blob: d59c6c33fb3fd5738fc84479ae32df99d7c9fd89 [file] [log] [blame] [edit]
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2011-2014 Uwe Hermann <[email protected]>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <rxtx>, <pdata>]
This is the list of <ptype>s and their respective <pdata> values:
- 'STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'DATA': This is always a tuple containing two items:
- 1st item: the (integer) value of the UART data. Valid values
range from 0 to 512 (as the data can be up to 9 bits in size).
- 2nd item: the list of individual data bits and their ss/es numbers.
- 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
- 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
- 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
- 'PARITY ERROR': The data is a tuple with two entries. The first one is
the expected parity value, the second is the actual parity value.
- TODO: Frame error?
The <rxtx> field is 0 for RX packets, 1 for TX packets.
'''
# Used for differentiating between the two data directions.
RX = 0
TX = 1
# Given a parity type to check (odd, even, zero, one), the value of the
# parity bit, the value of the data, and the length of the data (5-9 bits,
# usually 8 bits) return True if the parity is correct, False otherwise.
# 'none' is _not_ allowed as value for 'parity_type'.
def parity_ok(parity_type, parity_bit, data, num_data_bits):
# Handle easy cases first (parity bit is always 1 or 0).
if parity_type == 'zero':
return parity_bit == 0
elif parity_type == 'one':
return parity_bit == 1
# Count number of 1 (high) bits in the data (and the parity bit itself!).
ones = bin(data).count('1') + parity_bit
# Check for odd/even parity.
if parity_type == 'odd':
return (ones % 2) == 1
elif parity_type == 'even':
return (ones % 2) == 0
class SamplerateError(Exception):
pass
class ChannelError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 2
id = 'uart'
name = 'UART'
longname = 'Universal Asynchronous Receiver/Transmitter'
desc = 'Asynchronous, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['uart']
optional_channels = (
# Allow specifying only one of the signals, e.g. if only one data
# direction exists (or is relevant).
{'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
{'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
)
options = (
{'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
{'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8,
'values': (5, 6, 7, 8, 9)},
{'id': 'parity_type', 'desc': 'Parity type', 'default': 'none',
'values': ('none', 'odd', 'even', 'zero', 'one')},
{'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes',
'values': ('yes', 'no')},
{'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0,
'values': (0.0, 0.5, 1.0, 1.5)},
{'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
'values': ('lsb-first', 'msb-first')},
{'id': 'format', 'desc': 'Data format', 'default': 'ascii',
'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
{'id': 'invert_rx', 'desc': 'Invert RX?', 'default': 'no',
'values': ('yes', 'no')},
{'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no',
'values': ('yes', 'no')},
)
annotations = (
('rx-data', 'RX data'),
('tx-data', 'TX data'),
('rx-start', 'RX start bits'),
('tx-start', 'TX start bits'),
('rx-parity-ok', 'RX parity OK bits'),
('tx-parity-ok', 'TX parity OK bits'),
('rx-parity-err', 'RX parity error bits'),
('tx-parity-err', 'TX parity error bits'),
('rx-stop', 'RX stop bits'),
('tx-stop', 'TX stop bits'),
('rx-warnings', 'RX warnings'),
('tx-warnings', 'TX warnings'),
('rx-data-bits', 'RX data bits'),
('tx-data-bits', 'TX data bits'),
)
annotation_rows = (
('rx-data', 'RX', (0, 2, 4, 6, 8)),
('rx-data-bits', 'RX bits', (12,)),
('rx-warnings', 'RX warnings', (10,)),
('tx-data', 'TX', (1, 3, 5, 7, 9)),
('tx-data-bits', 'TX bits', (13,)),
('tx-warnings', 'TX warnings', (11,)),
)
binary = (
('rx', 'RX dump'),
('tx', 'TX dump'),
('rxtx', 'RX/TX dump'),
)
def putx(self, rxtx, data):
s, halfbit = self.startsample[rxtx], int(self.bit_width / 2)
self.put(s - halfbit, self.samplenum + halfbit, self.out_ann, data)
def putpx(self, rxtx, data):
s, halfbit = self.startsample[rxtx], int(self.bit_width / 2)
self.put(s - halfbit, self.samplenum + halfbit, self.out_python, data)
def putg(self, data):
s, halfbit = self.samplenum, int(self.bit_width / 2)
self.put(s - halfbit, s + halfbit, self.out_ann, data)
def putp(self, data):
s, halfbit = self.samplenum, int(self.bit_width / 2)
self.put(s - halfbit, s + halfbit, self.out_python, data)
def putbin(self, rxtx, data):
s, halfbit = self.startsample[rxtx], int(self.bit_width / 2)
self.put(s - halfbit, self.samplenum + halfbit, self.out_bin, data)
def __init__(self, **kwargs):
self.samplerate = None
self.samplenum = 0
self.frame_start = [-1, -1]
self.startbit = [-1, -1]
self.cur_data_bit = [0, 0]
self.databyte = [0, 0]
self.paritybit = [-1, -1]
self.stopbit1 = [-1, -1]
self.startsample = [-1, -1]
self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
self.oldbit = [1, 1]
self.oldpins = [1, 1]
self.databits = [[], []]
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_bin = self.register(srd.OUTPUT_BINARY)
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# The width of one UART bit in number of samples.
self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
# Return true if we reached the middle of the desired bit, false otherwise.
def reached_bit(self, rxtx, bitnum):
# bitpos is the samplenumber which is in the middle of the
# specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
# (if used) or the first stop bit, and so on).
bitpos = self.frame_start[rxtx] + (self.bit_width / 2.0)
bitpos += bitnum * self.bit_width
if self.samplenum >= bitpos:
return True
return False
def reached_bit_last(self, rxtx, bitnum):
bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
if self.samplenum >= bitpos:
return True
return False
def wait_for_start_bit(self, rxtx, old_signal, signal):
# The start bit is always 0 (low). As the idle UART (and the stop bit)
# level is 1 (high), the beginning of a start bit is a falling edge.
if not (old_signal == 1 and signal == 0):
return
# Save the sample number where the start bit begins.
self.frame_start[rxtx] = self.samplenum
self.state[rxtx] = 'GET START BIT'
def get_start_bit(self, rxtx, signal):
# Skip samples until we're in the middle of the start bit.
if not self.reached_bit(rxtx, 0):
return
self.startbit[rxtx] = signal
# The startbit must be 0. If not, we report an error.
if self.startbit[rxtx] != 0:
self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
# TODO: Abort? Ignore rest of the frame?
self.cur_data_bit[rxtx] = 0
self.databyte[rxtx] = 0
self.startsample[rxtx] = -1
self.state[rxtx] = 'GET DATA BITS'
self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
self.putg([rxtx + 2, ['Start bit', 'Start', 'S']])
def get_data_bits(self, rxtx, signal):
# Skip samples until we're in the middle of the desired data bit.
if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
return
# Save the sample number of the middle of the first data bit.
if self.startsample[rxtx] == -1:
self.startsample[rxtx] = self.samplenum
# Get the next data bit in LSB-first or MSB-first fashion.
if self.options['bit_order'] == 'lsb-first':
self.databyte[rxtx] >>= 1
self.databyte[rxtx] |= \
(signal << (self.options['num_data_bits'] - 1))
else:
self.databyte[rxtx] <<= 1
self.databyte[rxtx] |= (signal << 0)
self.putg([rxtx + 12, ['%d' % signal]])
# Store individual data bits and their start/end samplenumbers.
s, halfbit = self.samplenum, int(self.bit_width / 2)
self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
# Return here, unless we already received all data bits.
if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
self.cur_data_bit[rxtx] += 1
return
self.state[rxtx] = 'GET PARITY BIT'
self.putpx(rxtx, ['DATA', rxtx,
(self.databyte[rxtx], self.databits[rxtx])])
b, f = self.databyte[rxtx], self.options['format']
if f == 'ascii':
c = chr(b) if b in range(30, 126 + 1) else '[%02X]' % b
self.putx(rxtx, [rxtx, [c]])
elif f == 'dec':
self.putx(rxtx, [rxtx, [str(b)]])
elif f == 'hex':
self.putx(rxtx, [rxtx, [hex(b)[2:].zfill(2).upper()]])
elif f == 'oct':
self.putx(rxtx, [rxtx, [oct(b)[2:].zfill(3)]])
elif f == 'bin':
self.putx(rxtx, [rxtx, [bin(b)[2:].zfill(8)]])
self.putbin(rxtx, (rxtx, bytes([b])))
self.putbin(rxtx, (2, bytes([b])))
self.databits = [[], []]
def get_parity_bit(self, rxtx, signal):
# If no parity is used/configured, skip to the next state immediately.
if self.options['parity_type'] == 'none':
self.state[rxtx] = 'GET STOP BITS'
return
# Skip samples until we're in the middle of the parity bit.
if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
return
self.paritybit[rxtx] = signal
self.state[rxtx] = 'GET STOP BITS'
if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
self.databyte[rxtx], self.options['num_data_bits']):
self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
self.putg([rxtx + 4, ['Parity bit', 'Parity', 'P']])
else:
# TODO: Return expected/actual parity values.
self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']])
# TODO: Currently only supports 1 stop bit.
def get_stop_bits(self, rxtx, signal):
# Skip samples until we're in the middle of the stop bit(s).
skip_parity = 0 if self.options['parity_type'] == 'none' else 1
b = self.options['num_data_bits'] + 1 + skip_parity
if not self.reached_bit(rxtx, b):
return
self.stopbit1[rxtx] = signal
# Stop bits must be 1. If not, we report an error.
if self.stopbit1[rxtx] != 1:
self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
self.putg([rxtx + 8, ['Frame error', 'Frame err', 'FE']])
# TODO: Abort? Ignore the frame? Other?
self.state[rxtx] = 'WAIT FOR START BIT'
self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']])
def decode(self, ss, es, data):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
for (self.samplenum, pins) in data:
# Note: Ignoring identical samples here for performance reasons
# is not possible for this PD, at least not in the current state.
# if self.oldpins == pins:
# continue
self.oldpins, (rx, tx) = pins, pins
if self.options['invert_rx'] == 'yes':
rx = not rx
if self.options['invert_tx'] == 'yes':
tx = not tx
# Either RX or TX (but not both) can be omitted.
has_pin = [rx in (0, 1), tx in (0, 1)]
if has_pin == [False, False]:
raise ChannelError('Either TX or RX (or both) pins required.')
# State machine.
for rxtx in (RX, TX):
# Don't try to handle RX (or TX) if not supplied.
if not has_pin[rxtx]:
continue
signal = rx if (rxtx == RX) else tx
if self.state[rxtx] == 'WAIT FOR START BIT':
self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
elif self.state[rxtx] == 'GET START BIT':
self.get_start_bit(rxtx, signal)
elif self.state[rxtx] == 'GET DATA BITS':
self.get_data_bits(rxtx, signal)
elif self.state[rxtx] == 'GET PARITY BIT':
self.get_parity_bit(rxtx, signal)
elif self.state[rxtx] == 'GET STOP BITS':
self.get_stop_bits(rxtx, signal)
# Save current RX/TX values for the next round.
self.oldbit[rxtx] = signal