| //===- FlatLinearValueConstraints.cpp - Linear Constraint -----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis//FlatLinearValueConstraints.h" |
| |
| #include "mlir/Analysis/Presburger/LinearTransform.h" |
| #include "mlir/Analysis/Presburger/PresburgerSpace.h" |
| #include "mlir/Analysis/Presburger/Simplex.h" |
| #include "mlir/Analysis/Presburger/Utils.h" |
| #include "mlir/IR/AffineExprVisitor.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/IntegerSet.h" |
| #include "mlir/Support/LLVM.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/InterleavedRange.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <optional> |
| |
| #define DEBUG_TYPE "flat-value-constraints" |
| |
| using namespace mlir; |
| using namespace presburger; |
| |
| //===----------------------------------------------------------------------===// |
| // AffineExprFlattener |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| // See comments for SimpleAffineExprFlattener. |
| // An AffineExprFlattenerWithLocalVars extends a SimpleAffineExprFlattener by |
| // recording constraint information associated with mod's, floordiv's, and |
| // ceildiv's in FlatLinearConstraints 'localVarCst'. |
| struct AffineExprFlattener : public SimpleAffineExprFlattener { |
| using SimpleAffineExprFlattener::SimpleAffineExprFlattener; |
| |
| // Constraints connecting newly introduced local variables (for mod's and |
| // div's) to existing (dimensional and symbolic) ones. These are always |
| // inequalities. |
| IntegerPolyhedron localVarCst; |
| |
| AffineExprFlattener(unsigned nDims, unsigned nSymbols) |
| : SimpleAffineExprFlattener(nDims, nSymbols), |
| localVarCst(PresburgerSpace::getSetSpace(nDims, nSymbols)) {}; |
| |
| private: |
| // Add a local variable (needed to flatten a mod, floordiv, ceildiv expr). |
| // The local variable added is always a floordiv of a pure add/mul affine |
| // function of other variables, coefficients of which are specified in |
| // `dividend' and with respect to the positive constant `divisor'. localExpr |
| // is the simplified tree expression (AffineExpr) corresponding to the |
| // quantifier. |
| void addLocalFloorDivId(ArrayRef<int64_t> dividend, int64_t divisor, |
| AffineExpr localExpr) override { |
| SimpleAffineExprFlattener::addLocalFloorDivId(dividend, divisor, localExpr); |
| // Update localVarCst. |
| localVarCst.addLocalFloorDiv(dividend, divisor); |
| } |
| |
| LogicalResult addLocalIdSemiAffine(ArrayRef<int64_t> lhs, |
| ArrayRef<int64_t> rhs, |
| AffineExpr localExpr) override { |
| // AffineExprFlattener does not support semi-affine expressions. |
| return failure(); |
| } |
| }; |
| |
| // A SemiAffineExprFlattener is an AffineExprFlattenerWithLocalVars that adds |
| // conservative bounds for semi-affine expressions (given assumptions hold). If |
| // the assumptions required to add the semi-affine bounds are found not to hold |
| // the final constraints set will be empty/inconsistent. If the assumptions are |
| // never contradicted the final bounds still only will be correct if the |
| // assumptions hold. |
| struct SemiAffineExprFlattener : public AffineExprFlattener { |
| using AffineExprFlattener::AffineExprFlattener; |
| |
| LogicalResult addLocalIdSemiAffine(ArrayRef<int64_t> lhs, |
| ArrayRef<int64_t> rhs, |
| AffineExpr localExpr) override { |
| auto result = |
| SimpleAffineExprFlattener::addLocalIdSemiAffine(lhs, rhs, localExpr); |
| assert(succeeded(result) && |
| "unexpected failure in SimpleAffineExprFlattener"); |
| (void)result; |
| |
| if (localExpr.getKind() == AffineExprKind::Mod) { |
| // Given two numbers a and b, division is defined as: |
| // |
| // a = bq + r |
| // 0 <= r < |b| (where |x| is the absolute value of x) |
| // |
| // q = a floordiv b |
| // r = a mod b |
| |
| // Add a new local variable (r) to represent the mod. |
| unsigned rPos = localVarCst.appendVar(VarKind::Local); |
| |
| // r >= 0 (Can ALWAYS be added) |
| localVarCst.addBound(BoundType::LB, rPos, 0); |
| |
| // r < b (Can be added if b > 0, which we assume here) |
| ArrayRef<int64_t> b = rhs; |
| SmallVector<int64_t> bSubR(b); |
| bSubR.insert(bSubR.begin() + rPos, -1); |
| // Note: bSubR = b - r |
| // So this adds the bound b - r >= 1 (equivalent to r < b) |
| localVarCst.addBound(BoundType::LB, bSubR, 1); |
| |
| // Note: The assumption of b > 0 is based on the affine expression docs, |
| // which state "RHS of mod is always a constant or a symbolic expression |
| // with a positive value." (see AffineExprKind in AffineExpr.h). If this |
| // assumption does not hold constraints (added above) are a contradiction. |
| |
| return success(); |
| } |
| |
| // TODO: Support other semi-affine expressions. |
| return failure(); |
| } |
| }; |
| |
| } // namespace |
| |
| // Flattens the expressions in map. Returns failure if 'expr' was unable to be |
| // flattened. For example two specific cases: |
| // 1. an unhandled semi-affine expressions is found. |
| // 2. has poison expression (i.e., division by zero). |
| static LogicalResult |
| getFlattenedAffineExprs(ArrayRef<AffineExpr> exprs, unsigned numDims, |
| unsigned numSymbols, |
| std::vector<SmallVector<int64_t, 8>> *flattenedExprs, |
| FlatLinearConstraints *localVarCst, |
| bool addConservativeSemiAffineBounds = false) { |
| if (exprs.empty()) { |
| if (localVarCst) |
| *localVarCst = FlatLinearConstraints(numDims, numSymbols); |
| return success(); |
| } |
| |
| auto flattenExprs = [&](AffineExprFlattener &flattener) -> LogicalResult { |
| // Use the same flattener to simplify each expression successively. This way |
| // local variables / expressions are shared. |
| for (auto expr : exprs) { |
| auto flattenResult = flattener.walkPostOrder(expr); |
| if (failed(flattenResult)) |
| return failure(); |
| } |
| |
| assert(flattener.operandExprStack.size() == exprs.size()); |
| flattenedExprs->clear(); |
| flattenedExprs->assign(flattener.operandExprStack.begin(), |
| flattener.operandExprStack.end()); |
| |
| if (localVarCst) |
| localVarCst->clearAndCopyFrom(flattener.localVarCst); |
| |
| return success(); |
| }; |
| |
| if (addConservativeSemiAffineBounds) { |
| SemiAffineExprFlattener flattener(numDims, numSymbols); |
| return flattenExprs(flattener); |
| } |
| |
| AffineExprFlattener flattener(numDims, numSymbols); |
| return flattenExprs(flattener); |
| } |
| |
| // Flattens 'expr' into 'flattenedExpr'. Returns failure if 'expr' was unable to |
| // be flattened (an unhandled semi-affine was found). |
| LogicalResult mlir::getFlattenedAffineExpr( |
| AffineExpr expr, unsigned numDims, unsigned numSymbols, |
| SmallVectorImpl<int64_t> *flattenedExpr, FlatLinearConstraints *localVarCst, |
| bool addConservativeSemiAffineBounds) { |
| std::vector<SmallVector<int64_t, 8>> flattenedExprs; |
| LogicalResult ret = |
| ::getFlattenedAffineExprs({expr}, numDims, numSymbols, &flattenedExprs, |
| localVarCst, addConservativeSemiAffineBounds); |
| *flattenedExpr = flattenedExprs[0]; |
| return ret; |
| } |
| |
| /// Flattens the expressions in map. Returns failure if 'expr' was unable to be |
| /// flattened (i.e., an unhandled semi-affine was found). |
| LogicalResult mlir::getFlattenedAffineExprs( |
| AffineMap map, std::vector<SmallVector<int64_t, 8>> *flattenedExprs, |
| FlatLinearConstraints *localVarCst, bool addConservativeSemiAffineBounds) { |
| if (map.getNumResults() == 0) { |
| if (localVarCst) |
| *localVarCst = |
| FlatLinearConstraints(map.getNumDims(), map.getNumSymbols()); |
| return success(); |
| } |
| return ::getFlattenedAffineExprs( |
| map.getResults(), map.getNumDims(), map.getNumSymbols(), flattenedExprs, |
| localVarCst, addConservativeSemiAffineBounds); |
| } |
| |
| LogicalResult mlir::getFlattenedAffineExprs( |
| IntegerSet set, std::vector<SmallVector<int64_t, 8>> *flattenedExprs, |
| FlatLinearConstraints *localVarCst) { |
| if (set.getNumConstraints() == 0) { |
| if (localVarCst) |
| *localVarCst = |
| FlatLinearConstraints(set.getNumDims(), set.getNumSymbols()); |
| return success(); |
| } |
| return ::getFlattenedAffineExprs(set.getConstraints(), set.getNumDims(), |
| set.getNumSymbols(), flattenedExprs, |
| localVarCst); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FlatLinearConstraints |
| //===----------------------------------------------------------------------===// |
| |
| // Similar to `composeMap` except that no Values need be associated with the |
| // constraint system nor are they looked at -- the dimensions and symbols of |
| // `other` are expected to correspond 1:1 to `this` system. |
| LogicalResult FlatLinearConstraints::composeMatchingMap(AffineMap other) { |
| assert(other.getNumDims() == getNumDimVars() && "dim mismatch"); |
| assert(other.getNumSymbols() == getNumSymbolVars() && "symbol mismatch"); |
| |
| std::vector<SmallVector<int64_t, 8>> flatExprs; |
| if (failed(flattenAlignedMapAndMergeLocals(other, &flatExprs))) |
| return failure(); |
| assert(flatExprs.size() == other.getNumResults()); |
| |
| // Add dimensions corresponding to the map's results. |
| insertDimVar(/*pos=*/0, /*num=*/other.getNumResults()); |
| |
| // We add one equality for each result connecting the result dim of the map to |
| // the other variables. |
| // E.g.: if the expression is 16*i0 + i1, and this is the r^th |
| // iteration/result of the value map, we are adding the equality: |
| // d_r - 16*i0 - i1 = 0. Similarly, when flattening (i0 + 1, i0 + 8*i2), we |
| // add two equalities: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0. |
| for (unsigned r = 0, e = flatExprs.size(); r < e; r++) { |
| const auto &flatExpr = flatExprs[r]; |
| assert(flatExpr.size() >= other.getNumInputs() + 1); |
| |
| SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0); |
| // Set the coefficient for this result to one. |
| eqToAdd[r] = 1; |
| |
| // Dims and symbols. |
| for (unsigned i = 0, f = other.getNumInputs(); i < f; i++) { |
| // Negate `eq[r]` since the newly added dimension will be set to this one. |
| eqToAdd[e + i] = -flatExpr[i]; |
| } |
| // Local columns of `eq` are at the beginning. |
| unsigned j = getNumDimVars() + getNumSymbolVars(); |
| unsigned end = flatExpr.size() - 1; |
| for (unsigned i = other.getNumInputs(); i < end; i++, j++) { |
| eqToAdd[j] = -flatExpr[i]; |
| } |
| |
| // Constant term. |
| eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1]; |
| |
| // Add the equality connecting the result of the map to this constraint set. |
| addEquality(eqToAdd); |
| } |
| |
| return success(); |
| } |
| |
| // Determine whether the variable at 'pos' (say var_r) can be expressed as |
| // modulo of another known variable (say var_n) w.r.t a constant. For example, |
| // if the following constraints hold true: |
| // ``` |
| // 0 <= var_r <= divisor - 1 |
| // var_n - (divisor * q_expr) = var_r |
| // ``` |
| // where `var_n` is a known variable (called dividend), and `q_expr` is an |
| // `AffineExpr` (called the quotient expression), `var_r` can be written as: |
| // |
| // `var_r = var_n mod divisor`. |
| // |
| // Additionally, in a special case of the above constaints where `q_expr` is an |
| // variable itself that is not yet known (say `var_q`), it can be written as a |
| // floordiv in the following way: |
| // |
| // `var_q = var_n floordiv divisor`. |
| // |
| // First 'num' dimensional variables starting at 'offset' are |
| // derived/to-be-derived in terms of the remaining variables. The remaining |
| // variables are assigned trivial affine expressions in `memo`. For example, |
| // memo is initilized as follows for a `cst` with 5 dims, when offset=2, num=2: |
| // memo ==> d0 d1 . . d2 ... |
| // cst ==> c0 c1 c2 c3 c4 ... |
| // |
| // Returns true if the above mod or floordiv are detected, updating 'memo' with |
| // these new expressions. Returns false otherwise. |
| static bool detectAsMod(const FlatLinearConstraints &cst, unsigned pos, |
| unsigned offset, unsigned num, int64_t lbConst, |
| int64_t ubConst, MLIRContext *context, |
| SmallVectorImpl<AffineExpr> &memo) { |
| assert(pos < cst.getNumVars() && "invalid position"); |
| |
| // Check if a divisor satisfying the condition `0 <= var_r <= divisor - 1` can |
| // be determined. |
| if (lbConst != 0 || ubConst < 1) |
| return false; |
| int64_t divisor = ubConst + 1; |
| |
| // Check for the aforementioned conditions in each equality. |
| for (unsigned curEquality = 0, numEqualities = cst.getNumEqualities(); |
| curEquality < numEqualities; curEquality++) { |
| int64_t coefficientAtPos = cst.atEq64(curEquality, pos); |
| // If current equality does not involve `var_r`, continue to the next |
| // equality. |
| if (coefficientAtPos == 0) |
| continue; |
| |
| // Constant term should be 0 in this equality. |
| if (cst.atEq64(curEquality, cst.getNumCols() - 1) != 0) |
| continue; |
| |
| // Traverse through the equality and construct the dividend expression |
| // `dividendExpr`, to contain all the variables which are known and are |
| // not divisible by `(coefficientAtPos * divisor)`. Hope here is that the |
| // `dividendExpr` gets simplified into a single variable `var_n` discussed |
| // above. |
| auto dividendExpr = getAffineConstantExpr(0, context); |
| |
| // Track the terms that go into quotient expression, later used to detect |
| // additional floordiv. |
| unsigned quotientCount = 0; |
| int quotientPosition = -1; |
| int quotientSign = 1; |
| |
| // Consider each term in the current equality. |
| unsigned curVar, e; |
| for (curVar = 0, e = cst.getNumDimAndSymbolVars(); curVar < e; ++curVar) { |
| // Ignore var_r. |
| if (curVar == pos) |
| continue; |
| int64_t coefficientOfCurVar = cst.atEq64(curEquality, curVar); |
| // Ignore vars that do not contribute to the current equality. |
| if (coefficientOfCurVar == 0) |
| continue; |
| // Check if the current var goes into the quotient expression. |
| if (coefficientOfCurVar % (divisor * coefficientAtPos) == 0) { |
| quotientCount++; |
| quotientPosition = curVar; |
| quotientSign = (coefficientOfCurVar * coefficientAtPos) > 0 ? 1 : -1; |
| continue; |
| } |
| // Variables that are part of dividendExpr should be known. |
| if (!memo[curVar]) |
| break; |
| // Append the current variable to the dividend expression. |
| dividendExpr = dividendExpr + memo[curVar] * coefficientOfCurVar; |
| } |
| |
| // Can't construct expression as it depends on a yet uncomputed var. |
| if (curVar < e) |
| continue; |
| |
| // Express `var_r` in terms of the other vars collected so far. |
| if (coefficientAtPos > 0) |
| dividendExpr = (-dividendExpr).floorDiv(coefficientAtPos); |
| else |
| dividendExpr = dividendExpr.floorDiv(-coefficientAtPos); |
| |
| // Simplify the expression. |
| dividendExpr = simplifyAffineExpr(dividendExpr, cst.getNumDimVars(), |
| cst.getNumSymbolVars()); |
| // Only if the final dividend expression is just a single var (which we call |
| // `var_n`), we can proceed. |
| // TODO: Handle AffineSymbolExpr as well. There is no reason to restrict it |
| // to dims themselves. |
| auto dimExpr = dyn_cast<AffineDimExpr>(dividendExpr); |
| if (!dimExpr) |
| continue; |
| |
| // Express `var_r` as `var_n % divisor` and store the expression in `memo`. |
| if (quotientCount >= 1) { |
| // Find the column corresponding to `dimExpr`. `num` columns starting at |
| // `offset` correspond to previously unknown variables. The column |
| // corresponding to the trivially known `dimExpr` can be on either side |
| // of these. |
| unsigned dimExprPos = dimExpr.getPosition(); |
| unsigned dimExprCol = dimExprPos < offset ? dimExprPos : dimExprPos + num; |
| auto ub = cst.getConstantBound64(BoundType::UB, dimExprCol); |
| // If `var_n` has an upperbound that is less than the divisor, mod can be |
| // eliminated altogether. |
| if (ub && *ub < divisor) |
| memo[pos] = dimExpr; |
| else |
| memo[pos] = dimExpr % divisor; |
| // If a unique quotient `var_q` was seen, it can be expressed as |
| // `var_n floordiv divisor`. |
| if (quotientCount == 1 && !memo[quotientPosition]) |
| memo[quotientPosition] = dimExpr.floorDiv(divisor) * quotientSign; |
| |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Check if the pos^th variable can be expressed as a floordiv of an affine |
| /// function of other variables (where the divisor is a positive constant) |
| /// given the initial set of expressions in `exprs`. If it can be, the |
| /// corresponding position in `exprs` is set as the detected affine expr. For |
| /// eg: 4q <= i + j <= 4q + 3 <=> q = (i + j) floordiv 4. An equality can |
| /// also yield a floordiv: eg. 4q = i + j <=> q = (i + j) floordiv 4. 32q + 28 |
| /// <= i <= 32q + 31 => q = i floordiv 32. |
| static bool detectAsFloorDiv(const FlatLinearConstraints &cst, unsigned pos, |
| MLIRContext *context, |
| SmallVectorImpl<AffineExpr> &exprs) { |
| assert(pos < cst.getNumVars() && "invalid position"); |
| |
| // Get upper-lower bound pair for this variable. |
| SmallVector<bool, 8> foundRepr(cst.getNumVars(), false); |
| for (unsigned i = 0, e = cst.getNumVars(); i < e; ++i) |
| if (exprs[i]) |
| foundRepr[i] = true; |
| |
| SmallVector<int64_t, 8> dividend(cst.getNumCols()); |
| unsigned divisor; |
| auto ulPair = computeSingleVarRepr(cst, foundRepr, pos, dividend, divisor); |
| |
| // No upper-lower bound pair found for this var. |
| if (ulPair.kind == ReprKind::None || ulPair.kind == ReprKind::Equality) |
| return false; |
| |
| // Construct the dividend expression. |
| auto dividendExpr = getAffineConstantExpr(dividend.back(), context); |
| for (unsigned c = 0, f = cst.getNumVars(); c < f; c++) |
| if (dividend[c] != 0) |
| dividendExpr = dividendExpr + dividend[c] * exprs[c]; |
| |
| // Successfully detected the floordiv. |
| exprs[pos] = dividendExpr.floorDiv(divisor); |
| return true; |
| } |
| |
| void FlatLinearConstraints::dumpRow(ArrayRef<int64_t> row, |
| bool fixedColWidth) const { |
| unsigned ncols = getNumCols(); |
| bool firstNonZero = true; |
| for (unsigned j = 0; j < ncols; j++) { |
| if (j == ncols - 1) { |
| // Constant. |
| if (row[j] == 0 && !firstNonZero) { |
| if (fixedColWidth) |
| llvm::errs().indent(7); |
| } else { |
| llvm::errs() << ((row[j] >= 0) ? "+ " : "") << row[j] << ' '; |
| } |
| } else { |
| std::string var = std::string("c_") + std::to_string(j); |
| if (row[j] == 1) |
| llvm::errs() << "+ " << var << ' '; |
| else if (row[j] == -1) |
| llvm::errs() << "- " << var << ' '; |
| else if (row[j] >= 2) |
| llvm::errs() << "+ " << row[j] << '*' << var << ' '; |
| else if (row[j] <= -2) |
| llvm::errs() << "- " << -row[j] << '*' << var << ' '; |
| else if (fixedColWidth) |
| // Zero coeff. |
| llvm::errs().indent(7); |
| if (row[j] != 0) |
| firstNonZero = false; |
| } |
| } |
| } |
| |
| void FlatLinearConstraints::dumpPretty() const { |
| assert(hasConsistentState()); |
| llvm::errs() << "Constraints (" << getNumDimVars() << " dims, " |
| << getNumSymbolVars() << " symbols, " << getNumLocalVars() |
| << " locals), (" << getNumConstraints() << " constraints)\n"; |
| auto dumpConstraint = [&](unsigned rowPos, bool isEq) { |
| // Is it the first non-zero entry? |
| SmallVector<int64_t> row = |
| isEq ? getEquality64(rowPos) : getInequality64(rowPos); |
| dumpRow(row); |
| llvm::errs() << (isEq ? "=" : ">=") << " 0\n"; |
| }; |
| |
| for (unsigned i = 0, e = getNumInequalities(); i < e; i++) |
| dumpConstraint(i, /*isEq=*/false); |
| for (unsigned i = 0, e = getNumEqualities(); i < e; i++) |
| dumpConstraint(i, /*isEq=*/true); |
| llvm::errs() << '\n'; |
| } |
| |
| std::pair<AffineMap, AffineMap> FlatLinearConstraints::getLowerAndUpperBound( |
| unsigned pos, unsigned offset, unsigned num, unsigned symStartPos, |
| ArrayRef<AffineExpr> localExprs, MLIRContext *context, |
| bool closedUB) const { |
| assert(pos + offset < getNumDimVars() && "invalid dim start pos"); |
| assert(symStartPos >= (pos + offset) && "invalid sym start pos"); |
| assert(getNumLocalVars() == localExprs.size() && |
| "incorrect local exprs count"); |
| |
| SmallVector<unsigned, 4> lbIndices, ubIndices, eqIndices; |
| getLowerAndUpperBoundIndices(pos + offset, &lbIndices, &ubIndices, &eqIndices, |
| offset, num); |
| |
| /// Add to 'b' from 'a' in set [0, offset) U [offset + num, symbStartPos). |
| auto addCoeffs = [&](ArrayRef<int64_t> a, SmallVectorImpl<int64_t> &b) { |
| b.clear(); |
| for (unsigned i = 0, e = a.size(); i < e; ++i) { |
| if (i < offset || i >= offset + num) |
| b.push_back(a[i]); |
| } |
| }; |
| |
| SmallVector<int64_t, 8> lb, ub; |
| SmallVector<AffineExpr, 4> lbExprs; |
| unsigned dimCount = symStartPos - num; |
| unsigned symCount = getNumDimAndSymbolVars() - symStartPos; |
| lbExprs.reserve(lbIndices.size() + eqIndices.size()); |
| // Lower bound expressions. |
| for (auto idx : lbIndices) { |
| auto ineq = getInequality64(idx); |
| // Extract the lower bound (in terms of other coeff's + const), i.e., if |
| // i - j + 1 >= 0 is the constraint, 'pos' is for i the lower bound is j |
| // - 1. |
| addCoeffs(ineq, lb); |
| std::transform(lb.begin(), lb.end(), lb.begin(), std::negate<int64_t>()); |
| auto expr = |
| getAffineExprFromFlatForm(lb, dimCount, symCount, localExprs, context); |
| // expr ceildiv divisor is (expr + divisor - 1) floordiv divisor |
| int64_t divisor = std::abs(ineq[pos + offset]); |
| expr = (expr + divisor - 1).floorDiv(divisor); |
| lbExprs.push_back(expr); |
| } |
| |
| SmallVector<AffineExpr, 4> ubExprs; |
| ubExprs.reserve(ubIndices.size() + eqIndices.size()); |
| // Upper bound expressions. |
| for (auto idx : ubIndices) { |
| auto ineq = getInequality64(idx); |
| // Extract the upper bound (in terms of other coeff's + const). |
| addCoeffs(ineq, ub); |
| auto expr = |
| getAffineExprFromFlatForm(ub, dimCount, symCount, localExprs, context); |
| expr = expr.floorDiv(std::abs(ineq[pos + offset])); |
| int64_t ubAdjustment = closedUB ? 0 : 1; |
| ubExprs.push_back(expr + ubAdjustment); |
| } |
| |
| // Equalities. It's both a lower and a upper bound. |
| SmallVector<int64_t, 4> b; |
| for (auto idx : eqIndices) { |
| auto eq = getEquality64(idx); |
| addCoeffs(eq, b); |
| if (eq[pos + offset] > 0) |
| std::transform(b.begin(), b.end(), b.begin(), std::negate<int64_t>()); |
| |
| // Extract the upper bound (in terms of other coeff's + const). |
| auto expr = |
| getAffineExprFromFlatForm(b, dimCount, symCount, localExprs, context); |
| expr = expr.floorDiv(std::abs(eq[pos + offset])); |
| // Upper bound is exclusive. |
| ubExprs.push_back(expr + 1); |
| // Lower bound. |
| expr = |
| getAffineExprFromFlatForm(b, dimCount, symCount, localExprs, context); |
| expr = expr.ceilDiv(std::abs(eq[pos + offset])); |
| lbExprs.push_back(expr); |
| } |
| |
| auto lbMap = AffineMap::get(dimCount, symCount, lbExprs, context); |
| auto ubMap = AffineMap::get(dimCount, symCount, ubExprs, context); |
| |
| return {lbMap, ubMap}; |
| } |
| |
| /// Express the pos^th identifier of `cst` as an affine expression in |
| /// terms of other identifiers, if they are available in `exprs`, using the |
| /// equality at position `idx` in `cs`t. Populates `exprs` with such an |
| /// expression if possible, and return true. Returns false otherwise. |
| static bool detectAsExpr(const FlatLinearConstraints &cst, unsigned pos, |
| unsigned idx, MLIRContext *context, |
| SmallVectorImpl<AffineExpr> &exprs) { |
| // Initialize with a `0` expression. |
| auto expr = getAffineConstantExpr(0, context); |
| |
| // Traverse `idx`th equality and construct the possible affine expression in |
| // terms of known identifiers. |
| unsigned j, e; |
| for (j = 0, e = cst.getNumVars(); j < e; ++j) { |
| if (j == pos) |
| continue; |
| int64_t c = cst.atEq64(idx, j); |
| if (c == 0) |
| continue; |
| // If any of the involved IDs hasn't been found yet, we can't proceed. |
| if (!exprs[j]) |
| break; |
| expr = expr + exprs[j] * c; |
| } |
| if (j < e) |
| // Can't construct expression as it depends on a yet uncomputed |
| // identifier. |
| return false; |
| |
| // Add constant term to AffineExpr. |
| expr = expr + cst.atEq64(idx, cst.getNumVars()); |
| int64_t vPos = cst.atEq64(idx, pos); |
| assert(vPos != 0 && "expected non-zero here"); |
| if (vPos > 0) |
| expr = (-expr).floorDiv(vPos); |
| else |
| // vPos < 0. |
| expr = expr.floorDiv(-vPos); |
| // Successfully constructed expression. |
| exprs[pos] = expr; |
| return true; |
| } |
| |
| /// Compute a representation of `num` identifiers starting at `offset` in `cst` |
| /// as affine expressions involving other known identifiers. Each identifier's |
| /// expression (in terms of known identifiers) is populated into `memo`. |
| static void computeUnknownVars(const FlatLinearConstraints &cst, |
| MLIRContext *context, unsigned offset, |
| unsigned num, |
| SmallVectorImpl<AffineExpr> &memo) { |
| // Initialize dimensional and symbolic variables. |
| for (unsigned i = 0, e = cst.getNumDimVars(); i < e; i++) { |
| if (i < offset) |
| memo[i] = getAffineDimExpr(i, context); |
| else if (i >= offset + num) |
| memo[i] = getAffineDimExpr(i - num, context); |
| } |
| for (unsigned i = cst.getNumDimVars(), e = cst.getNumDimAndSymbolVars(); |
| i < e; i++) |
| memo[i] = getAffineSymbolExpr(i - cst.getNumDimVars(), context); |
| |
| bool changed; |
| do { |
| changed = false; |
| // Identify yet unknown variables as constants or mod's / floordiv's of |
| // other variables if possible. |
| for (unsigned pos = 0, f = cst.getNumVars(); pos < f; pos++) { |
| if (memo[pos]) |
| continue; |
| |
| auto lbConst = cst.getConstantBound64(BoundType::LB, pos); |
| auto ubConst = cst.getConstantBound64(BoundType::UB, pos); |
| if (lbConst.has_value() && ubConst.has_value()) { |
| // Detect equality to a constant. |
| if (*lbConst == *ubConst) { |
| memo[pos] = getAffineConstantExpr(*lbConst, context); |
| changed = true; |
| continue; |
| } |
| |
| // Detect a variable as modulo of another variable w.r.t a |
| // constant. |
| if (detectAsMod(cst, pos, offset, num, *lbConst, *ubConst, context, |
| memo)) { |
| changed = true; |
| continue; |
| } |
| } |
| |
| // Detect a variable as a floordiv of an affine function of other |
| // variables (divisor is a positive constant). |
| if (detectAsFloorDiv(cst, pos, context, memo)) { |
| changed = true; |
| continue; |
| } |
| |
| // Detect a variable as an expression of other variables. |
| std::optional<unsigned> idx; |
| if (!(idx = cst.findConstraintWithNonZeroAt(pos, /*isEq=*/true))) |
| continue; |
| |
| if (detectAsExpr(cst, pos, *idx, context, memo)) { |
| changed = true; |
| continue; |
| } |
| } |
| // This loop is guaranteed to reach a fixed point - since once an |
| // variable's explicit form is computed (in memo[pos]), it's not updated |
| // again. |
| } while (changed); |
| } |
| |
| /// Computes the lower and upper bounds of the first 'num' dimensional |
| /// variables (starting at 'offset') as affine maps of the remaining |
| /// variables (dimensional and symbolic variables). Local variables are |
| /// themselves explicitly computed as affine functions of other variables in |
| /// this process if needed. |
| void FlatLinearConstraints::getSliceBounds(unsigned offset, unsigned num, |
| MLIRContext *context, |
| SmallVectorImpl<AffineMap> *lbMaps, |
| SmallVectorImpl<AffineMap> *ubMaps, |
| bool closedUB) { |
| assert(offset + num <= getNumDimVars() && "invalid range"); |
| |
| // Basic simplification. |
| normalizeConstraintsByGCD(); |
| |
| LLVM_DEBUG(llvm::dbgs() << "getSliceBounds for variables at positions [" |
| << offset << ", " << offset + num << ")\n"); |
| LLVM_DEBUG(dumpPretty()); |
| |
| // Record computed/detected variables. |
| SmallVector<AffineExpr, 8> memo(getNumVars()); |
| computeUnknownVars(*this, context, offset, num, memo); |
| |
| int64_t ubAdjustment = closedUB ? 0 : 1; |
| |
| // Set the lower and upper bound maps for all the variables that were |
| // computed as affine expressions of the rest as the "detected expr" and |
| // "detected expr + 1" respectively; set the undetected ones to null. |
| std::optional<FlatLinearConstraints> tmpClone; |
| for (unsigned pos = 0; pos < num; pos++) { |
| unsigned numMapDims = getNumDimVars() - num; |
| unsigned numMapSymbols = getNumSymbolVars(); |
| AffineExpr expr = memo[pos + offset]; |
| if (expr) |
| expr = simplifyAffineExpr(expr, numMapDims, numMapSymbols); |
| |
| AffineMap &lbMap = (*lbMaps)[pos]; |
| AffineMap &ubMap = (*ubMaps)[pos]; |
| |
| if (expr) { |
| lbMap = AffineMap::get(numMapDims, numMapSymbols, expr); |
| ubMap = AffineMap::get(numMapDims, numMapSymbols, expr + ubAdjustment); |
| } else { |
| // TODO: Whenever there are local variables in the dependence |
| // constraints, we'll conservatively over-approximate, since we don't |
| // always explicitly compute them above (in the while loop). |
| if (getNumLocalVars() == 0) { |
| // Work on a copy so that we don't update this constraint system. |
| if (!tmpClone) { |
| tmpClone.emplace(FlatLinearConstraints(*this)); |
| // Removing redundant inequalities is necessary so that we don't get |
| // redundant loop bounds. |
| tmpClone->removeRedundantInequalities(); |
| } |
| std::tie(lbMap, ubMap) = tmpClone->getLowerAndUpperBound( |
| pos, offset, num, getNumDimVars(), /*localExprs=*/{}, context, |
| closedUB); |
| } |
| |
| // If the above fails, we'll just use the constant lower bound and the |
| // constant upper bound (if they exist) as the slice bounds. |
| // TODO: being conservative for the moment in cases that |
| // lead to multiple bounds - until getConstDifference in LoopFusion.cpp is |
| // fixed (b/126426796). |
| if (!lbMap || lbMap.getNumResults() != 1) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "WARNING: Potentially over-approximating slice lb\n"); |
| auto lbConst = getConstantBound64(BoundType::LB, pos + offset); |
| if (lbConst.has_value()) { |
| lbMap = AffineMap::get(numMapDims, numMapSymbols, |
| getAffineConstantExpr(*lbConst, context)); |
| } |
| } |
| if (!ubMap || ubMap.getNumResults() != 1) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "WARNING: Potentially over-approximating slice ub\n"); |
| auto ubConst = getConstantBound64(BoundType::UB, pos + offset); |
| if (ubConst.has_value()) { |
| ubMap = AffineMap::get( |
| numMapDims, numMapSymbols, |
| getAffineConstantExpr(*ubConst + ubAdjustment, context)); |
| } |
| } |
| } |
| |
| LLVM_DEBUG(llvm::dbgs() << "Slice bounds:\n"); |
| LLVM_DEBUG(llvm::dbgs() << "lb map for pos = " << Twine(pos + offset) |
| << ", expr: " << lbMap << '\n'); |
| LLVM_DEBUG(llvm::dbgs() << "ub map for pos = " << Twine(pos + offset) |
| << ", expr: " << ubMap << '\n'); |
| } |
| } |
| |
| LogicalResult FlatLinearConstraints::flattenAlignedMapAndMergeLocals( |
| AffineMap map, std::vector<SmallVector<int64_t, 8>> *flattenedExprs, |
| bool addConservativeSemiAffineBounds) { |
| FlatLinearConstraints localCst; |
| if (failed(getFlattenedAffineExprs(map, flattenedExprs, &localCst, |
| addConservativeSemiAffineBounds))) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "composition unimplemented for semi-affine maps\n"); |
| return failure(); |
| } |
| |
| // Add localCst information. |
| if (localCst.getNumLocalVars() > 0) { |
| unsigned numLocalVars = getNumLocalVars(); |
| // Insert local dims of localCst at the beginning. |
| insertLocalVar(/*pos=*/0, /*num=*/localCst.getNumLocalVars()); |
| // Insert local dims of `this` at the end of localCst. |
| localCst.appendLocalVar(/*num=*/numLocalVars); |
| // Dimensions of localCst and this constraint set match. Append localCst to |
| // this constraint set. |
| append(localCst); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult FlatLinearConstraints::addBound( |
| BoundType type, unsigned pos, AffineMap boundMap, bool isClosedBound, |
| AddConservativeSemiAffineBounds addSemiAffineBounds) { |
| assert(boundMap.getNumDims() == getNumDimVars() && "dim mismatch"); |
| assert(boundMap.getNumSymbols() == getNumSymbolVars() && "symbol mismatch"); |
| assert(pos < getNumDimAndSymbolVars() && "invalid position"); |
| assert((type != BoundType::EQ || isClosedBound) && |
| "EQ bound must be closed."); |
| |
| // Equality follows the logic of lower bound except that we add an equality |
| // instead of an inequality. |
| assert((type != BoundType::EQ || boundMap.getNumResults() == 1) && |
| "single result expected"); |
| bool lower = type == BoundType::LB || type == BoundType::EQ; |
| |
| std::vector<SmallVector<int64_t, 8>> flatExprs; |
| if (failed(flattenAlignedMapAndMergeLocals( |
| boundMap, &flatExprs, |
| addSemiAffineBounds == AddConservativeSemiAffineBounds::Yes))) |
| return failure(); |
| assert(flatExprs.size() == boundMap.getNumResults()); |
| |
| // Add one (in)equality for each result. |
| for (const auto &flatExpr : flatExprs) { |
| SmallVector<int64_t> ineq(getNumCols(), 0); |
| // Dims and symbols. |
| for (unsigned j = 0, e = boundMap.getNumInputs(); j < e; j++) { |
| ineq[j] = lower ? -flatExpr[j] : flatExpr[j]; |
| } |
| // Invalid bound: pos appears in `boundMap`. |
| // TODO: This should be an assertion. Fix `addDomainFromSliceMaps` and/or |
| // its callers to prevent invalid bounds from being added. |
| if (ineq[pos] != 0) |
| continue; |
| ineq[pos] = lower ? 1 : -1; |
| // Local columns of `ineq` are at the beginning. |
| unsigned j = getNumDimVars() + getNumSymbolVars(); |
| unsigned end = flatExpr.size() - 1; |
| for (unsigned i = boundMap.getNumInputs(); i < end; i++, j++) { |
| ineq[j] = lower ? -flatExpr[i] : flatExpr[i]; |
| } |
| // Make the bound closed in if flatExpr is open. The inequality is always |
| // created in the upper bound form, so the adjustment is -1. |
| int64_t boundAdjustment = (isClosedBound || type == BoundType::EQ) ? 0 : -1; |
| // Constant term. |
| ineq[getNumCols() - 1] = (lower ? -flatExpr[flatExpr.size() - 1] |
| : flatExpr[flatExpr.size() - 1]) + |
| boundAdjustment; |
| type == BoundType::EQ ? addEquality(ineq) : addInequality(ineq); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult FlatLinearConstraints::addBound( |
| BoundType type, unsigned pos, AffineMap boundMap, |
| AddConservativeSemiAffineBounds addSemiAffineBounds) { |
| return addBound(type, pos, boundMap, |
| /*isClosedBound=*/type != BoundType::UB, addSemiAffineBounds); |
| } |
| |
| /// Compute an explicit representation for local vars. For all systems coming |
| /// from MLIR integer sets, maps, or expressions where local vars were |
| /// introduced to model floordivs and mods, this always succeeds. |
| LogicalResult |
| FlatLinearConstraints::computeLocalVars(SmallVectorImpl<AffineExpr> &memo, |
| MLIRContext *context) const { |
| unsigned numDims = getNumDimVars(); |
| unsigned numSyms = getNumSymbolVars(); |
| |
| // Initialize dimensional and symbolic variables. |
| for (unsigned i = 0; i < numDims; i++) |
| memo[i] = getAffineDimExpr(i, context); |
| for (unsigned i = numDims, e = numDims + numSyms; i < e; i++) |
| memo[i] = getAffineSymbolExpr(i - numDims, context); |
| |
| bool changed; |
| do { |
| // Each time `changed` is true at the end of this iteration, one or more |
| // local vars would have been detected as floordivs and set in memo; so the |
| // number of null entries in memo[...] strictly reduces; so this converges. |
| changed = false; |
| for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) |
| if (!memo[numDims + numSyms + i] && |
| detectAsFloorDiv(*this, /*pos=*/numDims + numSyms + i, context, memo)) |
| changed = true; |
| } while (changed); |
| |
| ArrayRef<AffineExpr> localExprs = |
| ArrayRef<AffineExpr>(memo).take_back(getNumLocalVars()); |
| return success( |
| llvm::all_of(localExprs, [](AffineExpr expr) { return expr; })); |
| } |
| |
| /// Given an equality or inequality (`isEquality` used to disambiguate) of `cst` |
| /// at `idx`, traverse and sum up `AffineExpr`s of all known ids other than the |
| /// `pos`th. Known `AffineExpr`s are given in `exprs` (unknowns are null). If |
| /// the equality/inequality contains any unknown id, return None. Otherwise |
| /// return sum as `AffineExpr`. |
| static std::optional<AffineExpr> getAsExpr(const FlatLinearConstraints &cst, |
| unsigned pos, MLIRContext *context, |
| ArrayRef<AffineExpr> exprs, |
| unsigned idx, bool isEquality) { |
| // Initialize with a `0` expression. |
| auto expr = getAffineConstantExpr(0, context); |
| |
| SmallVector<int64_t, 8> row = |
| isEquality ? cst.getEquality64(idx) : cst.getInequality64(idx); |
| |
| // Traverse `idx`th equality and construct the possible affine expression in |
| // terms of known identifiers. |
| unsigned j, e; |
| for (j = 0, e = cst.getNumVars(); j < e; ++j) { |
| if (j == pos) |
| continue; |
| int64_t c = row[j]; |
| if (c == 0) |
| continue; |
| // If any of the involved IDs hasn't been found yet, we can't proceed. |
| if (!exprs[j]) |
| break; |
| expr = expr + exprs[j] * c; |
| } |
| if (j < e) |
| // Can't construct expression as it depends on a yet uncomputed |
| // identifier. |
| return std::nullopt; |
| |
| // Add constant term to AffineExpr. |
| expr = expr + row[cst.getNumVars()]; |
| return expr; |
| } |
| |
| std::optional<int64_t> FlatLinearConstraints::getConstantBoundOnDimSize( |
| MLIRContext *context, unsigned pos, AffineMap *lb, AffineMap *ub, |
| unsigned *minLbPos, unsigned *minUbPos) const { |
| |
| assert(pos < getNumDimVars() && "Invalid identifier position"); |
| |
| auto freeOfUnknownLocalVars = [&](ArrayRef<int64_t> cst, |
| ArrayRef<AffineExpr> whiteListCols) { |
| for (int i = getNumDimAndSymbolVars(), e = cst.size() - 1; i < e; ++i) { |
| if (whiteListCols[i] && whiteListCols[i].isSymbolicOrConstant()) |
| continue; |
| if (cst[i] != 0) |
| return false; |
| } |
| return true; |
| }; |
| |
| // Detect the necesary local variables first. |
| SmallVector<AffineExpr, 8> memo(getNumVars(), AffineExpr()); |
| (void)computeLocalVars(memo, context); |
| |
| // Find an equality for 'pos'^th identifier that equates it to some function |
| // of the symbolic identifiers (+ constant). |
| int eqPos = findEqualityToConstant(pos, /*symbolic=*/true); |
| // If the equality involves a local var that can not be expressed as a |
| // symbolic or constant affine expression, we bail out. |
| if (eqPos != -1 && freeOfUnknownLocalVars(getEquality64(eqPos), memo)) { |
| // This identifier can only take a single value. |
| if (lb && detectAsExpr(*this, pos, eqPos, context, memo)) { |
| AffineExpr equalityExpr = |
| simplifyAffineExpr(memo[pos], 0, getNumSymbolVars()); |
| *lb = AffineMap::get(/*dimCount=*/0, getNumSymbolVars(), equalityExpr); |
| if (ub) |
| *ub = *lb; |
| } |
| if (minLbPos) |
| *minLbPos = eqPos; |
| if (minUbPos) |
| *minUbPos = eqPos; |
| return 1; |
| } |
| |
| // Positions of constraints that are lower/upper bounds on the variable. |
| SmallVector<unsigned, 4> lbIndices, ubIndices; |
| |
| // Note inequalities that give lower and upper bounds. |
| getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices, |
| /*eqIndices=*/nullptr, /*offset=*/0, |
| /*num=*/getNumDimVars()); |
| |
| std::optional<int64_t> minDiff = std::nullopt; |
| unsigned minLbPosition = 0, minUbPosition = 0; |
| AffineExpr minLbExpr, minUbExpr; |
| |
| // Traverse each lower bound and upper bound pair, to compute the difference |
| // between them. |
| for (unsigned ubPos : ubIndices) { |
| // Construct sum of all ids other than `pos`th in the given upper bound row. |
| std::optional<AffineExpr> maybeUbExpr = |
| getAsExpr(*this, pos, context, memo, ubPos, /*isEquality=*/false); |
| if (!maybeUbExpr.has_value() || !(*maybeUbExpr).isSymbolicOrConstant()) |
| continue; |
| |
| // Canonical form of an inequality that constrains the upper bound on |
| // an id `x_i` is of the form: |
| // `c_1*x_1 + c_2*x_2 + ... + c_0 >= 0`, where `c_i` <= -1. |
| // Therefore the upper bound on `x_i` will be |
| // `( |
| // sum(c_j*x_j) where j != i |
| // + |
| // c_0 |
| // ) |
| // / |
| // -(c_i)`. Divison here is a floorDiv. |
| AffineExpr ubExpr = maybeUbExpr->floorDiv(-atIneq64(ubPos, pos)); |
| assert(-atIneq64(ubPos, pos) > 0 && "invalid upper bound index"); |
| |
| // Go over each lower bound. |
| for (unsigned lbPos : lbIndices) { |
| // Construct sum of all ids other than `pos`th in the given lower bound |
| // row. |
| std::optional<AffineExpr> maybeLbExpr = |
| getAsExpr(*this, pos, context, memo, lbPos, /*isEquality=*/false); |
| if (!maybeLbExpr.has_value() || !(*maybeLbExpr).isSymbolicOrConstant()) |
| continue; |
| |
| // Canonical form of an inequality that is constraining the lower bound |
| // on an id `x_i is of the form: |
| // `c_1*x_1 + c_2*x_2 + ... + c_0 >= 0`, where `c_i` >= 1. |
| // Therefore upperBound on `x_i` will be |
| // `-( |
| // sum(c_j*x_j) where j != i |
| // + |
| // c_0 |
| // ) |
| // / |
| // c_i`. Divison here is a ceilDiv. |
| int64_t divisor = atIneq64(lbPos, pos); |
| // We convert the `ceilDiv` for floordiv with the formula: |
| // `expr ceildiv divisor is (expr + divisor - 1) floordiv divisor`, |
| // since uniformly keeping divisons as `floorDiv` helps their |
| // simplification. |
| AffineExpr lbExpr = (-(*maybeLbExpr) + divisor - 1).floorDiv(divisor); |
| assert(atIneq64(lbPos, pos) > 0 && "invalid lower bound index"); |
| |
| AffineExpr difference = |
| simplifyAffineExpr(ubExpr - lbExpr + 1, 0, getNumSymbolVars()); |
| // If the difference is not constant, ignore the lower bound - upper bound |
| // pair. |
| auto constantDiff = dyn_cast<AffineConstantExpr>(difference); |
| if (!constantDiff) |
| continue; |
| |
| int64_t diffValue = constantDiff.getValue(); |
| // This bound is non-negative by definition. |
| diffValue = std::max<int64_t>(diffValue, 0); |
| if (!minDiff || diffValue < *minDiff) { |
| minDiff = diffValue; |
| minLbPosition = lbPos; |
| minUbPosition = ubPos; |
| minLbExpr = lbExpr; |
| minUbExpr = ubExpr; |
| } |
| } |
| } |
| |
| // Populate outputs where available and needed. |
| if (lb && minDiff) { |
| *lb = AffineMap::get(/*dimCount=*/0, getNumSymbolVars(), minLbExpr); |
| } |
| if (ub) |
| *ub = AffineMap::get(/*dimCount=*/0, getNumSymbolVars(), minUbExpr); |
| if (minLbPos) |
| *minLbPos = minLbPosition; |
| if (minUbPos) |
| *minUbPos = minUbPosition; |
| |
| return minDiff; |
| } |
| |
| IntegerSet FlatLinearConstraints::getAsIntegerSet(MLIRContext *context) const { |
| if (getNumConstraints() == 0) |
| // Return universal set (always true): 0 == 0. |
| return IntegerSet::get(getNumDimVars(), getNumSymbolVars(), |
| getAffineConstantExpr(/*constant=*/0, context), |
| /*eqFlags=*/true); |
| |
| // Construct local references. |
| SmallVector<AffineExpr, 8> memo(getNumVars(), AffineExpr()); |
| |
| if (failed(computeLocalVars(memo, context))) { |
| // Check if the local variables without an explicit representation have |
| // zero coefficients everywhere. |
| SmallVector<unsigned> noLocalRepVars; |
| unsigned numDimsSymbols = getNumDimAndSymbolVars(); |
| for (unsigned i = numDimsSymbols, e = getNumVars(); i < e; ++i) { |
| if (!memo[i] && !isColZero(/*pos=*/i)) |
| noLocalRepVars.push_back(i - numDimsSymbols); |
| } |
| if (!noLocalRepVars.empty()) { |
| LLVM_DEBUG({ |
| llvm::dbgs() << "local variables at position(s) " |
| << llvm::interleaved(noLocalRepVars) |
| << " do not have an explicit representation in:\n"; |
| this->dump(); |
| }); |
| return IntegerSet(); |
| } |
| } |
| |
| ArrayRef<AffineExpr> localExprs = |
| ArrayRef<AffineExpr>(memo).take_back(getNumLocalVars()); |
| |
| // Construct the IntegerSet from the equalities/inequalities. |
| unsigned numDims = getNumDimVars(); |
| unsigned numSyms = getNumSymbolVars(); |
| |
| SmallVector<bool, 16> eqFlags(getNumConstraints()); |
| std::fill(eqFlags.begin(), eqFlags.begin() + getNumEqualities(), true); |
| std::fill(eqFlags.begin() + getNumEqualities(), eqFlags.end(), false); |
| |
| SmallVector<AffineExpr, 8> exprs; |
| exprs.reserve(getNumConstraints()); |
| |
| for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
| exprs.push_back(getAffineExprFromFlatForm(getEquality64(i), numDims, |
| numSyms, localExprs, context)); |
| for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) |
| exprs.push_back(getAffineExprFromFlatForm(getInequality64(i), numDims, |
| numSyms, localExprs, context)); |
| return IntegerSet::get(numDims, numSyms, exprs, eqFlags); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FlatLinearValueConstraints |
| //===----------------------------------------------------------------------===// |
| |
| // Construct from an IntegerSet. |
| FlatLinearValueConstraints::FlatLinearValueConstraints(IntegerSet set, |
| ValueRange operands) |
| : FlatLinearConstraints(set.getNumInequalities(), set.getNumEqualities(), |
| set.getNumDims() + set.getNumSymbols() + 1, |
| set.getNumDims(), set.getNumSymbols(), |
| /*numLocals=*/0) { |
| assert((operands.empty() || set.getNumInputs() == operands.size()) && |
| "operand count mismatch"); |
| // Set the values for the non-local variables. |
| for (unsigned i = 0, e = operands.size(); i < e; ++i) |
| setValue(i, operands[i]); |
| |
| // Flatten expressions and add them to the constraint system. |
| std::vector<SmallVector<int64_t, 8>> flatExprs; |
| FlatLinearConstraints localVarCst; |
| if (failed(getFlattenedAffineExprs(set, &flatExprs, &localVarCst))) { |
| assert(false && "flattening unimplemented for semi-affine integer sets"); |
| return; |
| } |
| assert(flatExprs.size() == set.getNumConstraints()); |
| insertVar(VarKind::Local, getNumVarKind(VarKind::Local), |
| /*num=*/localVarCst.getNumLocalVars()); |
| |
| for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) { |
| const auto &flatExpr = flatExprs[i]; |
| assert(flatExpr.size() == getNumCols()); |
| if (set.getEqFlags()[i]) { |
| addEquality(flatExpr); |
| } else { |
| addInequality(flatExpr); |
| } |
| } |
| // Add the other constraints involving local vars from flattening. |
| append(localVarCst); |
| } |
| |
| unsigned FlatLinearValueConstraints::appendDimVar(ValueRange vals) { |
| unsigned pos = getNumDimVars(); |
| return insertVar(VarKind::SetDim, pos, vals); |
| } |
| |
| unsigned FlatLinearValueConstraints::appendSymbolVar(ValueRange vals) { |
| unsigned pos = getNumSymbolVars(); |
| return insertVar(VarKind::Symbol, pos, vals); |
| } |
| |
| unsigned FlatLinearValueConstraints::insertDimVar(unsigned pos, |
| ValueRange vals) { |
| return insertVar(VarKind::SetDim, pos, vals); |
| } |
| |
| unsigned FlatLinearValueConstraints::insertSymbolVar(unsigned pos, |
| ValueRange vals) { |
| return insertVar(VarKind::Symbol, pos, vals); |
| } |
| |
| unsigned FlatLinearValueConstraints::insertVar(VarKind kind, unsigned pos, |
| unsigned num) { |
| unsigned absolutePos = IntegerPolyhedron::insertVar(kind, pos, num); |
| |
| return absolutePos; |
| } |
| |
| unsigned FlatLinearValueConstraints::insertVar(VarKind kind, unsigned pos, |
| ValueRange vals) { |
| assert(!vals.empty() && "expected ValueRange with Values."); |
| assert(kind != VarKind::Local && |
| "values cannot be attached to local variables."); |
| unsigned num = vals.size(); |
| unsigned absolutePos = IntegerPolyhedron::insertVar(kind, pos, num); |
| |
| // If a Value is provided, insert it; otherwise use std::nullopt. |
| for (unsigned i = 0, e = vals.size(); i < e; ++i) |
| if (vals[i]) |
| setValue(absolutePos + i, vals[i]); |
| |
| return absolutePos; |
| } |
| |
| /// Checks if two constraint systems are in the same space, i.e., if they are |
| /// associated with the same set of variables, appearing in the same order. |
| static bool areVarsAligned(const FlatLinearValueConstraints &a, |
| const FlatLinearValueConstraints &b) { |
| if (a.getNumDomainVars() != b.getNumDomainVars() || |
| a.getNumRangeVars() != b.getNumRangeVars() || |
| a.getNumSymbolVars() != b.getNumSymbolVars()) |
| return false; |
| SmallVector<std::optional<Value>> aMaybeValues = a.getMaybeValues(), |
| bMaybeValues = b.getMaybeValues(); |
| return std::equal(aMaybeValues.begin(), aMaybeValues.end(), |
| bMaybeValues.begin(), bMaybeValues.end()); |
| } |
| |
| /// Calls areVarsAligned to check if two constraint systems have the same set |
| /// of variables in the same order. |
| bool FlatLinearValueConstraints::areVarsAlignedWithOther( |
| const FlatLinearConstraints &other) { |
| return areVarsAligned(*this, other); |
| } |
| |
| /// Checks if the SSA values associated with `cst`'s variables in range |
| /// [start, end) are unique. |
| static bool LLVM_ATTRIBUTE_UNUSED areVarsUnique( |
| const FlatLinearValueConstraints &cst, unsigned start, unsigned end) { |
| |
| assert(start <= cst.getNumDimAndSymbolVars() && |
| "Start position out of bounds"); |
| assert(end <= cst.getNumDimAndSymbolVars() && "End position out of bounds"); |
| |
| if (start >= end) |
| return true; |
| |
| SmallPtrSet<Value, 8> uniqueVars; |
| SmallVector<std::optional<Value>, 8> maybeValuesAll = cst.getMaybeValues(); |
| ArrayRef<std::optional<Value>> maybeValues = {maybeValuesAll.data() + start, |
| maybeValuesAll.data() + end}; |
| |
| for (std::optional<Value> val : maybeValues) |
| if (val && !uniqueVars.insert(*val).second) |
| return false; |
| |
| return true; |
| } |
| |
| /// Checks if the SSA values associated with `cst`'s variables are unique. |
| static bool LLVM_ATTRIBUTE_UNUSED |
| areVarsUnique(const FlatLinearValueConstraints &cst) { |
| return areVarsUnique(cst, 0, cst.getNumDimAndSymbolVars()); |
| } |
| |
| /// Checks if the SSA values associated with `cst`'s variables of kind `kind` |
| /// are unique. |
| static bool LLVM_ATTRIBUTE_UNUSED |
| areVarsUnique(const FlatLinearValueConstraints &cst, VarKind kind) { |
| |
| if (kind == VarKind::SetDim) |
| return areVarsUnique(cst, 0, cst.getNumDimVars()); |
| if (kind == VarKind::Symbol) |
| return areVarsUnique(cst, cst.getNumDimVars(), |
| cst.getNumDimAndSymbolVars()); |
| llvm_unreachable("Unexpected VarKind"); |
| } |
| |
| /// Merge and align the variables of A and B starting at 'offset', so that |
| /// both constraint systems get the union of the contained variables that is |
| /// dimension-wise and symbol-wise unique; both constraint systems are updated |
| /// so that they have the union of all variables, with A's original |
| /// variables appearing first followed by any of B's variables that didn't |
| /// appear in A. Local variables in B that have the same division |
| /// representation as local variables in A are merged into one. We allow A |
| /// and B to have non-unique values for their variables; in such cases, they are |
| /// still aligned with the variables appearing first aligned with those |
| /// appearing first in the other system from left to right. |
| // E.g.: Input: A has ((%i, %j) [%M, %N]) and B has (%k, %j) [%P, %N, %M]) |
| // Output: both A, B have (%i, %j, %k) [%M, %N, %P] |
| static void mergeAndAlignVars(unsigned offset, FlatLinearValueConstraints *a, |
| FlatLinearValueConstraints *b) { |
| assert(offset <= a->getNumDimVars() && offset <= b->getNumDimVars()); |
| |
| assert(llvm::all_of( |
| llvm::drop_begin(a->getMaybeValues(), offset), |
| [](const std::optional<Value> &var) { return var.has_value(); })); |
| |
| assert(llvm::all_of( |
| llvm::drop_begin(b->getMaybeValues(), offset), |
| [](const std::optional<Value> &var) { return var.has_value(); })); |
| |
| SmallVector<Value, 4> aDimValues; |
| a->getValues(offset, a->getNumDimVars(), &aDimValues); |
| |
| { |
| // Merge dims from A into B. |
| unsigned d = offset; |
| for (Value aDimValue : aDimValues) { |
| unsigned loc; |
| // Find from the position `d` since we'd like to also consider the |
| // possibility of multiple variables with the same `Value`. We align with |
| // the next appearing one. |
| if (b->findVar(aDimValue, &loc, d)) { |
| assert(loc >= offset && "A's dim appears in B's aligned range"); |
| assert(loc < b->getNumDimVars() && |
| "A's dim appears in B's non-dim position"); |
| b->swapVar(d, loc); |
| } else { |
| b->insertDimVar(d, aDimValue); |
| } |
| d++; |
| } |
| // Dimensions that are in B, but not in A, are added at the end. |
| for (unsigned t = a->getNumDimVars(), e = b->getNumDimVars(); t < e; t++) { |
| a->appendDimVar(b->getValue(t)); |
| } |
| assert(a->getNumDimVars() == b->getNumDimVars() && |
| "expected same number of dims"); |
| } |
| |
| // Merge and align symbols of A and B |
| a->mergeSymbolVars(*b); |
| // Merge and align locals of A and B |
| a->mergeLocalVars(*b); |
| |
| assert(areVarsAligned(*a, *b) && "IDs expected to be aligned"); |
| } |
| |
| // Call 'mergeAndAlignVars' to align constraint systems of 'this' and 'other'. |
| void FlatLinearValueConstraints::mergeAndAlignVarsWithOther( |
| unsigned offset, FlatLinearValueConstraints *other) { |
| mergeAndAlignVars(offset, this, other); |
| } |
| |
| /// Merge and align symbols of `this` and `other` such that both get union of |
| /// of symbols. Existing symbols need not be unique; they will be aligned from |
| /// left to right with duplicates aligned in the same order. Symbols with Value |
| /// as `None` are considered to be inequal to all other symbols. |
| void FlatLinearValueConstraints::mergeSymbolVars( |
| FlatLinearValueConstraints &other) { |
| |
| SmallVector<Value, 4> aSymValues; |
| getValues(getNumDimVars(), getNumDimAndSymbolVars(), &aSymValues); |
| |
| // Merge symbols: merge symbols into `other` first from `this`. |
| unsigned s = other.getNumDimVars(); |
| for (Value aSymValue : aSymValues) { |
| unsigned loc; |
| // If the var is a symbol in `other`, then align it, otherwise assume that |
| // it is a new symbol. Search in `other` starting at position `s` since the |
| // left of it is aligned. |
| if (other.findVar(aSymValue, &loc, s) && loc >= other.getNumDimVars() && |
| loc < other.getNumDimAndSymbolVars()) |
| other.swapVar(s, loc); |
| else |
| other.insertSymbolVar(s - other.getNumDimVars(), aSymValue); |
| s++; |
| } |
| |
| // Symbols that are in other, but not in this, are added at the end. |
| for (unsigned t = other.getNumDimVars() + getNumSymbolVars(), |
| e = other.getNumDimAndSymbolVars(); |
| t < e; t++) |
| insertSymbolVar(getNumSymbolVars(), other.getValue(t)); |
| |
| assert(getNumSymbolVars() == other.getNumSymbolVars() && |
| "expected same number of symbols"); |
| } |
| |
| void FlatLinearValueConstraints::removeVarRange(VarKind kind, unsigned varStart, |
| unsigned varLimit) { |
| IntegerPolyhedron::removeVarRange(kind, varStart, varLimit); |
| } |
| |
| AffineMap |
| FlatLinearValueConstraints::computeAlignedMap(AffineMap map, |
| ValueRange operands) const { |
| assert(map.getNumInputs() == operands.size() && "number of inputs mismatch"); |
| |
| SmallVector<Value> dims, syms; |
| #ifndef NDEBUG |
| SmallVector<Value> newSyms; |
| SmallVector<Value> *newSymsPtr = &newSyms; |
| #else |
| SmallVector<Value> *newSymsPtr = nullptr; |
| #endif // NDEBUG |
| |
| dims.reserve(getNumDimVars()); |
| syms.reserve(getNumSymbolVars()); |
| for (unsigned i = 0, e = getNumVarKind(VarKind::SetDim); i < e; ++i) { |
| Identifier id = space.getId(VarKind::SetDim, i); |
| dims.push_back(id.hasValue() ? Value(id.getValue<Value>()) : Value()); |
| } |
| for (unsigned i = 0, e = getNumVarKind(VarKind::Symbol); i < e; ++i) { |
| Identifier id = space.getId(VarKind::Symbol, i); |
| syms.push_back(id.hasValue() ? Value(id.getValue<Value>()) : Value()); |
| } |
| |
| AffineMap alignedMap = |
| alignAffineMapWithValues(map, operands, dims, syms, newSymsPtr); |
| // All symbols are already part of this FlatAffineValueConstraints. |
| assert(syms.size() == newSymsPtr->size() && "unexpected new/missing symbols"); |
| assert(std::equal(syms.begin(), syms.end(), newSymsPtr->begin()) && |
| "unexpected new/missing symbols"); |
| return alignedMap; |
| } |
| |
| bool FlatLinearValueConstraints::findVar(Value val, unsigned *pos, |
| unsigned offset) const { |
| SmallVector<std::optional<Value>> maybeValues = getMaybeValues(); |
| for (unsigned i = offset, e = maybeValues.size(); i < e; ++i) |
| if (maybeValues[i] && maybeValues[i].value() == val) { |
| *pos = i; |
| return true; |
| } |
| return false; |
| } |
| |
| bool FlatLinearValueConstraints::containsVar(Value val) const { |
| unsigned pos; |
| return findVar(val, &pos, 0); |
| } |
| |
| void FlatLinearValueConstraints::addBound(BoundType type, Value val, |
| int64_t value) { |
| unsigned pos; |
| if (!findVar(val, &pos)) |
| // This is a pre-condition for this method. |
| assert(0 && "var not found"); |
| addBound(type, pos, value); |
| } |
| |
| void FlatLinearConstraints::printSpace(raw_ostream &os) const { |
| IntegerPolyhedron::printSpace(os); |
| os << "("; |
| for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; i++) |
| os << "None\t"; |
| for (unsigned i = getVarKindOffset(VarKind::Local), |
| e = getVarKindEnd(VarKind::Local); |
| i < e; ++i) |
| os << "Local\t"; |
| os << "const)\n"; |
| } |
| |
| void FlatLinearValueConstraints::printSpace(raw_ostream &os) const { |
| IntegerPolyhedron::printSpace(os); |
| os << "("; |
| for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; i++) { |
| if (hasValue(i)) |
| os << "Value\t"; |
| else |
| os << "None\t"; |
| } |
| for (unsigned i = getVarKindOffset(VarKind::Local), |
| e = getVarKindEnd(VarKind::Local); |
| i < e; ++i) |
| os << "Local\t"; |
| os << "const)\n"; |
| } |
| |
| void FlatLinearValueConstraints::projectOut(Value val) { |
| unsigned pos; |
| bool ret = findVar(val, &pos); |
| assert(ret); |
| (void)ret; |
| fourierMotzkinEliminate(pos); |
| } |
| |
| LogicalResult FlatLinearValueConstraints::unionBoundingBox( |
| const FlatLinearValueConstraints &otherCst) { |
| assert(otherCst.getNumDimVars() == getNumDimVars() && "dims mismatch"); |
| SmallVector<std::optional<Value>> maybeValues = getMaybeValues(), |
| otherMaybeValues = |
| otherCst.getMaybeValues(); |
| assert(std::equal(maybeValues.begin(), maybeValues.begin() + getNumDimVars(), |
| otherMaybeValues.begin(), |
| otherMaybeValues.begin() + getNumDimVars()) && |
| "dim values mismatch"); |
| assert(otherCst.getNumLocalVars() == 0 && "local vars not supported here"); |
| assert(getNumLocalVars() == 0 && "local vars not supported yet here"); |
| |
| // Align `other` to this. |
| if (!areVarsAligned(*this, otherCst)) { |
| FlatLinearValueConstraints otherCopy(otherCst); |
| mergeAndAlignVars(/*offset=*/getNumDimVars(), this, &otherCopy); |
| return IntegerPolyhedron::unionBoundingBox(otherCopy); |
| } |
| |
| return IntegerPolyhedron::unionBoundingBox(otherCst); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions |
| //===----------------------------------------------------------------------===// |
| |
| AffineMap mlir::alignAffineMapWithValues(AffineMap map, ValueRange operands, |
| ValueRange dims, ValueRange syms, |
| SmallVector<Value> *newSyms) { |
| assert(operands.size() == map.getNumInputs() && |
| "expected same number of operands and map inputs"); |
| MLIRContext *ctx = map.getContext(); |
| Builder builder(ctx); |
| SmallVector<AffineExpr> dimReplacements(map.getNumDims(), {}); |
| unsigned numSymbols = syms.size(); |
| SmallVector<AffineExpr> symReplacements(map.getNumSymbols(), {}); |
| if (newSyms) { |
| newSyms->clear(); |
| newSyms->append(syms.begin(), syms.end()); |
| } |
| |
| for (const auto &operand : llvm::enumerate(operands)) { |
| // Compute replacement dim/sym of operand. |
| AffineExpr replacement; |
| auto dimIt = llvm::find(dims, operand.value()); |
| auto symIt = llvm::find(syms, operand.value()); |
| if (dimIt != dims.end()) { |
| replacement = |
| builder.getAffineDimExpr(std::distance(dims.begin(), dimIt)); |
| } else if (symIt != syms.end()) { |
| replacement = |
| builder.getAffineSymbolExpr(std::distance(syms.begin(), symIt)); |
| } else { |
| // This operand is neither a dimension nor a symbol. Add it as a new |
| // symbol. |
| replacement = builder.getAffineSymbolExpr(numSymbols++); |
| if (newSyms) |
| newSyms->push_back(operand.value()); |
| } |
| // Add to corresponding replacements vector. |
| if (operand.index() < map.getNumDims()) { |
| dimReplacements[operand.index()] = replacement; |
| } else { |
| symReplacements[operand.index() - map.getNumDims()] = replacement; |
| } |
| } |
| |
| return map.replaceDimsAndSymbols(dimReplacements, symReplacements, |
| dims.size(), numSymbols); |
| } |
| |
| LogicalResult |
| mlir::getMultiAffineFunctionFromMap(AffineMap map, |
| MultiAffineFunction &multiAff) { |
| FlatLinearConstraints cst; |
| std::vector<SmallVector<int64_t, 8>> flattenedExprs; |
| LogicalResult result = getFlattenedAffineExprs(map, &flattenedExprs, &cst); |
| |
| if (result.failed()) |
| return failure(); |
| |
| DivisionRepr divs = cst.getLocalReprs(); |
| assert(divs.hasAllReprs() && |
| "AffineMap cannot produce divs without local representation"); |
| |
| // TODO: We shouldn't have to do this conversion. |
| Matrix<DynamicAPInt> mat(map.getNumResults(), |
| map.getNumInputs() + divs.getNumDivs() + 1); |
| for (unsigned i = 0, e = flattenedExprs.size(); i < e; ++i) |
| for (unsigned j = 0, f = flattenedExprs[i].size(); j < f; ++j) |
| mat(i, j) = flattenedExprs[i][j]; |
| |
| multiAff = MultiAffineFunction( |
| PresburgerSpace::getRelationSpace(map.getNumDims(), map.getNumResults(), |
| map.getNumSymbols(), divs.getNumDivs()), |
| mat, divs); |
| |
| return success(); |
| } |