blob: e72863c8442a3e26a834803f78466d63fe67dc74 [file] [log] [blame]
//===- StandardToSPIRV.cpp - Standard to SPIR-V Patterns ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert standard dialect to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "../SPIRVCommon/Pattern.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
#include "mlir/Dialect/SPIRV/Utils/LayoutUtils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "std-to-spirv-pattern"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Operation conversion
//===----------------------------------------------------------------------===//
// Note that DRR cannot be used for the patterns in this file: we may need to
// convert type along the way, which requires ConversionPattern. DRR generates
// normal RewritePattern.
namespace {
/// Converts func.return to spv.Return.
class ReturnOpPattern final : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern<func::ReturnOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp returnOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// Converts tensor.extract into loading using access chains from SPIR-V local
/// variables.
class TensorExtractPattern final
: public OpConversionPattern<tensor::ExtractOp> {
public:
TensorExtractPattern(TypeConverter &typeConverter, MLIRContext *context,
int64_t threshold, PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
byteCountThreshold(threshold) {}
LogicalResult
matchAndRewrite(tensor::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
TensorType tensorType = extractOp.tensor().getType().cast<TensorType>();
if (!tensorType.hasStaticShape())
return rewriter.notifyMatchFailure(extractOp, "non-static tensor");
if (tensorType.getNumElements() * tensorType.getElementTypeBitWidth() >
byteCountThreshold * 8)
return rewriter.notifyMatchFailure(extractOp,
"exceeding byte count threshold");
Location loc = extractOp.getLoc();
int64_t rank = tensorType.getRank();
SmallVector<int64_t, 4> strides(rank, 1);
for (int i = rank - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * tensorType.getDimSize(i + 1);
}
Type varType = spirv::PointerType::get(adaptor.tensor().getType(),
spirv::StorageClass::Function);
spirv::VariableOp varOp;
if (adaptor.tensor().getDefiningOp<spirv::ConstantOp>()) {
varOp = rewriter.create<spirv::VariableOp>(
loc, varType, spirv::StorageClass::Function,
/*initializer=*/adaptor.tensor());
} else {
// Need to store the value to the local variable. It's questionable
// whether we want to support such case though.
return failure();
}
auto &typeConverter = *getTypeConverter<SPIRVTypeConverter>();
auto indexType = typeConverter.getIndexType();
Value index = spirv::linearizeIndex(adaptor.indices(), strides,
/*offset=*/0, indexType, loc, rewriter);
auto acOp = rewriter.create<spirv::AccessChainOp>(loc, varOp, index);
rewriter.replaceOpWithNewOp<spirv::LoadOp>(extractOp, acOp);
return success();
}
private:
int64_t byteCountThreshold;
};
} // namespace
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
LogicalResult
ReturnOpPattern::matchAndRewrite(func::ReturnOp returnOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (returnOp.getNumOperands() > 1)
return failure();
if (returnOp.getNumOperands() == 1) {
rewriter.replaceOpWithNewOp<spirv::ReturnValueOp>(returnOp,
adaptor.getOperands()[0]);
} else {
rewriter.replaceOpWithNewOp<spirv::ReturnOp>(returnOp);
}
return success();
}
//===----------------------------------------------------------------------===//
// Pattern population
//===----------------------------------------------------------------------===//
namespace mlir {
void populateStandardToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
RewritePatternSet &patterns) {
MLIRContext *context = patterns.getContext();
patterns.add<
// Unary and binary patterns
spirv::ElementwiseOpPattern<arith::MaxFOp, spirv::GLSLFMaxOp>,
spirv::ElementwiseOpPattern<arith::MaxSIOp, spirv::GLSLSMaxOp>,
spirv::ElementwiseOpPattern<arith::MaxUIOp, spirv::GLSLUMaxOp>,
spirv::ElementwiseOpPattern<arith::MinFOp, spirv::GLSLFMinOp>,
spirv::ElementwiseOpPattern<arith::MinSIOp, spirv::GLSLSMinOp>,
spirv::ElementwiseOpPattern<arith::MinUIOp, spirv::GLSLUMinOp>,
ReturnOpPattern>(typeConverter, context);
}
void populateTensorToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
int64_t byteCountThreshold,
RewritePatternSet &patterns) {
patterns.add<TensorExtractPattern>(typeConverter, patterns.getContext(),
byteCountThreshold);
}
} // namespace mlir