m, pitch, wideband, ol_pitch = 0, best_pitch = 40; |
| SpeexContext *s = avctx->priv_data; |
| float innov[NB_SUBFRAME_SIZE]; |
| float exc32[NB_SUBFRAME_SIZE]; |
| float interp_qlsp[NB_ORDER]; |
| float qlsp[NB_ORDER]; |
| float ak[NB_ORDER]; |
| float pitch_gain[3] = { 0 }; |
| |
| st->exc = st->exc_buf + 2 * NB_PITCH_END + NB_SUBFRAME_SIZE + 6; |
| |
| if (st->encode_submode) { |
| do { /* Search for next narrowband block (handle requests, skip wideband blocks) */ |
| if (get_bits_left(gb) < 5) |
| return AVERROR_INVALIDDATA; |
| wideband = get_bits1(gb); |
| if (wideband) /* Skip wideband block (for compatibility) */ { |
| int submode, advance; |
| |
| submode = get_bits(gb, SB_SUBMODE_BITS); |
| advance = wb_skip_table[submode]; |
| advance -= SB_SUBMODE_BITS + 1; |
| if (advance < 0) |
| return AVERROR_INVALIDDATA; |
| skip_bits_long(gb, advance); |
| |
| if (get_bits_left(gb) < 5) |
| return AVERROR_INVALIDDATA; |
| wideband = get_bits1(gb); |
| if (wideband) { |
| submode = get_bits(gb, SB_SUBMODE_BITS); |
| advance = wb_skip_table[submode]; |
| advance -= SB_SUBMODE_BITS + 1; |
| if (advance < 0) |
| return AVERROR_INVALIDDATA; |
| skip_bits_long(gb, advance); |
| wideband = get_bits1(gb); |
| if (wideband) { |
| av_log(avctx, AV_LOG_ERROR, "more than two wideband layers found\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| if (get_bits_left(gb) < 4) |
| return AVERROR_INVALIDDATA; |
| m = get_bits(gb, 4); |
| if (m == 15) /* We found a terminator */ { |
| return AVERROR_INVALIDDATA; |
| } else if (m == 14) /* Speex in-band request */ { |
| int ret = speex_inband_handler(gb, st, &s->stereo); |
| if (ret) |
| return ret; |
| } else if (m == 13) /* User in-band request */ { |
| int ret = speex_default_user_handler(gb, st, NULL); |
| if (ret) |
| return ret; |
| } else if (m > 8) /* Invalid mode */ { |
| return AVERROR_INVALIDDATA; |
| } |
| } while (m > 8); |
| |
| st->submodeID = m; /* Get the sub-mode that was used */ |
| } |
| |
| /* Shift all buffers by one frame */ |
| memmove(st->exc_buf, st->exc_buf + NB_FRAME_SIZE, (2 * NB_PITCH_END + NB_SUBFRAME_SIZE + 12) * sizeof(float)); |
| |
| /* If null mode (no transmission), just set a couple things to zero */ |
| if (st->submodes[st->submodeID] == NULL) { |
| float lpc[NB_ORDER]; |
| float innov_gain = 0.f; |
| |
| bw_lpc(0.93f, st->interp_qlpc, lpc, NB_ORDER); |
| innov_gain = compute_rms(st->exc, NB_FRAME_SIZE); |
| for (int i = 0; i < NB_FRAME_SIZE; i++) |
| st->exc[i] = speex_rand(innov_gain, &st->seed); |
| |
| /* Final signal synthesis from excitation */ |
| iir_mem(st->exc, lpc, out, NB_FRAME_SIZE, NB_ORDER, st->mem_sp); |
| st->count_lost = 0; |
| |
| return 0; |
| } |
| |
| /* Unquantize LSPs */ |
| SUBMODE(lsp_unquant)(qlsp, NB_ORDER, gb); |
| |
| /* Damp memory if a frame was lost and the LSP changed too much */ |
| if (st->count_lost) { |
| float fact, lsp_dist = 0; |
| |
| for (int i = 0; i < NB_ORDER; i++) |
| lsp_dist = lsp_dist + FFABS(st->old_qlsp[i] - qlsp[i]); |
| fact = .6f * exp(-.2f * lsp_dist); |
| for (int i = 0; i < NB_ORDER; i++) |
| st->mem_sp[i] = fact * st->mem_sp[i]; |
| } |
| |
| /* Handle first frame and lost-packet case */ |
| if (st->first || st->count_lost) |
| memcpy(st->old_qlsp, qlsp, sizeof(st->old_qlsp)); |
| |
| /* Get open-loop pitch estimation for low bit-rate pitch coding */ |
| if (SUBMODE(lbr_pitch) != -1) |
| ol_pitch = NB_PITCH_START + get_bits(gb, 7); |
| |
| if (SUBMODE(forced_pitch_gain)) |
| ol_pitch_coef = 0.066667f * get_bits(gb, 4); |
| |
| /* Get global excitation gain */ |
| ol_gain = expf(get_bits(gb, 5) / 3.5f); |
| |
| if (st->submodeID == 1) |
| st->dtx_enabled = get_bits(gb, 4) == 15; |
| |
| if (st->submodeID > 1) |
| st->dtx_enabled = 0; |
| |
| for (int sub = 0; sub < NB_NB_SUBFRAMES; sub++) { /* Loop on subframes */ |
| float *exc, *innov_save = NULL, tmp, ener; |
| int pit_min, pit_max, offset, q_energy; |
| |
| offset = NB_SUBFRAME_SIZE * sub; /* Offset relative to start of frame */ |
| exc = st->exc + offset; /* Excitation */ |
| if (st->innov_save) /* Original signal */ |
| innov_save = st->innov_save + offset; |
| |
| SPEEX_MEMSET(exc, 0, NB_SUBFRAME_SIZE); /* Reset excitation */ |
| |
| /* Adaptive codebook contribution */ |
| av_assert0(SUBMODE(ltp_unquant)); |
| /* Handle pitch constraints if any */ |
| if (SUBMODE(lbr_pitch) != -1) { |
| int margin = SUBMODE(lbr_pitch); |
| |
| if (margin) { |
| pit_min = ol_pitch - margin + 1; |
| pit_min = FFMAX(pit_min, NB_PITCH_START); |
| pit_max = ol_pitch + margin; |
| pit_max = FFMIN(pit_max, NB_PITCH_START); |
| } else { |
| pit_min = pit_max = ol_pitch; |
| } |
| } else { |
| pit_min = NB_PITCH_START; |
| pit_max = NB_PITCH_END; |
| } |
| |
| SUBMODE(ltp_unquant)(exc, exc32, pit_min, pit_max, ol_pitch_coef, SUBMODE(LtpParam), |
| NB_SUBFRAME_SIZE, &pitch, pitch_gain, gb, st->count_lost, offset, |
| st->last_pitch_gain, 0); |
| |
| sanitize_values(exc32, -32000, 32000, NB_SUBFRAME_SIZE); |
| |
| tmp = gain_3tap_to_1tap(pitch_gain); |
| |
| pitch_average += tmp; |
| if ((tmp > best_pitch_gain && |
| FFABS(2 * best_pitch - pitch) >= 3 && |
| FFABS(3 * best_pitch - pitch) >= 4 && |
| FFABS(4 * best_pitch - pitch) >= 5) || |
| (tmp > .6f * best_pitch_gain && |
| (FFABS(best_pitch - 2 * pitch) < 3 || |
| FFABS(best_pitch - 3 * pitch) < 4 || |
| FFABS(best_pitch - 4 * pitch) < 5)) || |
| ((.67f * tmp) > best_pitch_gain && |
| (FFABS(2 * best_pitch - pitch) < 3 || |
| FFABS(3 * best_pitch - pitch) < 4 || |
| FFABS(4 * best_pitch - pitch) < 5))) { |
| best_pitch = pitch; |
| if (tmp > best_pitch_gain) |
| best_pitch_gain = tmp; |
| } |
| |
| memset(innov, 0, sizeof(innov)); |
| |
| /* Decode sub-frame gain correction */ |
| if (SUBMODE(have_subframe_gain) == 3) { |
| q_energy = get_bits(gb, 3); |
| ener = exc_gain_quant_scal3[q_energy] * ol_gain; |
| } else if (SUBMODE(have_subframe_gain) == 1) { |
| q_energy = get_bits1(gb); |
| ener = exc_gain_quant_scal1[q_energy] * ol_gain; |
| } else { |
| ener = ol_gain; |
| } |
| |
| av_assert0(SUBMODE(innovation_unquant)); |
| /* Fixed codebook contribution */ |
| SUBMODE(innovation_unquant)(innov, SUBMODE(innovation_params), NB_SUBFRAME_SIZE, gb, &st->seed); |
| /* De-normalize innovation and update excitation */ |
| |
| signal_mul(innov, innov, ener, NB_SUBFRAME_SIZE); |
| |
| /* Decode second codebook (only for some modes) */ |
| if (SUBMODE(double_codebook)) { |
| float innov2[NB_SUBFRAME_SIZE] = { 0 }; |
| |
| SUBMODE(innovation_unquant)(innov2, SUBMODE(innovation_params), NB_SUBFRAME_SIZE, gb, &st->seed); |
| signal_mul(innov2, innov2, 0.454545f * ener, NB_SUBFRAME_SIZE); |
| for (int i = 0; i < NB_SUBFRAME_SIZE; i++) |
| innov[i] += innov2[i]; |
| } |
| for (int i = 0; i < NB_SUBFRAME_SIZE; i++) |
| exc[i] = exc32[i] + innov[i]; |
| if (innov_save) |
| memcpy(innov_save, innov, sizeof(innov)); |
| |
| /* Vocoder mode */ |
| if (st->submodeID == 1) { |
| float g = ol_pitch_coef; |
| |
| g = av_clipf(1.5f * (g - .2f), 0.f, 1.f); |
| |
| SPEEX_MEMSET(exc, 0, NB_SUBFRAME_SIZE); |
| while (st->voc_offset < NB_SUBFRAME_SIZE) { |
| if (st->voc_offset >= 0) |
| exc[st->voc_offset] = sqrtf(2.f * ol_pitch) * (g * ol_gain); |
| st->voc_offset += ol_pitch; |
| } |
| st->voc_offset -= NB_SUBFRAME_SIZE; |
| |
| for (int i = 0; i < NB_SUBFRAME_SIZE; i++) { |
| float exci = exc[i]; |
| exc[i] = (.7f * exc[i] + .3f * st->voc_m1) + ((1.f - .85f * g) * innov[i]) - .15f * g * st->voc_m2; |
| st->voc_m1 = exci; |
| st->voc_m2 = innov[i]; |
| st->voc_mean = .8f * st->voc_mean + .2f * exc[i]; |
| exc[i] -= st->voc_mean; |
| } |
| } |
| } |
| |
| if (st->lpc_enh_enabled && SUBMODE(comb_gain) > 0 && !st->count_lost) { |
| multicomb(st->exc - NB_SUBFRAME_SIZE, out, st->interp_qlpc, NB_ORDER, |
| 2 * NB_SUBFRAME_SIZE, best_pitch, 40, SUBMODE(comb_gain)); |
| multicomb(st->exc + NB_SUBFRAME_SIZE, out + 2 * NB_SUBFRAME_SIZE, |
| st->interp_qlpc, NB_ORDER, 2 * NB_SUBFRAME_SIZE, best_pitch, 40, |
| SUBMODE(comb_gain)); |
| } else { |
| SPEEX_COPY(out, &st->exc[-NB_SUBFRAME_SIZE], NB_FRAME_SIZE); |
| } |
| |
| /* If the last packet was lost, re-scale the excitation to obtain the same |
| * energy as encoded in ol_gain */ |
| if (st->count_lost) { |
| float exc_ener, gain; |
| |
| exc_ener = compute_rms(st->exc, NB_FRAME_SIZE); |
| av_assert0(exc_ener + 1.f > 0.f); |
| gain = fminf(ol_gain / (exc_ener + 1.f), 2.f); |
| for (int i = 0; i < NB_FRAME_SIZE; i++) { |
| st->exc[i] *= gain; |
| out[i] = st->exc[i - NB_SUBFRAME_SIZE]; |
| } |
| } |
| |
| for (int sub = 0; sub < NB_NB_SUBFRAMES; sub++) { /* Loop on subframes */ |
| const int offset = NB_SUBFRAME_SIZE * sub; /* Offset relative to start of frame */ |
| float pi_g = 1.f, *sp = out + offset; /* Original signal */ |
| |
| lsp_interpolate(st->old_qlsp, qlsp, interp_qlsp, NB_ORDER, sub, NB_NB_SUBFRAMES, 0.002f); |
| lsp_to_lpc(interp_qlsp, ak, NB_ORDER); /* Compute interpolated LPCs (unquantized) */ |
| |
| for (int i = 0; i < NB_ORDER; i += 2) /* Compute analysis filter at w=pi */ |
| pi_g += ak[i + 1] - ak[i]; |
| st->pi_gain[sub] = pi_g; |
| st->exc_rms[sub] = compute_rms(st->exc + offset, NB_SUBFRAME_SIZE); |
| |
| iir_mem(sp, st->interp_qlpc, sp, NB_SUBFRAME_SIZE, NB_ORDER, st->mem_sp); |
| |
| memcpy(st->interp_qlpc, ak, sizeof(st->interp_qlpc)); |
| } |
| |
| if (st->highpass_enabled) |
| highpass(out, out, NB_FRAME_SIZE, st->mem_hp, st->is_wideband); |
| |
| /* Store the LSPs for interpolation in the next frame */ |
| memcpy(st->old_qlsp, qlsp, sizeof(st->old_qlsp)); |
| |
| st->count_lost = 0; |
| st->last_pitch = best_pitch; |
| st->last_pitch_gain = .25f * pitch_average; |
| st->last_ol_gain = ol_gain; |
| st->first = 0; |
| |
| return 0; |
| } |
| |
| static void qmf_synth(const float *x1, const float *x2, const float *a, float *y, int N, int M, float *mem1, float *mem2) |
| { |
| const int M2 = M >> 1, N2 = N >> 1; |
| float xx1[352], xx2[352]; |
| |
| for (int i = 0; i < N2; i++) |
| xx1[i] = x1[N2-1-i]; |
| for (int i = 0; i < M2; i++) |
| xx1[N2+i] = mem1[2*i+1]; |
| for (int i = 0; i < N2; i++) |
| xx2[i] = x2[N2-1-i]; |
| for (int i = 0; i < M2; i++) |
| xx2[N2+i] = mem2[2*i+1]; |
| |
| for (int i = 0; i < N2; i += 2) { |
| float y0, y1, y2, y3; |
| float x10, x20; |
| |
| y0 = y1 = y2 = y3 = 0.f; |
| x10 = xx1[N2-2-i]; |
| x20 = xx2[N2-2-i]; |
| |
| for (int j = 0; j < M2; j += 2) { |
| float x11, x21; |
| float a0, a1; |
| |
| a0 = a[2*j]; |
| a1 = a[2*j+1]; |
| x11 = xx1[N2-1+j-i]; |
| x21 = xx2[N2-1+j-i]; |
| |
| y0 += a0 * (x11-x21); |
| y1 += a1 * (x11+x21); |
| y2 += a0 * (x10-x20); |
| y3 += a1 * (x10+x20); |
| a0 = a[2*j+2]; |
| a1 = a[2*j+3]; |
| x10 = xx1[N2+j-i]; |
| x20 = xx2[N2+j-i]; |
| |
| y0 += a0 * (x10-x20); |
| y1 += a1 * (x10+x20); |
| y2 += a0 * (x11-x21); |
| y3 += a1 * (x11+x21); |
| } |
| y[2 * i ] = 2.f * y0; |
| y[2 * i+1] = 2.f * y1; |
| y[2 * i+2] = 2.f * y2; |
| y[2 * i+3] = 2.f * y3; |
| } |
| |
| for (int i = 0; i < M2; i++) |
| mem1[2*i+1] = xx1[i]; |
| for (int i = 0; i < M2; i++) |
| mem2[2*i+1] = xx2[i]; |
| } |
| |
| static int sb_decode(AVCodecContext *avctx, void *ptr_st, |
| GetBitContext *gb, float *out) |
| { |
| SpeexContext *s = avctx->priv_data; |
| DecoderState *st = ptr_st; |
| float low_pi_gain[NB_NB_SUBFRAMES]; |
| float low_exc_rms[NB_NB_SUBFRAMES]; |
| float interp_qlsp[NB_ORDER]; |
| int ret, wideband; |
| float *low_innov_alias; |
| float qlsp[NB_ORDER]; |
| float ak[NB_ORDER]; |
| const SpeexMode *mode; |
| |
| mode = st->mode; |
| |
| if (st->modeID > 0) { |
| low_innov_alias = out + st->frame_size; |
| s->st[st->modeID - 1].innov_save = low_innov_alias; |
| ret = speex_modes[st->modeID - 1].decode(avctx, &s->st[st->modeID - 1], gb, out); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (st->encode_submode) { /* Check "wideband bit" */ |
| if (get_bits_left(gb) > 0) |
| wideband = show_bits1(gb); |
| else |
| wideband = 0; |
| if (wideband) { /* Regular wideband frame, read the submode */ |
| wideband = get_bits1(gb); |
| st->submodeID = get_bits(gb, SB_SUBMODE_BITS); |
| } else { /* Was a narrowband frame, set "null submode" */ |
| st->submodeID = 0; |
| } |
| if (st->submodeID != 0 && st->submodes[st->submodeID] == NULL) |
| return AVERROR_INVALIDDATA; |
| } |
| |
| /* If null mode (no transmission), just set a couple things to zero */ |
| if (st->submodes[st->submodeID] == NULL) { |
| for (int i = 0; i < st->frame_size; i++) |
| out[st->frame_size + i] = 1e-15f; |
| |
| st->first = 1; |
| |
| /* Final signal synthesis from excitation */ |
| iir_mem(out + st->frame_size, st->interp_qlpc, out + st->frame_size, st->frame_size, st->lpc_size, st->mem_sp); |
| |
| qmf_synth(out, out + st->frame_size, h0, out, st->full_frame_size, QMF_ORDER, st->g0_mem, st->g1_mem); |
| |
| return 0; |
| } |
| |
| memcpy(low_pi_gain, s->st[st->modeID - 1].pi_gain, sizeof(low_pi_gain)); |
| memcpy(low_exc_rms, s->st[st->modeID - 1].exc_rms, sizeof(low_exc_rms)); |
| |
| SUBMODE(lsp_unquant)(qlsp, st->lpc_size, gb); |
| |
| if (st->first) |
| memcpy(st->old_qlsp, qlsp, sizeof(st->old_qlsp)); |
| |
| for (int sub = 0; sub < st->nb_subframes; sub++) { |
| float filter_ratio, el, rl, rh; |
| float *innov_save = NULL, *sp; |
| float exc[80]; |
| int offset; |
| |
| offset = st->subframe_size * sub; |
| sp = out + st->frame_size + offset; |
| /* Pointer for saving innovation */ |
| if (st->innov_save) { |
| innov_save = st->innov_save + 2 * offset; |
| SPEEX_MEMSET(innov_save, 0, 2 * st->subframe_size); |
| } |
| |
| av_assert0(st->nb_subframes > 0); |
| lsp_interpolate(st->old_qlsp, qlsp, interp_qlsp, st->lpc_size, sub, st->nb_subframes, 0.05f); |
| lsp_to_lpc(interp_qlsp, ak, st->lpc_size); |
| |
| /* Calculate reponse ratio between the low and high filter in the middle |
| of the band (4000 Hz) */ |
| st->pi_gain[sub] = 1.f; |
| rh = 1.f; |
| for (int i = 0; i < st->lpc_size; i += 2) { |
| rh += ak[i + 1] - ak[i]; |
| st->pi_gain[sub] += ak[i] + ak[i + 1]; |
| } |
| |
| rl = low_pi_gain[sub]; |
| filter_ratio = (rl + .01f) / (rh + .01f); |
| |
| SPEEX_MEMSET(exc, 0, st->subframe_size); |
| if (!SUBMODE(innovation_unquant)) { |
| const int x = get_bits(gb, 5); |
| const float g = expf(.125f * (x - 10)) / filter_ratio; |
| |
| for (int i = 0; i < st->subframe_size; i += 2) { |
| exc[i ] = mode->folding_gain * low_innov_alias[offset + i ] * g; |
| exc[i + 1] = -mode->folding_gain * low_innov_alias[offset + i + 1] * g; |
| } |
| } else { |
| float gc, scale; |
| |
| el = low_exc_rms[sub]; |
| gc = 0.87360f * gc_quant_bound[get_bits(gb, 4)]; |
| |
| if (st->subframe_size == 80) |
| gc *= M_SQRT2; |
| |
| scale = (gc * el) / filter_ratio; |
| SUBMODE(innovation_unquant) |
| (exc, SUBMODE(innovation_params), st->subframe_size, |
| gb, &st->seed); |
| |
| signal_mul(exc, exc, scale, st->subframe_size); |
| if (SUBMODE(double_codebook)) { |
| float innov2[80]; |
| |
| SPEEX_MEMSET(innov2, 0, st->subframe_size); |
| SUBMODE(innovation_unquant)(innov2, SUBMODE(innovation_params), st->subframe_size, gb, &st->seed); |
| signal_mul(innov2, innov2, 0.4f * scale, st->subframe_size); |
| for (int i = 0; i < st->subframe_size; i++) |
| exc[i] += innov2[i]; |
| } |
| } |
| |
| if (st->innov_save) { |
| for (int i = 0; i < st->subframe_size; i++) |
| innov_save[2 * i] = exc[i]; |
| } |
| |
| iir_mem(st->exc_buf, st->interp_qlpc, sp, st->subframe_size, st->lpc_size, st->mem_sp); |
| memcpy(st->exc_buf, exc, sizeof(exc)); |
| memcpy(st->interp_qlpc, ak, sizeof(st->interp_qlpc)); |
| st->exc_rms[sub] = compute_rms(st->exc_buf, st->subframe_size); |
| } |
| |
| qmf_synth(out, out + st->frame_size, h0, out, st->full_frame_size, QMF_ORDER, st->g0_mem, st->g1_mem); |
| memcpy(st->old_qlsp, qlsp, sizeof(st->old_qlsp)); |
| |
| st->first = 0; |
| |
| return 0; |
| } |
| |
| static int decoder_init(SpeexContext *s, DecoderState *st, const SpeexMode *mode) |
| { |
| st->mode = mode; |
| st->modeID = mode->modeID; |
| |
| st->first = 1; |
| st->encode_submode = 1; |
| st->is_wideband = st->modeID > 0; |
| st->innov_save = NULL; |
| |
| st->submodes = mode->submodes; |
| st->submodeID = mode->default_submode; |
| st->subframe_size = mode->subframe_size; |
| st->lpc_size = mode->lpc_size; |
| st->full_frame_size = (1 + (st->modeID > 0)) * mode->frame_size; |
| st->nb_subframes = mode->frame_size / mode->subframe_size; |
| st->frame_size = mode->frame_size; |
| |
| st->lpc_enh_enabled = 1; |
| |
| st->last_pitch = 40; |
| st->count_lost = 0; |
| st->seed = 1000; |
| st->last_ol_gain = 0; |
| |
| st->voc_m1 = st->voc_m2 = st->voc_mean = 0; |
| st->voc_offset = 0; |
| st->dtx_enabled = 0; |
| st->highpass_enabled = mode->modeID == 0; |
| |
| return 0; |
| } |
| |
| static int parse_speex_extradata(AVCodecContext *avctx, |
| const uint8_t *extradata, int extradata_size) |
| { |
| SpeexContext *s = avctx->priv_data; |
| const uint8_t *buf = av_strnstr(extradata, "Speex ", extradata_size); |
| |
| if (!buf) |
| return AVERROR_INVALIDDATA; |
| |
| buf += 28; |
| |
| s->version_id = bytestream_get_le32(&buf); |
| buf += 4; |
| s->rate = bytestream_get_le32(&buf); |
| if (s->rate <= 0) |
| return AVERROR_INVALIDDATA; |
| s->mode = bytestream_get_le32(&buf); |
| if (s->mode < 0 || s->mode >= SPEEX_NB_MODES) |
| return AVERROR_INVALIDDATA; |
| s->bitstream_version = bytestream_get_le32(&buf); |
| if (s->bitstream_version != 4) |
| return AVERROR_INVALIDDATA; |
| s->nb_channels = bytestream_get_le32(&buf); |
| if (s->nb_channels <= 0 || s->nb_channels > 2) |
| return AVERROR_INVALIDDATA; |
| s->bitrate = bytestream_get_le32(&buf); |
| s->frame_size = bytestream_get_le32(&buf); |
| if (s->frame_size < NB_FRAME_SIZE << (s->mode > 1) || |
| s->frame_size > INT32_MAX >> (s->mode > 1)) |
| return AVERROR_INVALIDDATA; |
| s->frame_size = FFMIN(s->frame_size << (s->mode > 1), NB_FRAME_SIZE << s->mode); |
| s->vbr = bytestream_get_le32(&buf); |
| s->frames_per_packet = bytestream_get_le32(&buf); |
| if (s->frames_per_packet <= 0 || |
| s->frames_per_packet > 64 || |
| s->frames_per_packet >= INT32_MAX / s->nb_channels / s->frame_size) |
| return AVERROR_INVALIDDATA; |
| s->extra_headers = bytestream_get_le32(&buf); |
| |
| return 0; |
| } |
| |
| static av_cold int speex_decode_init(AVCodecContext *avctx) |
| { |
| SpeexContext *s = avctx->priv_data; |
| int ret; |
| |
| s->fdsp = avpriv_float_dsp_alloc(0); |
| if (!s->fdsp) |
| return AVERROR(ENOMEM); |
| |
| if (avctx->extradata && avctx->extradata_size >= 80) { |
| ret = parse_speex_extradata(avctx, avctx->extradata, avctx->extradata_size); |
| if (ret < 0) |
| return ret; |
| } else { |
| s->rate = avctx->sample_rate; |
| if (s->rate <= 0) |
| return AVERROR_INVALIDDATA; |
| |
| s->nb_channels = avctx->ch_layout.nb_channels; |
| if (s->nb_channels <= 0 || s->nb_channels > 2) |
| return AVERROR_INVALIDDATA; |
| |
| switch (s->rate) { |
| case 8000: s->mode = 0; break; |
| case 16000: s->mode = 1; break; |
| case 32000: s->mode = 2; break; |
| default: s->mode = 2; |
| } |
| |
| s->frames_per_packet = 64; |
| s->frame_size = NB_FRAME_SIZE << s->mode; |
| } |
| |
| if (avctx->codec_tag == MKTAG('S', 'P', 'X', 'N')) { |
| int quality; |
| |
| if (!avctx->extradata || avctx->extradata && avctx->extradata_size < 47) { |
| av_log(avctx, AV_LOG_ERROR, "Missing or invalid extradata.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| quality = avctx->extradata[37]; |
| if (quality > 10) { |
| av_log(avctx, AV_LOG_ERROR, "Unsupported quality mode %d.\n", quality); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| s->pkt_size = ((const uint8_t[]){ 5, 10, 15, 20, 20, 28, 28, 38, 38, 46, 62 })[quality]; |
| |
| s->mode = 0; |
| s->nb_channels = 1; |
| s->rate = avctx->sample_rate; |
| if (s->rate <= 0) |
| return AVERROR_INVALIDDATA; |
| s->frames_per_packet = 1; |
| s->frame_size = NB_FRAME_SIZE; |
| } |
| |
| if (s->bitrate > 0) |
| avctx->bit_rate = s->bitrate; |
| av_channel_layout_uninit(&avctx->ch_layout); |
| avctx->ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; |
| avctx->ch_layout.nb_channels = s->nb_channels; |
| avctx->sample_rate = s->rate; |
| avctx->sample_fmt = AV_SAMPLE_FMT_FLT; |
| |
| for (int m = 0; m <= s->mode; m++) { |
| ret = decoder_init(s, &s->st[m], &speex_modes[m]); |
| if (ret < 0) |
| return ret; |
| } |
| |
| s->stereo.balance = 1.f; |
| s->stereo.e_ratio = .5f; |
| s->stereo.smooth_left = 1.f; |
| s->stereo.smooth_right = 1.f; |
| |
| return 0; |
| } |
| |
| static void speex_decode_stereo(float *data, int frame_size, StereoState *stereo) |
| { |
| float balance, e_left, e_right, e_ratio; |
| |
| balance = stereo->balance; |
| e_ratio = stereo->e_ratio; |
| |
| /* These two are Q14, with max value just below 2. */ |
| e_right = 1.f / sqrtf(e_ratio * (1.f + balance)); |
| e_left = sqrtf(balance) * e_right; |
| |
| for (int i = frame_size - 1; i >= 0; i--) { |
| float tmp = data[i]; |
| stereo->smooth_left = stereo->smooth_left * 0.98f + e_left * 0.02f; |
| stereo->smooth_right = stereo->smooth_right * 0.98f + e_right * 0.02f; |
| data[2 * i ] = stereo->smooth_left * tmp; |
| data[2 * i + 1] = stereo->smooth_right * tmp; |
| } |
| } |
| |
| static int speex_decode_frame(AVCodecContext *avctx, AVFrame *frame, |
| int *got_frame_ptr, AVPacket *avpkt) |
| { |
| SpeexContext *s = avctx->priv_data; |
| int frames_per_packet = s->frames_per_packet; |
| const float scale = 1.f / 32768.f; |
| int buf_size = avpkt->size; |
| float *dst; |
| int ret; |
| |
| if (s->pkt_size && avpkt->size == 62) |
| buf_size = s->pkt_size; |
| if ((ret = init_get_bits8(&s->gb, avpkt->data, buf_size)) < 0) |
| return ret; |
| |
| frame->nb_samples = FFALIGN(s->frame_size * frames_per_packet, 4); |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| |
| dst = (float *)frame->extended_data[0]; |
| for (int i = 0; i < frames_per_packet; i++) { |
| ret = speex_modes[s->mode].decode(avctx, &s->st[s->mode], &s->gb, dst + i * s->frame_size); |
| if (ret < 0) |
| return ret; |
| if (avctx->ch_layout.nb_channels == 2) |
| speex_decode_stereo(dst + i * s->frame_size, s->frame_size, &s->stereo); |
| if (get_bits_left(&s->gb) < 5 || |
| show_bits(&s->gb, 5) == 15) { |
| frames_per_packet = i + 1; |
| break; |
| } |
| } |
| |
| dst = (float *)frame->extended_data[0]; |
| s->fdsp->vector_fmul_scalar(dst, dst, scale, frame->nb_samples * frame->ch_layout.nb_channels); |
| frame->nb_samples = s->frame_size * frames_per_packet; |
| |
| *got_frame_ptr = 1; |
| |
| return (get_bits_count(&s->gb) + 7) >> 3; |
| } |
| |
| static av_cold int speex_decode_close(AVCodecContext *avctx) |
| { |
| SpeexContext *s = avctx->priv_data; |
| av_freep(&s->fdsp); |
| return 0; |
| } |
| |
| const FFCodec ff_speex_decoder = { |
| .p.name = "speex", |
| CODEC_LONG_NAME("Speex"), |
| .p.type = AVMEDIA_TYPE_AUDIO, |
| .p.id = AV_CODEC_ID_SPEEX, |
| .init = speex_decode_init, |
| FF_CODEC_DECODE_CB(speex_decode_frame), |
| .close = speex_decode_close, |
| .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, |
| .priv_data_size = sizeof(SpeexContext), |
| .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
| }; |