blob: 1c519c3ff8aecaef4a2d679e9114e9470a5a948f [file] [log] [blame]
//===-- Implementation of mktime function ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/time/time_utils.h"
#include "src/__support/CPP/limits.h" // INT_MIN, INT_MAX
#include "src/__support/common.h"
#include "src/__support/macros/config.h"
#include "src/time/time_constants.h"
#include <stdint.h>
namespace LIBC_NAMESPACE_DECL {
namespace time_utils {
// TODO: clean this up in a followup patch
cpp::optional<time_t> mktime_internal(const tm *tm_out) {
// Unlike most C Library functions, mktime doesn't just die on bad input.
// TODO(rtenneti); Handle leap seconds.
int64_t tm_year_from_base = tm_out->tm_year + time_constants::TIME_YEAR_BASE;
// 32-bit end-of-the-world is 03:14:07 UTC on 19 January 2038.
if (sizeof(time_t) == 4 &&
tm_year_from_base >= time_constants::END_OF32_BIT_EPOCH_YEAR) {
if (tm_year_from_base > time_constants::END_OF32_BIT_EPOCH_YEAR)
return cpp::nullopt;
if (tm_out->tm_mon > 0)
return cpp::nullopt;
if (tm_out->tm_mday > 19)
return cpp::nullopt;
else if (tm_out->tm_mday == 19) {
if (tm_out->tm_hour > 3)
return cpp::nullopt;
else if (tm_out->tm_hour == 3) {
if (tm_out->tm_min > 14)
return cpp::nullopt;
else if (tm_out->tm_min == 14) {
if (tm_out->tm_sec > 7)
return cpp::nullopt;
}
}
}
}
// Years are ints. A 32-bit year will fit into a 64-bit time_t.
// A 64-bit year will not.
static_assert(
sizeof(int) == 4,
"ILP64 is unimplemented. This implementation requires 32-bit integers.");
// Calculate number of months and years from tm_mon.
int64_t month = tm_out->tm_mon;
if (month < 0 || month >= time_constants::MONTHS_PER_YEAR - 1) {
int64_t years = month / 12;
month %= 12;
if (month < 0) {
years--;
month += 12;
}
tm_year_from_base += years;
}
bool tm_year_is_leap = time_utils::is_leap_year(tm_year_from_base);
// Calculate total number of days based on the month and the day (tm_mday).
int64_t total_days = tm_out->tm_mday - 1;
for (int64_t i = 0; i < month; ++i)
total_days += time_constants::NON_LEAP_YEAR_DAYS_IN_MONTH[i];
// Add one day if it is a leap year and the month is after February.
if (tm_year_is_leap && month > 1)
total_days++;
// Calculate total numbers of days based on the year.
total_days += (tm_year_from_base - time_constants::EPOCH_YEAR) *
time_constants::DAYS_PER_NON_LEAP_YEAR;
if (tm_year_from_base >= time_constants::EPOCH_YEAR) {
total_days +=
time_utils::get_num_of_leap_years_before(tm_year_from_base - 1) -
time_utils::get_num_of_leap_years_before(time_constants::EPOCH_YEAR);
} else if (tm_year_from_base >= 1) {
total_days -=
time_utils::get_num_of_leap_years_before(time_constants::EPOCH_YEAR) -
time_utils::get_num_of_leap_years_before(tm_year_from_base - 1);
} else {
// Calculate number of leap years until 0th year.
total_days -=
time_utils::get_num_of_leap_years_before(time_constants::EPOCH_YEAR) -
time_utils::get_num_of_leap_years_before(0);
if (tm_year_from_base <= 0) {
total_days -= 1; // Subtract 1 for 0th year.
// Calculate number of leap years until -1 year
if (tm_year_from_base < 0) {
total_days -=
time_utils::get_num_of_leap_years_before(-tm_year_from_base) -
time_utils::get_num_of_leap_years_before(1);
}
}
}
// TODO: https://github.com/llvm/llvm-project/issues/121962
// Need to handle timezone and update of tm_isdst.
time_t seconds = static_cast<time_t>(
tm_out->tm_sec + tm_out->tm_min * time_constants::SECONDS_PER_MIN +
tm_out->tm_hour * time_constants::SECONDS_PER_HOUR +
total_days * time_constants::SECONDS_PER_DAY);
return seconds;
}
static int64_t computeRemainingYears(int64_t daysPerYears,
int64_t quotientYears,
int64_t *remainingDays) {
int64_t years = *remainingDays / daysPerYears;
if (years == quotientYears)
years--;
*remainingDays -= years * daysPerYears;
return years;
}
// First, divide "total_seconds" by the number of seconds in a day to get the
// number of days since Jan 1 1970. The remainder will be used to calculate the
// number of Hours, Minutes and Seconds.
//
// Then, adjust that number of days by a constant to be the number of days
// since Mar 1 2000. Year 2000 is a multiple of 400, the leap year cycle. This
// makes it easier to count how many leap years have passed using division.
//
// While calculating numbers of years in the days, the following algorithm
// subdivides the days into the number of 400 years, the number of 100 years and
// the number of 4 years. These numbers of cycle years are used in calculating
// leap day. This is similar to the algorithm used in getNumOfLeapYearsBefore()
// and isLeapYear(). Then compute the total number of years in days from these
// subdivided units.
//
// Compute the number of months from the remaining days. Finally, adjust years
// to be 1900 and months to be from January.
int64_t update_from_seconds(time_t total_seconds, tm *tm) {
// Days in month starting from March in the year 2000.
static const char daysInMonth[] = {31 /* Mar */, 30, 31, 30, 31, 31,
30, 31, 30, 31, 31, 29};
constexpr time_t time_min =
(sizeof(time_t) == 4)
? INT_MIN
: INT_MIN * static_cast<int64_t>(
time_constants::NUMBER_OF_SECONDS_IN_LEAP_YEAR);
constexpr time_t time_max =
(sizeof(time_t) == 4)
? INT_MAX
: INT_MAX * static_cast<int64_t>(
time_constants::NUMBER_OF_SECONDS_IN_LEAP_YEAR);
if (total_seconds < time_min || total_seconds > time_max)
return time_utils::out_of_range();
int64_t seconds =
total_seconds - time_constants::SECONDS_UNTIL2000_MARCH_FIRST;
int64_t days = seconds / time_constants::SECONDS_PER_DAY;
int64_t remainingSeconds = seconds % time_constants::SECONDS_PER_DAY;
if (remainingSeconds < 0) {
remainingSeconds += time_constants::SECONDS_PER_DAY;
days--;
}
int64_t wday = (time_constants::WEEK_DAY_OF2000_MARCH_FIRST + days) %
time_constants::DAYS_PER_WEEK;
if (wday < 0)
wday += time_constants::DAYS_PER_WEEK;
// Compute the number of 400 year cycles.
int64_t numOfFourHundredYearCycles = days / time_constants::DAYS_PER400_YEARS;
int64_t remainingDays = days % time_constants::DAYS_PER400_YEARS;
if (remainingDays < 0) {
remainingDays += time_constants::DAYS_PER400_YEARS;
numOfFourHundredYearCycles--;
}
// The remaining number of years after computing the number of
// "four hundred year cycles" will be 4 hundred year cycles or less in 400
// years.
int64_t numOfHundredYearCycles = computeRemainingYears(
time_constants::DAYS_PER100_YEARS, 4, &remainingDays);
// The remaining number of years after computing the number of
// "hundred year cycles" will be 25 four year cycles or less in 100 years.
int64_t numOfFourYearCycles = computeRemainingYears(
time_constants::DAYS_PER4_YEARS, 25, &remainingDays);
// The remaining number of years after computing the number of
// "four year cycles" will be 4 one year cycles or less in 4 years.
int64_t remainingYears = computeRemainingYears(
time_constants::DAYS_PER_NON_LEAP_YEAR, 4, &remainingDays);
// Calculate number of years from year 2000.
int64_t years = remainingYears + 4 * numOfFourYearCycles +
100 * numOfHundredYearCycles +
400LL * numOfFourHundredYearCycles;
int leapDay =
!remainingYears && (numOfFourYearCycles || !numOfHundredYearCycles);
// We add 31 and 28 for the number of days in January and February, since our
// starting point was March 1st.
int64_t yday = remainingDays + 31 + 28 + leapDay;
if (yday >= time_constants::DAYS_PER_NON_LEAP_YEAR + leapDay)
yday -= time_constants::DAYS_PER_NON_LEAP_YEAR + leapDay;
int64_t months = 0;
while (daysInMonth[months] <= remainingDays) {
remainingDays -= daysInMonth[months];
months++;
}
if (months >= time_constants::MONTHS_PER_YEAR - 2) {
months -= time_constants::MONTHS_PER_YEAR;
years++;
}
if (years > INT_MAX || years < INT_MIN)
return time_utils::out_of_range();
// All the data (years, month and remaining days) was calculated from
// March, 2000. Thus adjust the data to be from January, 1900.
tm->tm_year = static_cast<int>(years + 2000 - time_constants::TIME_YEAR_BASE);
tm->tm_mon = static_cast<int>(months + 2);
tm->tm_mday = static_cast<int>(remainingDays + 1);
tm->tm_wday = static_cast<int>(wday);
tm->tm_yday = static_cast<int>(yday);
tm->tm_hour =
static_cast<int>(remainingSeconds / time_constants::SECONDS_PER_HOUR);
tm->tm_min =
static_cast<int>(remainingSeconds / time_constants::SECONDS_PER_MIN %
time_constants::SECONDS_PER_MIN);
tm->tm_sec =
static_cast<int>(remainingSeconds % time_constants::SECONDS_PER_MIN);
// TODO(rtenneti): Need to handle timezone and update of tm_isdst.
tm->tm_isdst = 0;
return 0;
}
} // namespace time_utils
} // namespace LIBC_NAMESPACE_DECL