blob: 7083d19f4372a66e0c0a92790aacf68e7d18df94 [file] [log] [blame]
// RUN: mlir-opt --split-input-file -pass-pipeline="builtin.module(func.func(tosa-to-linalg))" %s -verify-diagnostics -o -| FileCheck %s
// CHECK: #[[$MAP0:.*]] = affine_map<() -> ()>
// CHECK-LABEL: @test_abs_scalar
// CHECK-SAME: ([[ARG0:%[0-9a-zA-Z_]*]]
func.func @test_abs_scalar(%arg0: tensor<f32>) -> tensor<f32> {
// CHECK: [[INIT:%.+]] = tensor.empty() : tensor<f32>
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = []} ins([[ARG0]] : tensor<f32>) outs([[INIT]] : tensor<f32>) {
// CHECK: ^bb0([[ARG1:%.*]]: f32, [[ARG2:%.*]]: f32):
// CHECK: [[ELEMENT:%.*]] = math.absf [[ARG1]] : f32
// CHECK: linalg.yield [[ELEMENT]] : f32
// CHECK: } -> tensor<f32>
%0 = tosa.abs %arg0 : (tensor<f32>) -> tensor<f32>
// CHECK: return [[GENERIC]] : tensor<f32>
return %0 : tensor<f32>
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_abs_1d_cast_static_to_dynamic
// CHECK-SAME: ([[ARG0:%[0-9a-zA-Z_]*]]
func.func @test_abs_1d_cast_static_to_dynamic(%arg0: tensor<5xf32>) -> tensor<?xf32> {
// CHECK: [[EMPTY:%.+]] = tensor.empty() : tensor<5xf32>
// CHECK: [[RESULT:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins([[ARG0]] : tensor<5xf32>) outs([[EMPTY]] : tensor<5xf32>) {
// CHECK: ^bb0([[IN0:%.+]]: f32, [[OUT0:%.+]]: f32):
// CHECK: [[ABS:%.+]] = math.absf [[IN0]] : f32
// CHECK: linalg.yield [[ABS]] : f32
// CHECK: } -> tensor<5xf32>
// CHECK: [[CAST_RESULT:%.+]] = tensor.cast [[RESULT]] : tensor<5xf32> to tensor<?xf32>
%0 = "tosa.abs"(%arg0) : (tensor<5xf32>) -> tensor<?xf32>
// CHECK: return [[CAST_RESULT]] : tensor<?xf32>
return %0 : tensor<?xf32>
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_abs_1d_cast_dynamic_to_static
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
func.func @test_abs_1d_cast_dynamic_to_static(%arg0: tensor<?xf32>) -> tensor<5xf32> {
// CHECK: %[[ZERO:.*]] = arith.constant 0 : index
// CHECK: %[[DIM_SIZE:.*]] = tensor.dim %[[ARG0]], %[[ZERO]] : tensor<?xf32>
// CHECK: %[[EMPTY:.*]] = tensor.empty(%[[DIM_SIZE]]) : tensor<?xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<?xf32>) outs(%[[EMPTY]] : tensor<?xf32>) {
// CHECK: ^bb0(%[[VAL_0:.*]]: f32, %[[VAL_1:.*]]: f32):
// CHECK: %[[VAL_2:.*]] = math.absf %[[VAL_0]] : f32
// CHECK: linalg.yield %[[VAL_2]] : f32
// CHECK: } -> tensor<?xf32>
// CHECK: %[[CAST_RESULT:.*]] = tensor.cast %[[RESULT]] : tensor<?xf32> to tensor<5xf32>
%0 = "tosa.abs"(%arg0) : (tensor<?xf32>) -> tensor<5xf32>
// CHECK: return %[[CAST_RESULT]] : tensor<5xf32>
return %0 : tensor<5xf32>
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_abs_1d_dynamic
// CHECK-SAME: ([[ARG0:%[0-9a-zA-Z_]*]]
func.func @test_abs_1d_dynamic(%arg0: tensor<?xf32>) -> tensor<?xf32> {
// CHECK: [[ZERO:%.+]] = arith.constant 0 : index
// CHECK: [[DIM:%.+]] = tensor.dim [[ARG0]], [[ZERO]] : tensor<?xf32>
// CHECK: [[EMPTY:%.+]] = tensor.empty([[DIM]]) : tensor<?xf32>
// CHECK: [[RESULT:%.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%arg0 : tensor<?xf32>) outs([[EMPTY]] : tensor<?xf32>) {
// CHECK: ^bb0([[IN0:%.+]]: f32, [[OUT0:%.+]]: f32):
// CHECK: [[ABSF:%.+]] = math.absf [[IN0]] : f32
// CHECK: linalg.yield [[ABSF]] : f32
// CHECK: } -> tensor<?xf32>
%0 = tosa.abs %arg0 : (tensor<?xf32>) -> tensor<?xf32>
// CHECK: return [[RESULT]] : tensor<?xf32>
return %0 : tensor<?xf32>
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<() -> ()>
// CHECK-LABEL: @test_add_0d
// CHECK-SAME: [[ARG0:%[0-9a-zA-Z_]*]]:
// CHECK-SAME: [[ARG1:%[0-9a-zA-Z_]*]]:
func.func @test_add_0d(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {
// CHECK: [[EMPTY:%.+]] = tensor.empty() : tensor<f32>
// CHECK: [[RESULT:%.+]] = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = []} ins([[ARG0]], [[ARG1]] : tensor<f32>, tensor<f32>) outs([[EMPTY]] : tensor<f32>) {
// CHECK: ^bb0([[IN0:%.+]]: f32, [[IN1:%.+]]: f32, [[OUT0:%.+]]: f32):
// CHECK: [[ADDF:%.+]] = arith.addf [[IN0]], [[IN1]] : f32
// CHECK: linalg.yield [[ADDF]] : f32
// CHECK: } -> tensor<f32>
%0 = tosa.add %arg0, %arg1 : (tensor<f32>, tensor<f32>) -> tensor<f32>
// CHECK: return [[RESULT]] : tensor<f32>
return %0 : tensor<f32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (0, d1)>
// CHECK-LABEL: func.func @test_add_2d_broadcast(
// CHECK-SAME: %[[ARG0:.*]]: tensor<2x1xf32>,
// CHECK-SAME: %[[ARG1:.*]]: tensor<1x1xf32>) -> tensor<2x1xf32> {
// CHECK: %[[EMPTY_TENSOR:.*]] = tensor.empty() : tensor<2x1xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP0]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<2x1xf32>, tensor<1x1xf32>) outs(%[[EMPTY_TENSOR]] : tensor<2x1xf32>) {
// CHECK: ^bb0(%[[IN0:.*]]: f32, %[[IN1:.*]]: f32, %[[OUT:.*]]: f32):
// CHECK: %[[ADD:.*]] = arith.addf %[[IN0]], %[[IN1]] : f32
// CHECK: linalg.yield %[[ADD]] : f32
// CHECK: } -> tensor<2x1xf32>
// CHECK: return %[[RESULT]] : tensor<2x1xf32>
// CHECK: }
func.func @test_add_2d_broadcast(%arg0: tensor<2x1xf32>, %arg1: tensor<1x1xf32>) -> tensor<2x1xf32> {
// tosa element-wise operators now require operands of equal ranks
%0 = tosa.add %arg0, %arg1 : (tensor<2x1xf32>, tensor<1x1xf32>) -> tensor<2x1xf32>
return %0 : tensor<2x1xf32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_all_dynamic
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @test_add_1d_all_dynamic(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> {
// CHECK: %[[CONST0:.*]] = arith.constant 0 : index
// CHECK: %[[ARG0_DIM0:.*]] = tensor.dim %[[ARG0]], %[[CONST0]] : tensor<?xf32>
// CHECK: %[[ARG1_DIM0:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?xf32>
// CHECK: %[[ARG0_MAX_DIM:.*]] = arith.maxui %[[ARG0_DIM0]], %[[ARG1_DIM0]] : index
// CHECK: %[[CONST1:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_0:.*]] = tensor.dim %[[ARG0]], %[[CONST0]] : tensor<?xf32>
// CHECK: %[[VAL_1:.*]] = arith.cmpi eq, %[[VAL_0]], %[[CONST1]] : index
// CHECK: %[[ARG0_DIM0_BROADCAST:.*]] = scf.if %[[VAL_1]] -> (tensor<?xf32>) {
// CHECK: %[[VAL_2:.*]] = tensor.empty(%[[ARG0_MAX_DIM]]) : tensor<?xf32>
// CHECK: %[[VAL_3:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<?xf32>) outs(%[[VAL_2]] : tensor<?xf32>) {
// CHECK: ^bb0(%[[VAL_4:.*]]: f32, %[[VAL_5:.*]]: f32):
// CHECK: linalg.yield %[[VAL_4]] : f32
// CHECK: } -> tensor<?xf32>
// CHECK: scf.yield %[[VAL_3]] : tensor<?xf32>
// CHECK: } else {
// CHECK: scf.yield %[[ARG0]] : tensor<?xf32>
// CHECK: }
// CHECK: %[[VAL_6:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?xf32>
// CHECK: %[[VAL_7:.*]] = arith.cmpi eq, %[[VAL_6]], %[[CONST1]] : index
// CHECK: %[[ARG0_DIM1_BROADCAST:.*]] = scf.if %[[VAL_7]] -> (tensor<?xf32>) {
// CHECK: %[[VAL_8:.*]] = tensor.empty(%[[ARG0_MAX_DIM]]) : tensor<?xf32>
// CHECK: %[[VAL_9:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG1]] : tensor<?xf32>) outs(%[[VAL_8]] : tensor<?xf32>) {
// CHECK: ^bb0(%[[VAL_10:.*]]: f32, %[[VAL_11:.*]]: f32):
// CHECK: linalg.yield %[[VAL_10]] : f32
// CHECK: } -> tensor<?xf32>
// CHECK: scf.yield %[[VAL_9]] : tensor<?xf32>
// CHECK: } else {
// CHECK: scf.yield %[[ARG1]] : tensor<?xf32>
// CHECK: }
// CHECK: %[[VAL_12:.*]] = tensor.empty(%[[ARG0_MAX_DIM]]) : tensor<?xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0_DIM0_BROADCAST]], %[[ARG0_DIM1_BROADCAST]] : tensor<?xf32>, tensor<?xf32>) outs(%[[VAL_12]] : tensor<?xf32>) {
// CHECK: ^bb0(%[[VAL_13:.*]]: f32, %[[VAL_14:.*]]: f32, %[[VAL_15:.*]]: f32):
// CHECK: %[[VAL_16:.*]] = arith.addf %[[VAL_13]], %[[VAL_14]] : f32
// CHECK: linalg.yield %[[VAL_16]] : f32
// CHECK: } -> tensor<?xf32>
%0 = tosa.add %arg0, %arg1 : (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32>
// CHECK: return %[[RESULT]] : tensor<?xf32>
return %0 : tensor<?xf32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_broadcast_dynamic_to_static
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @test_add_1d_broadcast_dynamic_to_static(%arg0: tensor<5xf32>, %arg1: tensor<?xf32>) -> tensor<5xf32> {
// CHECK: %[[CONST1:.*]] = arith.constant 1 : index
// CHECK: %[[CONST0:.*]] = arith.constant 0 : index
// CHECK: %[[ARG1_DIM0:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?xf32>
// CHECK: %[[VAL_0:.*]] = arith.cmpi eq, %[[ARG1_DIM0]], %[[CONST1]] : index
// CHECK: %[[ARG1_DIM0_BROADCAST:.*]] = scf.if %[[VAL_0]] -> (tensor<?xf32>) {
// CHECK: %[[VAL_1:.*]] = tensor.empty() : tensor<5xf32>
// CHECK: %[[VAL_2:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG1]] : tensor<?xf32>) outs(%[[VAL_1]] : tensor<5xf32>) {
// CHECK: ^bb0(%[[VAL_3:.*]]: f32, %[[VAL_4:.*]]: f32):
// CHECK: linalg.yield %[[VAL_3]] : f32
// CHECK: } -> tensor<5xf32>
// CHECK: %[[VAL_5:.*]] = tensor.cast %[[VAL_2]] : tensor<5xf32> to tensor<?xf32>
// CHECK: scf.yield %[[VAL_5]] : tensor<?xf32>
// CHECK: } else {
// CHECK: scf.yield %[[ARG1]] : tensor<?xf32>
// CHECK: }
// CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<5xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1_DIM0_BROADCAST]] : tensor<5xf32>, tensor<?xf32>) outs(%[[VAL_6]] : tensor<5xf32>) {
// CHECK: ^bb0(%[[VAL_7:.*]]: f32, %[[VAL_8:.*]]: f32, %[[VAL_9:.*]]: f32):
// CHECK: %[[VAL_10:.*]] = arith.addf %[[VAL_7]], %[[VAL_8]] : f32
// CHECK: linalg.yield %[[VAL_10]] : f32
// CHECK: } -> tensor<5xf32>
%0 = tosa.add %arg0, %arg1 : (tensor<5xf32>, tensor<?xf32>) -> tensor<5xf32>
// CHECK: return %[[RESULT]] : tensor<5xf32>
return %0 : tensor<5xf32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_broadcast_static_to_dynamic
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @test_add_1d_broadcast_static_to_dynamic(%arg0: tensor<1xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> {
// CHECK: %[[CONST0:.*]] = arith.constant 0 : index
// CHECK: %[[ARG1_DIM0:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?xf32>
// CHECK: %[[VAL_0:.*]] = tensor.empty(%[[ARG1_DIM0]]) : tensor<?xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<1xf32>, tensor<?xf32>) outs(%[[VAL_0]] : tensor<?xf32>) {
// CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
// CHECK: %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
// CHECK: linalg.yield %[[VAL_4]] : f32
// CHECK: } -> tensor<?xf32>
%0 = tosa.add %arg0, %arg1 : (tensor<1xf32>, tensor<?xf32>) -> tensor<?xf32>
// CHECK: return %[[RESULT]] : tensor<?xf32>
return %0 : tensor<?xf32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_broadcast_static_to_static
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @test_add_1d_broadcast_static_to_static(%arg0: tensor<1xf32>, %arg1: tensor<3xf32>) -> tensor<3xf32> {
// CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<3xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<1xf32>, tensor<3xf32>) outs(%[[VAL_0]] : tensor<3xf32>) {
// CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
// CHECK: %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
// CHECK: linalg.yield %[[VAL_4]] : f32
// CHECK: } -> tensor<3xf32>
%0 = tosa.add %arg0, %arg1 : (tensor<1xf32>, tensor<3xf32>) -> tensor<3xf32>
// CHECK: return %[[RESULT]] : tensor<3xf32>
return %0 : tensor<3xf32>
}
// -----
// CHECK: #[[$MAP:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_matching_no_broadcast
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @test_add_1d_matching_no_broadcast(%arg0: tensor<1xf32>, %arg1: tensor<1xf32>) -> tensor<1xf32> {
// CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<1xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP]], #[[$MAP]], #[[$MAP]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<1xf32>, tensor<1xf32>) outs(%[[VAL_0]] : tensor<1xf32>) {
// CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
// CHECK: %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
// CHECK: linalg.yield %[[VAL_4]] : f32
// CHECK: } -> tensor<1xf32>
%0 = tosa.add %arg0, %arg1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
// CHECK: return %[[RESULT]] : tensor<1xf32>
return %0 : tensor<1xf32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @test_add_1d_matching_static
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @test_add_1d_matching_static(%arg0: tensor<3xf32>, %arg1: tensor<3xf32>) -> tensor<3xf32> {
// CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<3xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<3xf32>, tensor<3xf32>) outs(%[[VAL_0]] : tensor<3xf32>) {
// CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
// CHECK: %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
// CHECK: linalg.yield %[[VAL_4]] : f32
// CHECK: } -> tensor<3xf32>
%0 = tosa.add %arg0, %arg1 : (tensor<3xf32>, tensor<3xf32>) -> tensor<3xf32>
// CHECK: return %[[RESULT]] : tensor<3xf32>
return %0 : tensor<3xf32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (0, d1)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1) -> (d0, 0)>
// CHECK-LABEL: @test_add_2d_all_dynamic
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @test_add_2d_all_dynamic(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
// CHECK: %[[CONST0:.*]] = arith.constant 0 : index
// CHECK: %[[ARG0_DIM0:.*]] = tensor.dim %[[ARG0]], %[[CONST0]] : tensor<?x?xf32>
// CHECK: %[[ARG1_DIM0:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?x?xf32>
// CHECK: %[[MAX_DIM0:.*]] = arith.maxui %[[ARG0_DIM0]], %[[ARG1_DIM0]] : index
// CHECK: %[[CONST1:.*]] = arith.constant 1 : index
// CHECK: %[[ARG0_DIM1:.*]] = tensor.dim %[[ARG0]], %[[CONST1]] : tensor<?x?xf32>
// CHECK: %[[ARG1_DIM1:.*]] = tensor.dim %[[ARG1]], %[[CONST1]] : tensor<?x?xf32>
// CHECK: %[[MAX_DIM1:.*]] = arith.maxui %[[ARG0_DIM1]], %[[ARG1_DIM1]] : index
// CHECK: %[[VAL_0:.*]] = tensor.dim %[[ARG0]], %[[CONST0]] : tensor<?x?xf32>
// CHECK: %[[VAL_1:.*]] = arith.cmpi eq, %[[VAL_0]], %[[CONST1]] : index
// CHECK: %[[ARG0_DIM0_BROADCAST:.*]] = scf.if %[[VAL_1]] -> (tensor<?x?xf32>) {
// CHECK: %[[LOCAL_CONST1:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_2:.*]] = tensor.dim %[[ARG0]], %[[LOCAL_CONST1]] : tensor<?x?xf32>
// CHECK: %[[VAL_3:.*]] = tensor.empty(%[[MAX_DIM0]], %[[VAL_2]]) : tensor<?x?xf32>
// CHECK: %[[VAL_4:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]] : tensor<?x?xf32>) outs(%[[VAL_3]] : tensor<?x?xf32>) {
// CHECK: ^bb0(%[[VAL_5:.*]]: f32, %[[VAL_6:.*]]: f32):
// CHECK: linalg.yield %[[VAL_5]] : f32
// CHECK: } -> tensor<?x?xf32>
// CHECK: scf.yield %[[VAL_4]] : tensor<?x?xf32>
// CHECK: } else {
// CHECK: scf.yield %[[ARG0]] : tensor<?x?xf32>
// CHECK: }
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[ARG0_DIM0_BROADCAST]], %[[CONST1]] : tensor<?x?xf32>
// CHECK: %[[VAL_8:.*]] = arith.cmpi eq, %[[VAL_7]], %[[CONST1]] : index
// CHECK: %[[ARG0_DIM1_BROADCAST:.*]] = scf.if %[[VAL_8]] -> (tensor<?x?xf32>) {
// CHECK: %[[LOCAL_CONST0:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_9:.*]] = tensor.dim %[[ARG0_DIM0_BROADCAST]], %[[LOCAL_CONST0]] : tensor<?x?xf32>
// CHECK: %[[VAL_10:.*]] = tensor.empty(%[[VAL_9]], %[[MAX_DIM1]]) : tensor<?x?xf32>
// CHECK: %[[VAL_11:.*]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0_DIM0_BROADCAST]] : tensor<?x?xf32>) outs(%[[VAL_10]] : tensor<?x?xf32>) {
// CHECK: ^bb0(%[[VAL_12:.*]]: f32, %[[VAL_13:.*]]: f32):
// CHECK: linalg.yield %[[VAL_12]] : f32
// CHECK: } -> tensor<?x?xf32>
// CHECK: scf.yield %[[VAL_11]] : tensor<?x?xf32>
// CHECK: } else {
// CHECK: scf.yield %[[ARG0_DIM0_BROADCAST]] : tensor<?x?xf32>
// CHECK: }
// CHECK: %[[VAL_14:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?x?xf32>
// CHECK: %[[VAL_15:.*]] = arith.cmpi eq, %[[VAL_14]], %[[CONST1]] : index
// CHECK: %[[ARG1_DIM0_BROADCAST:.*]] = scf.if %[[VAL_15]] -> (tensor<?x?xf32>) {
// CHECK: %[[LOCAL_CONST1:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_16:.*]] = tensor.dim %[[ARG1]], %[[LOCAL_CONST1]] : tensor<?x?xf32>
// CHECK: %[[VAL_17:.*]] = tensor.empty(%[[MAX_DIM0]], %[[VAL_16]]) : tensor<?x?xf32>
// CHECK: %[[VAL_18:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG1]] : tensor<?x?xf32>) outs(%[[VAL_17]] : tensor<?x?xf32>) {
// CHECK: ^bb0(%[[VAL_19:.*]]: f32, %[[VAL_20:.*]]: f32):
// CHECK: linalg.yield %[[VAL_19]] : f32
// CHECK: } -> tensor<?x?xf32>
// CHECK: scf.yield %[[VAL_18]] : tensor<?x?xf32>
// CHECK: } else {
// CHECK: scf.yield %[[ARG1]] : tensor<?x?xf32>
// CHECK: }
// CHECK: %[[VAL_21:.*]] = tensor.dim %[[ARG1_DIM0_BROADCAST]], %[[CONST1]] : tensor<?x?xf32>
// CHECK: %[[VAL_22:.*]] = arith.cmpi eq, %[[VAL_21]], %[[CONST1]] : index
// CHECK: %[[ARG1_DIM1_BROADCAST:.*]] = scf.if %[[VAL_22]] -> (tensor<?x?xf32>) {
// CHECK: %[[LOCAL_CONST0:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_23:.*]] = tensor.dim %[[ARG1_DIM0_BROADCAST]], %[[LOCAL_CONST0]] : tensor<?x?xf32>
// CHECK: %[[VAL_24:.*]] = tensor.empty(%[[VAL_23]], %[[MAX_DIM1]]) : tensor<?x?xf32>
// CHECK: %[[VAL_25:.*]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG1_DIM0_BROADCAST]] : tensor<?x?xf32>) outs(%[[VAL_24]] : tensor<?x?xf32>) {
// CHECK: ^bb0(%[[VAL_26:.*]]: f32, %[[VAL_27:.*]]: f32):
// CHECK: linalg.yield %[[VAL_26]] : f32
// CHECK: } -> tensor<?x?xf32>
// CHECK: scf.yield %[[VAL_25]] : tensor<?x?xf32>
// CHECK: } else {
// CHECK: scf.yield %[[ARG1_DIM0_BROADCAST]] : tensor<?x?xf32>
// CHECK: }
// CHECK: %[[VAL_28:.*]] = tensor.empty(%[[MAX_DIM0]], %[[MAX_DIM1]]) : tensor<?x?xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0_DIM1_BROADCAST]], %[[ARG1_DIM1_BROADCAST]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[VAL_28]] : tensor<?x?xf32>) {
// CHECK: ^bb0(%[[VAL_29:.*]]: f32, %[[VAL_30:.*]]: f32, %[[VAL_31:.*]]: f32):
// CHECK: %[[VAL_32:.*]] = arith.addf %[[VAL_29]], %[[VAL_30]] : f32
// CHECK: linalg.yield %[[VAL_32]] : f32
// CHECK: } -> tensor<?x?xf32>
%0 = tosa.add %arg0, %arg1 : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: return %[[RESULT]] : tensor<?x?xf32>
return %0 : tensor<?x?xf32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d0, 0)>
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: @test_select_2d_one_dynamic
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG2:[0-9a-zA-Z_]*]]:
func.func @test_select_2d_one_dynamic(%arg0: tensor<2x?xi1>, %arg1: tensor<2x?xf32>, %arg2: tensor<2x?xf32>) -> tensor<2x?xf32> {
// CHECK: %[[CONST1:.*]] = arith.constant 1 : index
// CHECK: %[[ARG0_DIM1:.*]] = tensor.dim %[[ARG0]], %[[CONST1]] : tensor<2x?xi1>
// CHECK: %[[ARG1_DIM1:.*]] = tensor.dim %[[ARG1]], %[[CONST1]] : tensor<2x?xf32>
// CHECK: %[[VAL_0:.*]] = arith.maxui %[[ARG0_DIM1]], %[[ARG1_DIM1]] : index
// CHECK: %[[ARG2_DIM1:.*]] = tensor.dim %[[ARG2]], %[[CONST1]] : tensor<2x?xf32>
// CHECK: %[[MAX_DIM1:.*]] = arith.maxui %[[VAL_0]], %[[ARG2_DIM1]] : index
// CHECK: %[[VAL_1:.*]] = tensor.dim %[[ARG0]], %[[CONST1]] : tensor<2x?xi1>
// CHECK: %[[VAL_2:.*]] = arith.cmpi eq, %[[VAL_1]], %[[CONST1]] : index
// CHECK: %[[ARG0_BROADCAST:.*]] = scf.if %[[VAL_2]] -> (tensor<2x?xi1>) {
// CHECK: %[[VAL_3:.*]] = tensor.empty(%[[MAX_DIM1]]) : tensor<2x?xi1>
// CHECK: %[[VAL_4:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x?xi1>) outs(%[[VAL_3]] : tensor<2x?xi1>) {
// CHECK: ^bb0(%[[VAL_5:.*]]: i1, %[[VAL_6:.*]]: i1):
// CHECK: linalg.yield %[[VAL_5]] : i1
// CHECK: } -> tensor<2x?xi1>
// CHECK: scf.yield %[[VAL_4]] : tensor<2x?xi1>
// CHECK: } else {
// CHECK: scf.yield %[[ARG0]] : tensor<2x?xi1>
// CHECK: }
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[ARG1]], %[[CONST1]] : tensor<2x?xf32>
// CHECK: %[[VAL_8:.*]] = arith.cmpi eq, %[[VAL_7]], %[[CONST1]] : index
// CHECK: %[[ARG1_BROADCAST:.*]] = scf.if %[[VAL_8]] -> (tensor<2x?xf32>) {
// CHECK: %[[VAL_9:.*]] = tensor.empty(%[[MAX_DIM1]]) : tensor<2x?xf32>
// CHECK: %[[VAL_10:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG1]] : tensor<2x?xf32>) outs(%[[VAL_9]] : tensor<2x?xf32>) {
// CHECK: ^bb0(%[[VAL_11:.*]]: f32, %[[VAL_12:.*]]: f32):
// CHECK: linalg.yield %[[VAL_11]] : f32
// CHECK: } -> tensor<2x?xf32>
// CHECK: scf.yield %[[VAL_10]] : tensor<2x?xf32>
// CHECK: } else {
// CHECK: scf.yield %[[ARG1]] : tensor<2x?xf32>
// CHECK: }
// CHECK: %[[VAL_13:.*]] = tensor.dim %[[ARG2]], %[[CONST1]] : tensor<2x?xf32>
// CHECK: %[[VAL_14:.*]] = arith.cmpi eq, %[[VAL_13]], %[[CONST1]] : index
// CHECK: %[[ARG2_BROADCAST:.*]] = scf.if %[[VAL_14]] -> (tensor<2x?xf32>) {
// CHECK: %[[VAL_15:.*]] = tensor.empty(%[[MAX_DIM1]]) : tensor<2x?xf32>
// CHECK: %[[VAL_16:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG2]] : tensor<2x?xf32>) outs(%[[VAL_15]] : tensor<2x?xf32>) {
// CHECK: ^bb0(%[[VAL_17:.*]]: f32, %[[VAL_18:.*]]: f32):
// CHECK: linalg.yield %[[VAL_17]] : f32
// CHECK: } -> tensor<2x?xf32>
// CHECK: scf.yield %[[VAL_16]] : tensor<2x?xf32>
// CHECK: } else {
// CHECK: scf.yield %[[ARG2]] : tensor<2x?xf32>
// CHECK: }
// CHECK: %[[VAL_19:.*]] = tensor.empty(%[[MAX_DIM1]]) : tensor<2x?xf32>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0_BROADCAST]], %[[ARG1_BROADCAST]], %[[ARG2_BROADCAST]] : tensor<2x?xi1>, tensor<2x?xf32>, tensor<2x?xf32>) outs(%[[VAL_19]] : tensor<2x?xf32>) {
// CHECK: ^bb0(%[[VAL_20:.*]]: i1, %[[VAL_21:.*]]: f32, %[[VAL_22:.*]]: f32, %[[VAL_23:.*]]: f32):
// CHECK: %[[VAL_24:.*]] = arith.select %[[VAL_20]], %[[VAL_21]], %[[VAL_22]] : f32
// CHECK: linalg.yield %[[VAL_24]] : f32
// CHECK: } -> tensor<2x?xf32>
%0 = tosa.select %arg0, %arg1, %arg2 : (tensor<2x?xi1>, tensor<2x?xf32>, tensor<2x?xf32>) -> tensor<2x?xf32>
// CHECK: return %[[RESULT]] : tensor<2x?xf32>
return %0 : tensor<2x?xf32>
}
// -----
// CHECK-LABEL: @test_simple_f32
func.func @test_simple_f32(%arg0: tensor<1xf32>) -> () {
// CHECK: linalg.generic
// CHECK: tanh
%0 = tosa.tanh %arg0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: math.absf
%1 = tosa.abs %arg0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.addf
%2 = tosa.add %0, %0 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.subf
%3 = tosa.sub %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.mulf
%shift = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%4 = tosa.mul %0, %1, %shift : (tensor<1xf32>, tensor<1xf32>, tensor<1xi8>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.negf
%in_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%out_zp = "tosa.const"() <{values = dense<0.0> : tensor<1xf32>}> : () -> tensor<1xf32>
%5 = tosa.negate %0, %in_zp, %out_zp : (tensor<1xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: pow
%6 = tosa.pow %1, %2 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: rsqrt
%7 = tosa.rsqrt %1 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: log
%8 = tosa.log %arg0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: exp
%9 = tosa.exp %arg0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.cmpf
%10 = tosa.greater %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: arith.cmpf
%11 = tosa.greater_equal %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: arith.cmpf
%12 = tosa.equal %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: select
%13 = tosa.select %10, %0, %1 : (tensor<1xi1>, tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.maximumf
%14 = tosa.maximum %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.minimumf
%15 = tosa.minimum %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: ceil
%16 = tosa.ceil %0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: floor
%17 = tosa.floor %0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.minimumf
// CHECK: arith.maximumf
%18 = tosa.clamp %0 {min_val = 1.0 : f32, max_val = 5.0 : f32} : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.negf
// CHECK: exp
// CHECK: arith.addf
// CHECK: arith.divf
%19 = tosa.sigmoid %0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: [[ROUND:%.+]] = math.roundeven {{%.+}} : f32
// CHECK: [[CSTMIN:%.+]] = arith.constant -2.14748365E+9 : f32
// CHECK: [[CSTMAXP1:%.+]] = arith.constant 2.14748365E+9 : f32
// CHECK: [[CSTMAX:%.+]] = arith.constant 2147483647 : i32
// CHECK: [[MAX:%.+]] = arith.maximumf [[ROUND]], [[CSTMIN]] : f32
// CHECK: [[CONV:%.+]] = arith.fptosi [[MAX]] : f32 to i32
// CHECK: [[CMP:%.+]] = arith.cmpf uge, [[ROUND]], [[CSTMAXP1]] : f32
// CHECK: arith.select [[CMP]], [[CSTMAX]], [[CONV]] : i32
%20 = tosa.cast %0 : (tensor<1xf32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.constant 0
// CHECK: arith.cmpf
%21 = tosa.cast %0 : (tensor<1xf32>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: arith.truncf
%22 = tosa.cast %0 : (tensor<1xf32>) -> tensor<1xf16>
// CHECK: linalg.generic
// CHECK: arith.divf
%23 = tosa.reciprocal %0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: math.erf
%24 = tosa.erf %0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: math.sin
%25 = tosa.sin %arg0 : (tensor<1xf32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: math.cos
%26 = tosa.cos %arg0 : (tensor<1xf32>) -> tensor<1xf32>
return
}
// -----
// CHECK-LABEL: @test_simple_f16
func.func @test_simple_f16(%arg0: tensor<1xf16>) -> () {
// CHECK: linalg.generic
// CHECK: arith.extf
%0 = tosa.cast %arg0 : (tensor<1xf16>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: [[ROUND:%.+]] = math.roundeven {{%.+}} : f16
// CHECK: [[CSTMIN:%.+]] = arith.constant -1.280000e+02 : f16
// CHECK: [[CSTMAX:%.+]] = arith.constant 1.270000e+02 : f16
// CHECK: [[MIN:%.+]] = arith.minimumf [[ROUND]], [[CSTMAX]] : f16
// CHECK: [[CLAMP:%.+]] = arith.maximumf [[MIN]], [[CSTMIN]] : f16
// CHECK: arith.fptosi [[CLAMP]] : f16 to i8
%1 = "tosa.cast"(%arg0) : (tensor<1xf16>) -> tensor<1xi8>
// CHECK: linalg.generic
// CHECK: [[ROUND:%.+]] = math.roundeven {{%[a-z0-9_]+}} : f16
// CHECK: [[CONV:%.+]] = arith.fptosi [[ROUND]] : f16 to i32
// CHECK: [[POSINF:%.+]] = arith.constant 0x7C00 : f16
// CHECK: [[NEGINF:%.+]] = arith.constant 0xFC00 : f16
// CHECK: [[OVERFLOW:%.+]] = arith.cmpf ueq, [[ROUND]], [[POSINF]] : f16
// CHECK: [[UNDERFLOW:%.+]] = arith.cmpf ueq, [[ROUND]], [[NEGINF]] : f16
// CHECK: [[MININT:%.+]] = arith.constant -2147483648 : i32
// CHECK: [[MAXINT:%.+]] = arith.constant 2147483647 : i32
// CHECK: [[CLAMPPOSINF:%.+]] = arith.select [[OVERFLOW]], [[MAXINT]], [[CONV]] : i32
// CHECK: arith.select [[UNDERFLOW]], [[MININT]], [[CLAMPPOSINF]] : i32
%2 = "tosa.cast"(%arg0) : (tensor<1xf16>) -> tensor<1xi32>
return
}
// -----
// CHECK-LABEL: @test_simple_i16
func.func @test_simple_i16(%arg0: tensor<1xi16>) -> () {
// CHECK: linalg.generic
// CHECK: arith.extsi
// CHECK: arith.extsi
// CHECK: arith.muli
%shift = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%0 = tosa.mul %arg0, %arg0, %shift : (tensor<1xi16>, tensor<1xi16>, tensor<1xi8>) -> tensor<1xi32>
return
}
// -----
// CHECK-LABEL: @test_simple_ui8
func.func @test_simple_ui8(%arg0: tensor<1xui8>) -> () {
// CHECK: arith.uitofp
%0 = tosa.cast %arg0 : (tensor<1xui8>) -> tensor<1xf32>
return
}
// -----
// CHECK-LABEL: @test_simple_i32
func.func @test_simple_i32(%arg0: tensor<1xi32>, %unsigned: tensor<1xui32>, %unsigned64: tensor<1xui64>) -> () {
// CHECK: linalg.generic
// CHECK: arith.addi
%0 = tosa.add %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.subi
%1 = tosa.sub %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.muli
%shift1 = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%2 = tosa.mul %arg0, %arg0, %shift1 : (tensor<1xi32>, tensor<1xi32>, tensor<1xi8>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.constant 2
// CHECK: apply_scale
%shift2 = "tosa.const"() <{values = dense<2> : tensor<1xi8>}> : () -> tensor<1xi8>
%3 = tosa.mul %arg0, %arg0, %shift2: (tensor<1xi32>, tensor<1xi32>, tensor<1xi8>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.divsi
%4 = tosa.intdiv %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: ^bb0(%[[ARG1:.*]]: i32, %[[ARG2:.*]]: i32):
// CHECK: [[ZERO:%.+]] = arith.constant 0
// CHECK: arith.subi [[ZERO]], %[[ARG1]]
%in_zp = "tosa.const"() <{values = dense<0> : tensor<1xi32>}> : () -> tensor<1xi32>
%out_zp = "tosa.const"() <{values = dense<0> : tensor<1xi32>}> : () -> tensor<1xi32>
%5 = tosa.negate %arg0, %in_zp, %out_zp : (tensor<1xi32>, tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: and
%6 = tosa.bitwise_and %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: or
%7 = tosa.bitwise_or %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.xori
%8 = tosa.bitwise_xor %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.shli
%9 = tosa.logical_left_shift %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.shrui
%10 = tosa.logical_right_shift %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.shrsi
%11 = tosa.arithmetic_right_shift %arg0, %arg0 {round = 0 : i1} : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.constant 1
// CHECK: arith.constant 0
// CHECK: arith.constant true
// CHECK: arith.cmpi
// CHECK: arith.subi
// CHECK: arith.shrsi
// CHECK: arith.trunci
// CHECK: and
// CHECK: and
// CHECK: arith.extui
// CHECK: arith.addi
%12 = tosa.arithmetic_right_shift %arg0, %arg0 {round = 1 : i1} : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: math.ctlz
%13 = tosa.clz %arg0 : (tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.cmpi
%14 = tosa.greater %0, %1 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: arith.cmpi
%15 = tosa.greater_equal %0, %1 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: select
%16 = tosa.select %14, %0, %1 : (tensor<1xi1>, tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.maxsi
%17 = tosa.maximum %0, %1 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK: arith.minsi
%18 = tosa.minimum %0, %1 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK-DAG: arith.maxsi
// CHECK-DAG: arith.minsi
%19 = tosa.clamp %0 {min_val = 1 : i32, max_val = 5 : i32} : (tensor<1xi32>) -> tensor<1xi32>
// CHECK: linalg.generic
// CHECK-DAG: %[[LB:.*]] = arith.constant 4 : i32
// CHECK-DAG: %[[UB:.*]] = arith.constant 32 : i32
// CHECK-DAG: arith.maxui %[[LB]],
// CHECK-DAG: arith.minui %[[UB]],
%u0 = tosa.clamp %unsigned {min_val = 4 : ui32, max_val = 32 : ui32} : (tensor<1xui32>) -> tensor<1xui32>
// CHECK: linalg.generic
// CHECK: arith.trunci
%20 = tosa.cast %0 : (tensor<1xi32>) -> tensor<1xi16>
// CHECK: linalg.generic
// CHECK: arith.extsi
%21 = tosa.cast %0 : (tensor<1xi32>) -> tensor<1xi64>
// CHECK: linalg.generic
// CHECK: arith.constant 0
// CHECK: arith.cmpi
%22 = tosa.cast %0 : (tensor<1xi32>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: arith.sitofp
%23 = tosa.cast %0 : (tensor<1xi32>) -> tensor<1xf32>
// CHECK: linalg.generic
// CHECK: arith.constant 0
// CHECK: arith.subi
// CHECK: arith.maxsi
%24 = tosa.abs %arg0 : (tensor<1xi32>) -> tensor<1xi32>
return
}
// -----
// CHECK-LABEL: @test_simple_ui8
func.func @test_simple_ui8(%arg0: tensor<1xi8>) -> () {
// CHECK: linalg.generic
// CHECK: sitofp
%0 = tosa.cast %arg0 : (tensor<1xi8>) -> tensor<1xf32>
return
}
// -----
// CHECK-LABEL: @test_i8
func.func @test_i8(%arg0: tensor<1xi8>) -> () {
// CHECK: linalg.generic
// CHECK: ^bb0(%[[ARG1:.+]]: i8,
// CHECK-DAG: %[[C127:.+]] = arith.constant -127
// CHECK-DAG: %[[C126:.+]] = arith.constant 126
// CHECK-DAG: %[[LOWER:.+]] = arith.maxsi %[[C127]], %[[ARG1]]
// CHECK-DAG: %[[CLAMPED:.+]] = arith.minsi %[[C126]], %[[LOWER]]
%0 = tosa.clamp %arg0 {min_val = -127 : i8, max_val = 126 : i8} : (tensor<1xi8>) -> tensor<1xi8>
return
}
// -----
// CHECK-LABEL: @test_i64
func.func @test_i64(%arg0: tensor<1xi64>) -> () {
// CHECK: linalg.generic
// CHECK: ^bb0(%[[ARG1:.+]]: i64,
// CHECK-DAG: %[[C127:.+]] = arith.constant -9223372036854775808
// CHECK-DAG: %[[C126:.+]] = arith.constant 9223372036854775807
// CHECK-DAG: %[[LOWER:.+]] = arith.maxsi %[[C127]], %[[ARG1]]
// CHECK-DAG: %[[CLAMPED:.+]] = arith.minsi %[[C126]], %[[LOWER]]
%0 = tosa.clamp %arg0 {min_val = -9223372036854775808 : i64, max_val = 9223372036854775807 : i64} : (tensor<1xi64>) -> tensor<1xi64>
return
}
// -----
// CHECK-LABEL: @test_clamp_f16
func.func @test_clamp_f16(%arg0: tensor<1xf16>) -> () {
// CHECK: linalg.generic
// CHECK: ^bb0(%[[ARG1:.+]]: f16,
// CHECK-DAG: %[[C0:.+]] = arith.constant 0.0
// CHECK-DAG: %[[C6:.+]] = arith.constant 6.0
// CHECK-DAG: %[[MIN:.+]] = arith.minimumf %[[ARG1]], %[[C6]]
// CHECK-DAG: %[[MAX:.+]] = arith.maximumf %[[MIN]], %[[C0]]
%0 = tosa.clamp %arg0 {min_val = 0.0 : f16, max_val = 6.0 : f16} : (tensor<1xf16>) -> tensor<1xf16>
return
}
// -----
// CHECK-LABEL: @test_bool
func.func @test_bool(%arg0: tensor<1xi1>, %arg1: tensor<1xi1>) -> () {
// CHECK: linalg.generic
// CHECK: and
%0 = tosa.logical_and %arg0, %arg1 : (tensor<1xi1>, tensor<1xi1>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: or
%1 = tosa.logical_or %arg0, %arg1 : (tensor<1xi1>, tensor<1xi1>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: arith.xori
%2 = tosa.logical_xor %arg0, %arg1 : (tensor<1xi1>, tensor<1xi1>) -> tensor<1xi1>
// CHECK: linalg.generic
// CHECK: arith.constant true
// CHECK: arith.xori
%3 = tosa.logical_not %arg0 : (tensor<1xi1>) -> tensor<1xi1>
return
}
// -----
// CHECK-LABEL: @test_negate_quantized
func.func @test_negate_quantized(%arg0: tensor<1xi8>) -> () {
// CHECK: linalg.generic
// CHECK: ^bb0(%[[BBARG0:.+]]: i8, %[[BBARG1:.+]]: i8
// CHECK: [[CNST:%.+]] = arith.constant 7
// CHECK: [[EXT:%.+]] = arith.extsi %[[BBARG0]] : i8 to i16
// CHECK: [[SUB:%.+]] = arith.subi [[CNST]], [[EXT]]
// CHECK: [[MIN:%.+]] = arith.constant -128
// CHECK: [[MAX:%.+]] = arith.constant 127
// CHECK: [[LBOUND:%.+]] = arith.maxsi [[MIN]], [[SUB]]
// CHECK: [[UBOUND:%.+]] = arith.minsi [[MAX]], [[LBOUND]]
// CHECK: [[TRUNC:%.+]] = arith.trunci [[UBOUND]]
// CHECK: linalg.yield [[TRUNC]]
%in_zp0 = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%out_zp0 = "tosa.const"() <{values = dense<7> : tensor<1xi8>}> : () -> tensor<1xi8>
%0 = tosa.negate %arg0, %in_zp0, %out_zp0 : (tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1xi8>
// CHECK: linalg.generic
// CHECK: ^bb0(%[[BBARG0:.+]]: i8, %[[BBARG1:.+]]: i8
// CHECK: [[C_128:%.+]] = arith.constant -128
// CHECK: [[EXT:%.+]] = arith.extsi %[[BBARG0]] : i8 to i16
// CHECK: [[SUB:%.+]] = arith.subi [[C_128]], [[EXT]]
// CHECK: [[MIN:%.+]] = arith.constant -128
// CHECK: [[MAX:%.+]] = arith.constant 127
// CHECK: [[LBOUND:%.+]] = arith.maxsi [[MIN]], [[SUB]]
// CHECK: [[UBOUND:%.+]] = arith.minsi [[MAX]], [[LBOUND]]
// CHECK: [[TRUNC:%.+]] = arith.trunci [[UBOUND]]
// CHECK: linalg.yield [[TRUNC]]
%in_zp3 = "tosa.const"() <{values = dense<-128> : tensor<1xi8>}> : () -> tensor<1xi8>
%out_zp3 = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%3 = tosa.negate %arg0, %in_zp3, %out_zp3 : (tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1xi8>
// CHECK: linalg.generic
// CHECK: ^bb0(%[[BBARG0:.+]]: i8,
// CHECK: [[ZERO:%.+]] = arith.constant 0
// CHECK: [[SUB:%.+]] = arith.subi [[ZERO]],
// CHECK: linalg.yield [[SUB]]
%in_zp4 = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%out_zp4 = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%4 = tosa.negate %arg0, %in_zp4, %out_zp4 : (tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1xi8>
return
}
// -----
// CHECK-LABEL: @test_identity
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]: tensor<1xf32>,
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]: tensor<1xi32>
func.func @test_identity(%arg0: tensor<1xf32>, %arg1: tensor<1xi32>) -> (tensor<1xf32>, tensor<1xi32>) {
%0 = tosa.identity %arg0 : (tensor<1xf32>) -> tensor<1xf32>
%1 = tosa.identity %arg1 : (tensor<1xi32>) -> tensor<1xi32>
// CHECK: return %[[ARG0]], %[[ARG1]]
return %0, %1 : tensor<1xf32>, tensor<1xi32>
}
// -----
// CHECK-LABEL: @reduce_float
// CHECK-SAME: [[ARG0:%.+]]: tensor<5x4xf32>
func.func @reduce_float(%arg0: tensor<5x4xf32>) -> () {
// CHECK: [[INIT:%.+]] = tensor.empty() : tensor<4xf32>
// CHECK: [[CST0:%.+]] = arith.constant 0.0
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xf32>) outs([[FILL]] : tensor<4xf32>) dimensions = [0]
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
// CHECK: [[RES:%.+]] = arith.addf %[[ARG1]], %[[ARG2]] : f32
// CHECK: linalg.yield [[RES]] : f32
// CHECK: }
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] output_shape [1, 4] : tensor<4xf32> into tensor<1x4xf32>
%0 = tosa.reduce_sum %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
// CHECK: [[INIT:%.+]] = tensor.empty() : tensor<5xf32>
// CHECK: [[CST0:%.+]] = arith.constant 0.0
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xf32>) outs([[FILL]] : tensor<5xf32>) dimensions = [1]
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
// CHECK: [[RES:%.+]] = arith.addf %[[ARG1]], %[[ARG2]] : f32
// CHECK: linalg.yield [[RES]] : f32
// CHECK: }
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] output_shape [5, 1] : tensor<5xf32> into tensor<5x1xf32>
%1 = tosa.reduce_sum %arg0 {axis = 1 : i32} : (tensor<5x4xf32>) -> tensor<5x1xf32>
// CHECK: arith.constant 1.0
// CHECK: linalg.fill
// CHECK: linalg.reduce
// CHECK: arith.mulf
%2 = tosa.reduce_product %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
// CHECK: arith.constant 3.40282347E+38 : f32
// CHECK: linalg.fill
// CHECK: linalg.reduce
// CHECK: arith.minimumf
%3 = tosa.reduce_min %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
// CHECK: arith.constant -3.40282347E+38 : f32
// CHECK: linalg.fill
// CHECK: linalg.reduce
// CHECK: arith.maximumf
%4 = tosa.reduce_max %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
return
}
// -----
// CHECK-LABEL: @reduce_float_dyn
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]: tensor<?x5x4xf32>
func.func @reduce_float_dyn(%arg0: tensor<?x5x4xf32>) -> () {
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]]) : tensor<?x4xf32>
// CHECK: %[[CST0:.+]] = arith.constant 0.0
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[CST0]]{{.*}}outs(%[[INIT]]
// CHECK: %[[REDUCE:.+]] = linalg.reduce ins(%[[ARG0]] : tensor<?x5x4xf32>) outs(%[[FILL]] : tensor<?x4xf32>) dimensions = [1]
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
// CHECK: %[[RES:.+]] = arith.addf %[[ARG1]], %[[ARG2]] : f32
// CHECK: linalg.yield %[[RES]] : f32
// CHECK: }
// CHECK: %[[C0_0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM_1:.+]] = tensor.dim %[[REDUCE]], %[[C0_0]] : tensor<?x4xf32>
// CHECK: %[[C1:.+]] = arith.constant 1 : index
// CHECK: tensor.expand_shape %[[REDUCE]] {{\[}}[0], [1, 2]] output_shape [%[[DIM_1]], 1, 4] : tensor<?x4xf32> into tensor<?x1x4xf32>
%0 = tosa.reduce_sum %arg0 {axis = 1 : i32} : (tensor<?x5x4xf32>) -> tensor<?x1x4xf32>
return
}
// -----
// CHECK-LABEL: @reduce_float_dyn_rank_1
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]: tensor<?xf32>
func.func @reduce_float_dyn_rank_1(%arg0: tensor<?xf32>) -> () {
// CHECK-DAG: %[[INIT:.+]] = tensor.empty() : tensor<f32>
// CHECK-DAG: %[[CST0:.+]] = arith.constant 0.0
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[CST0]]{{.*}}outs(%[[INIT]]
// CHECK: %[[REDUCE:.+]] = linalg.reduce ins(%[[ARG0]] : tensor<?xf32>) outs(%[[FILL]] : tensor<f32>) dimensions = [0]
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
// CHECK: %[[RES:.+]] = arith.addf %[[ARG1]], %[[ARG2]] : f32
// CHECK: linalg.yield %[[RES]] : f32
// CHECK: }
// CHECK: tensor.expand_shape %[[REDUCE]] {{\[}}] output_shape [1] : tensor<f32> into tensor<1xf32>
%0 = tosa.reduce_sum %arg0 {axis = 0 : i32} : (tensor<?xf32>) -> tensor<1xf32>
return
}
// -----
// CHECK-LABEL: @reduce_float_dyn_nonzero_batch
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @reduce_float_dyn_nonzero_batch(%arg0: tensor<5x?x4xf32>) -> () {
// CHECK: %[[C1:.+]] = arith.constant 1
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]]) : tensor<5x?xf32>
// CHECK: %[[CST1:.+]] = arith.constant 1.0
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[CST1]]{{.*}}outs(%[[INIT]]
// CHECK: %[[REDUCE:.+]] = linalg.reduce ins(%[[ARG0]] : tensor<5x?x4xf32>) outs(%[[FILL]] : tensor<5x?xf32>) dimensions = [2]
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
// CHECK: %[[RES:.+]] = arith.mulf %[[ARG1]], %[[ARG2]] : f32
// CHECK: linalg.yield %[[RES]] : f32
// CHECK: }
// CHECK: %[[C1_0:.+]] = arith.constant 1 : index
// CHECK: %[[DIM_1:.+]] = tensor.dim %[[REDUCE]], %[[C1_0]] : tensor<5x?xf32>
// CHECK: %[[C1_2:.+]] = arith.constant 1 : index
// CHECK: tensor.expand_shape %[[REDUCE]] {{\[}}[0], [1, 2]] output_shape [5, %[[DIM_1]], 1] : tensor<5x?xf32> into tensor<5x?x1xf32>
%0 = tosa.reduce_product %arg0 {axis = 2 : i32} : (tensor<5x?x4xf32>) -> tensor<5x?x1xf32>
return
}
// -----
// CHECK-LABEL: @reduce_float_dyn_multiple
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @reduce_float_dyn_multiple(%arg0: tensor<?x?xf32>) -> () {
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]])
// CHECK: %[[CMIN:.+]] = arith.constant -3.40282347E+38
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[CMIN]]{{.*}}outs(%[[INIT]]
// CHECK: %[[REDUCE:.+]] = linalg.reduce ins(%[[ARG0]] : tensor<?x?xf32>) outs(%[[FILL]] : tensor<?xf32>) dimensions = [1]
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
// CHECK: %[[MAX:.+]] = arith.maximumf %[[ARG1]], %[[ARG2]] : f32
// CHECK: linalg.yield %[[MAX]] : f32
// CHECK: }
// CHECK: %[[C0_0:.+]] = arith.constant 0 : index
// CHECK: %[[DIM_1:.+]] = tensor.dim %[[REDUCE]], %[[C0_0]] : tensor<?xf32>
// CHECK: %[[C1_2:.+]] = arith.constant 1 : index
// CHECK: tensor.expand_shape %[[REDUCE]] {{\[}}[0, 1]] output_shape [%[[DIM_1]], 1] : tensor<?xf32> into tensor<?x1xf32>
%0 = tosa.reduce_max %arg0 {axis = 1 : i32} : (tensor<?x?xf32>) -> tensor<?x1xf32>
return
}
// -----
// CHECK-LABEL: @reduce_int
// CHECK-SAME: [[ARG0:%.+]]: tensor<5x4xi32>
func.func @reduce_int(%arg0: tensor<5x4xi32>) -> () {
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[CST0:%.+]] = arith.constant 0
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xi32>) outs([[FILL]] : tensor<4xi32>) dimensions = [0]
// CHECK: (%[[ARG1:.*]]: i32, %[[ARG2:.*]]: i32) {
// CHECK: [[RES:%.+]] = arith.addi %[[ARG1]], %[[ARG2]] : i32
// CHECK: linalg.yield [[RES]] : i32
// CHECK: }
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] output_shape [1, 4] : tensor<4xi32> into tensor<1x4xi32>
%0 = tosa.reduce_sum %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<1x4xi32>
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[CST0:%.+]] = arith.constant 0
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xi32>) outs([[FILL]] : tensor<5xi32>) dimensions = [1]
// CHECK: (%[[ARG1:.*]]: i32, %[[ARG2:.*]]: i32) {
// CHECK: [[RES:%.+]] = arith.addi %[[ARG1]], %[[ARG2]] : i32
// CHECK: linalg.yield [[RES]] : i32
// CHECK: }
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] output_shape [5, 1] : tensor<5xi32> into tensor<5x1xi32>
%1 = tosa.reduce_sum %arg0 {axis = 1 : i32} : (tensor<5x4xi32>) -> tensor<5x1xi32>
// CHECK: arith.constant 1
// CHECK: linalg.fill
// CHECK: linalg.reduce
// CHECK: arith.muli
%2 = tosa.reduce_product %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<1x4xi32>
// CHECK: arith.constant 2147483647 : i32
// CHECK: linalg.fill
// CHECK: linalg.reduce
// CHECK: arith.minsi
%3 = tosa.reduce_min %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<1x4xi32>
// CHECK: arith.constant -2147483648 : i32
// CHECK: linalg.fill
// CHECK: linalg.reduce
// CHECK: arith.maxsi
%4 = tosa.reduce_max %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<1x4xi32>
return
}
// -----
// CHECK-LABEL: @reduce_bool
// CHECK-SAME: [[ARG0:%.+]]: tensor<5x4xi1>
func.func @reduce_bool(%arg0: tensor<5x4xi1>) -> () {
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[CST0:%.+]] = arith.constant true
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xi1>) outs([[FILL]] : tensor<4xi1>) dimensions = [0]
// CHECK: (%[[ARG1:[0-9a-zA-Z_]+]]: i1, %[[ARG2:[0-9a-zA-Z_]+]]: i1) {
// CHECK: [[RES:%.+]] = arith.andi %[[ARG1]], %[[ARG2]] : i1
// CHECK: linalg.yield [[RES]] : i1
// CHECK: }
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] output_shape [1, 4] : tensor<4xi1> into tensor<1x4xi1>
%0 = tosa.reduce_all %arg0 {axis = 0 : i32} : (tensor<5x4xi1>) -> tensor<1x4xi1>
// CHECK: arith.constant false
// CHECK: linalg.fill
// CHECK: linalg.reduce
// CHECK: or
%1 = tosa.reduce_any %arg0 {axis = 0 : i32} : (tensor<5x4xi1>) -> tensor<1x4xi1>
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @rescale_i8
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @rescale_i8(%arg0 : tensor<2xi8>) -> () {
// CHECK: [[C0:%.+]] = arith.constant 19689
// CHECK: [[C1:%.+]] = arith.constant 15
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<2xi8>) outs([[INIT]] : tensor<2xi8>)
// CHECK: ^bb0([[IN:%.+]]: i8, [[UNUSED:%.+]]: i8):
// CHECK: [[C17:%.+]] = arith.constant 17
// CHECK: [[C22:%.+]] = arith.constant 22
// CHECK-DAG: [[IN32:%.+]] = arith.extsi [[IN]]
// CHECK-DAG: [[IN_ZEROED:%.+]] = arith.subi [[IN32]], [[C17]]
// CHECK-DAG: [[SCALED:%.+]] = tosa.apply_scale [[IN_ZEROED]], [[C0]], [[C1]] {rounding_mode = "SINGLE_ROUND"}
// CHECK-DAG: [[SCALED_ZEROED:%.+]] = arith.addi [[SCALED]], [[C22]]
// CHECK-DAG: [[CMIN:%.+]] = arith.constant -128
// CHECK-DAG: [[CMAX:%.+]] = arith.constant 127
// CHECK-DAG: [[LOWER:%.+]] = arith.maxsi [[CMIN]], [[SCALED_ZEROED]]
// CHECK-DAG: [[BOUNDED:%.+]] = arith.minsi [[CMAX]], [[LOWER]]
// CHECK-DAG: [[TRUNC:%.+]] = arith.trunci [[BOUNDED]]
// CHECK-DAG: linalg.yield [[TRUNC]]
%multiplier = "tosa.const"() {values = dense<19689> : tensor<1xi16>} : () -> tensor<1xi16>
%shift = "tosa.const"() {values = dense<15> : tensor<1xi8>} : () -> tensor<1xi8>
%input_zp = "tosa.const"() {values = dense<17> : tensor<1xi8>} : () -> tensor<1xi8>
%output_zp = "tosa.const"() {values = dense<22> : tensor<1xi8>} : () -> tensor<1xi8>
%0 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {scale32 = false, rounding_mode = "SINGLE_ROUND", per_channel = false, input_unsigned = false, output_unsigned = false} : (tensor<2xi8>, tensor<1xi16>, tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<2xi8>
// CHECK: return
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @rescale_i8_unsigned_output
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @rescale_i8_unsigned_output(%arg0 : tensor<2xi8>) -> () {
// CHECK: [[C0:%.+]] = arith.constant 19689
// CHECK: [[C1:%.+]] = arith.constant 15
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<2xi8>) outs([[INIT]] : tensor<2xi8>)
// CHECK: ^bb0([[IN:%.+]]: i8, [[UNUSED:%.+]]: i8):
// CHECK: [[C17:%.+]] = arith.constant 17
// CHECK: [[C234:%.+]] = arith.constant 234
// CHECK-DAG: [[IN32:%.+]] = arith.extsi [[IN]]
// CHECK-DAG: [[IN_ZEROED:%.+]] = arith.subi [[IN32]], [[C17]]
// CHECK-DAG: [[SCALED:%.+]] = tosa.apply_scale [[IN_ZEROED]], [[C0]], [[C1]] {rounding_mode = "SINGLE_ROUND"}
// CHECK-DAG: [[SCALED_ZEROED:%.+]] = arith.addi [[SCALED]], [[C234]]
// CHECK-DAG: [[CMIN:%.+]] = arith.constant 0
// CHECK-DAG: [[CMAX:%.+]] = arith.constant 255
// CHECK-DAG: [[LOWER:%.+]] = arith.maxsi [[CMIN]], [[SCALED_ZEROED]]
// CHECK-DAG: [[BOUNDED:%.+]] = arith.minsi [[CMAX]], [[LOWER]]
// CHECK-DAG: [[TRUNC:%.+]] = arith.trunci [[BOUNDED]]
// CHECK: linalg.yield [[TRUNC]]
%multiplier = "tosa.const"() {values = dense<19689> : tensor<1xi16> } : () -> tensor<1xi16>
%shift = "tosa.const"() {values = dense<15> : tensor<1xi8> } : () -> tensor<1xi8>
%input_zp = "tosa.const"() {values = dense<17> : tensor<1xi8>} : () -> tensor<1xi8>
%output_zp = "tosa.const"() {values = dense<-22> : tensor<1xi8>} : () -> tensor<1xi8>
%1 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {scale32 = false, rounding_mode = "SINGLE_ROUND", per_channel = false, input_unsigned = false, output_unsigned = true} : (tensor<2xi8>, tensor<1xi16>, tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<2xi8>
// CHECK: return
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: @rescale_i8_dyn_batch
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @rescale_i8_dyn_batch(%arg0 : tensor<?x2xi8>) -> () {
%multiplier = "tosa.const"() {values = dense<19689> : tensor<1xi16>} : () -> tensor<1xi16>
%shift = "tosa.const"() {values = dense<15> : tensor<1xi8>} : () -> tensor<1xi8>
%input_zp = "tosa.const"() {values = dense<17> : tensor<1xi8>} : () -> tensor<1xi8>
%output_zp = "tosa.const"() {values = dense<22> : tensor<1xi8>} : () -> tensor<1xi8>
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[BATCH:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[BATCH]]) : tensor<?x2xi8>
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]] : tensor<?x2xi8>) outs(%[[INIT]] : tensor<?x2xi8>)
%0 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {scale32 = false, rounding_mode = "SINGLE_ROUND", per_channel = false, input_unsigned = false, output_unsigned = false} : (tensor<?x2xi8>, tensor<1xi16>, tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<?x2xi8>
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[BATCH:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[BATCH]]) : tensor<?x2xi8>
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]] : tensor<?x2xi8>) outs(%[[INIT]] : tensor<?x2xi8>)
%1 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {scale32 = false, rounding_mode = "SINGLE_ROUND", per_channel = false, input_unsigned = false, output_unsigned = true} : (tensor<?x2xi8>, tensor<1xi16>, tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<?x2xi8>
return
}
// -----
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: @rescale_dyn
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @rescale_dyn(%arg0 : tensor<1x?x?x32xi32>) -> () {
%input_zp = "tosa.const"() {values = dense<0> : tensor<1xi32>} : () -> tensor<1xi32>
%output_zp = "tosa.const"() {values = dense<0> : tensor<1xi8>} : () -> tensor<1xi8>
// CHECK: %[[C1:.+]] = arith.constant 1
// CHECK: %[[DIM1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK: %[[C2:.+]] = arith.constant 2
// CHECK: %[[DIM2:.+]] = tensor.dim %[[ARG0]], %[[C2]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM1]], %[[DIM2]])
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<1x?x?x32xi32>) outs(%[[INIT]] : tensor<1x?x?x32xi8>)
%multiplier = "tosa.const"() {values = dense<1376784203> : tensor<1xi32> } : () -> tensor<1xi32>
%shift = "tosa.const"() {values = dense<38> : tensor<1xi8> } : () -> tensor<1xi8>
%0 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {rounding_mode = "DOUBLE_ROUND", input_zp = 0 : i32, output_zp = 0 : i32, per_channel = false, scale32 = true, input_unsigned = false, output_unsigned = false} : (tensor<1x?x?x32xi32>, tensor<1xi32>, tensor<1xi8>, tensor<1xi32>, tensor<1xi8>) -> tensor<1x?x?x32xi8>
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @rescale_i8_unsigned_input
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @rescale_i8_unsigned_input(%arg0 : tensor<2xi8>) -> () {
// CHECK: [[C0:%.+]] = arith.constant 19689
// CHECK: [[C1:%.+]] = arith.constant 15
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<2xi8>) outs([[INIT]] : tensor<2xi8>)
// CHECK: ^bb0([[IN:%.+]]: i8, [[UNUSED:%.+]]: i8):
// CHECK: [[C17:%.+]] = arith.constant 17
// CHECK: [[C22:%.+]] = arith.constant 22
// CHECK-DAG: [[IN32:%.+]] = arith.extui [[IN]]
// CHECK-DAG: [[IN_ZEROED:%.+]] = arith.subi [[IN32]], [[C17]]
// CHECK-DAG: [[SCALED:%.+]] = tosa.apply_scale [[IN_ZEROED]], [[C0]], [[C1]] {rounding_mode = "SINGLE_ROUND"}
// CHECK-DAG: [[SCALED_ZEROED:%.+]] = arith.addi [[SCALED]], [[C22]]
// CHECK-DAG: [[CMIN:%.+]] = arith.constant -128
// CHECK-DAG: [[CMAX:%.+]] = arith.constant 127
// CHECK-DAG: [[LOWER:%.+]] = arith.maxsi [[CMIN]], [[SCALED_ZEROED]]
// CHECK-DAG: [[BOUNDED:%.+]] = arith.minsi [[CMAX]], [[LOWER]]
// CHECK-DAG: [[TRUNC:%.+]] = arith.trunci [[BOUNDED]]
// CHECK: linalg.yield [[TRUNC]]
%multiplier = "tosa.const"() {values = dense<19689> : tensor<1xi16> } : () -> tensor<1xi16>
%shift = "tosa.const"() {values = dense<15> : tensor<1xi8> } : () -> tensor<1xi8>
%input_zp = "tosa.const"() {values = dense<17> : tensor<1xi8>} : () -> tensor<1xi8>
%output_zp = "tosa.const"() {values = dense<22> : tensor<1xi8>} : () -> tensor<1xi8>
%0 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {scale32 = false, rounding_mode = "SINGLE_ROUND", per_channel = false, input_unsigned = true, output_unsigned = false} : (tensor<2xi8>, tensor<1xi16>, tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<2xi8>
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @rescale_per_channel
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @rescale_per_channel(%arg0 : tensor<3xi8>) -> (tensor<3xi8>) {
// CHECK: [[MULTIPLIERS:%.+]] = arith.constant dense<[42, 43, 0]>
// CHECK: [[SHIFTS:%.+]] = arith.constant dense<[14, 15, 0]>
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]], [[MULTIPLIERS]], [[SHIFTS]] : tensor<3xi8>, tensor<3xi32>, tensor<3xi8>) outs([[INIT]] : tensor<3xi8>)
// CHECK: ^bb0([[IN:%.+]]: i8, [[MULTIPLIER:%.+]]: i32, [[SHIFT:%.+]]: i8, [[UNUSED:%.+]]: i8):
// CHECK: [[C243:%.+]] = arith.constant 43
// CHECK: [[C252:%.+]] = arith.constant 52
// CHECK-DAG: [[IN32:%.+]] = arith.extsi [[IN]]
// CHECK-DAG: [[IN_ZEROED:%.+]] = arith.subi [[IN32]], [[C243]]
// CHECK-DAG: [[SCALED:%.+]] = tosa.apply_scale [[IN_ZEROED]], [[MULTIPLIER]], [[SHIFT]] {rounding_mode = "SINGLE_ROUND"}
// CHECK-DAG: [[SCALED_ZEROED:%.+]] = arith.addi [[SCALED]], [[C252]]
// CHECK-DAG: [[CMIN:%.+]] = arith.constant -128
// CHECK-DAG: [[CMAX:%.+]] = arith.constant 127
// CHECK-DAG: [[LOWER:%.+]] = arith.maxsi [[CMIN]], [[SCALED_ZEROED]]
// CHECK-DAG: [[BOUNDED:%.+]] = arith.minsi [[CMAX]], [[LOWER]]
// CHECK-DAG: [[TRUNC:%.+]] = arith.trunci [[BOUNDED]]
// CHECK-DAG: linalg.yield [[TRUNC]]
%multiplier = "tosa.const"() {values = dense<[42, 43, 44]> : tensor<3xi16>} : () -> tensor<3xi16>
%shift = "tosa.const"() {values = dense<[14, 15, 64]> : tensor<3xi8>} : () -> tensor<3xi8>
%input_zp = "tosa.const"() {values = dense<43> : tensor<1xi8>} : () -> tensor<1xi8>
%output_zp = "tosa.const"() {values = dense<52> : tensor<1xi8>} : () -> tensor<1xi8>
%0 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {scale32 = false, rounding_mode = "SINGLE_ROUND", per_channel = true, input_unsigned = false, output_unsigned = false} : (tensor<3xi8>, tensor<3xi16>, tensor<3xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<3xi8>
// CHECK: return [[GENERIC]]
return %0 : tensor<3xi8>
}
// -----
// CHECK-LABEL: @rescaleDoubleRound
func.func @rescaleDoubleRound(%arg0 : tensor<2xi8>) -> (tensor<2xi8>) {
%multiplier = "tosa.const"() {values = dense<19689> : tensor<1xi32>} : () -> tensor<1xi32>
%shift = "tosa.const"() {values = dense<33> : tensor<1xi8>} : () -> tensor<1xi8>
%input_zp = "tosa.const"() {values = dense<43> : tensor<1xi8>} : () -> tensor<1xi8>
%output_zp = "tosa.const"() {values = dense<52> : tensor<1xi8>} : () -> tensor<1xi8>
// CHECK: linalg.generic
// CHECK: tosa.apply_scale
// CHECK-SAME: {rounding_mode = "DOUBLE_ROUND"}
%0 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {scale32 = true, rounding_mode = "DOUBLE_ROUND", per_channel = false, input_unsigned = false, output_unsigned = false} : (tensor<2xi8>, tensor<1xi32>, tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<2xi8>
return %0 : tensor<2xi8>
}
// -----
// CHECK-LABEL: @rescaleUnnecessaryDoubleRound
func.func @rescaleUnnecessaryDoubleRound(%arg0 : tensor<2xi8>) -> (tensor<2xi8>) {
%multiplier = "tosa.const"() {values = dense<19689> : tensor<1xi32>} : () -> tensor<1xi32>
%shift = "tosa.const"() {values = dense<15> : tensor<1xi8>} : () -> tensor<1xi8>
%input_zp = "tosa.const"() {values = dense<43> : tensor<1xi8>} : () -> tensor<1xi8>
%output_zp = "tosa.const"() {values = dense<52> : tensor<1xi8>} : () -> tensor<1xi8>
// CHECK: linalg.generic
// CHECK: tosa.apply_scale
// CHECK-SAME: {rounding_mode = "SINGLE_ROUND"}
%0 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {scale32 = true, rounding_mode = "DOUBLE_ROUND", per_channel = false, input_unsigned = false, output_unsigned = false} : (tensor<2xi8>, tensor<1xi32>, tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<2xi8>
return %0 : tensor<2xi8>
}
// -----
func.func @unsupportedRescaleInexactRound(%arg0 : tensor<2xi8>) -> (tensor<2xi8>) {
%multiplier = "tosa.const"() {values = dense<19689> : tensor<1xi32> } : () -> tensor<1xi32>
%shift = "tosa.const"() {values = dense<33> : tensor<1xi8> } : () -> tensor<1xi8>
%input_zp = "tosa.const"() {values = dense<0> : tensor<1xi8>} : () -> tensor<1xi8>
%output_zp = "tosa.const"() {values = dense<0> : tensor<1xi8>} : () -> tensor<1xi8>
// expected-error@+1 {{failed to legalize operation 'tosa.rescale'}}
%0 = tosa.rescale %arg0, %multiplier, %shift, %input_zp, %output_zp {input_zp = 243 : i32, output_zp = 252 : i32, scale32 = true, rounding_mode = "INEXACT_ROUND", per_channel = false, input_unsigned = false, output_unsigned = false} : (tensor<2xi8>, tensor<1xi32>, tensor<1xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<2xi8>
return %0 : tensor<2xi8>
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: @reverse
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @reverse(%arg0: tensor<5x4xi32>) -> () {
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[RDIM:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK: %[[INIT:.+]] = tensor.empty()
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]]], iterator_types = ["parallel", "parallel"]} outs(%[[INIT]] : tensor<5x4xi32>)
// CHECK-DAG: %[[I0:.+]] = linalg.index 0
// CHECK-DAG: %[[I1:.+]] = linalg.index 1
// CHECK-DAG: %[[SUB1:.+]] = arith.constant 1
// CHECK-DAG: %[[RDIM_MINUS_C1:.+]] = arith.subi %[[RDIM]], %[[SUB1]]
// CHECK-DAG: %[[READ_DIM:.+]] = arith.subi %[[RDIM_MINUS_C1]], %[[I0]]
// CHECK-DAG: %[[EXTRACT:.+]] = tensor.extract %arg0[%[[READ_DIM]], %[[I1]]] : tensor<5x4xi32>
// CHECK: linalg.yield %[[EXTRACT]]
%0 = tosa.reverse %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<5x4xi32>
// CHECK: %[[C1:.+]] = arith.constant 1
// CHECK: %[[RDIM:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK: %[[INIT:.+]] = tensor.empty()
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]]], iterator_types = ["parallel", "parallel"]} outs(%[[INIT]] : tensor<5x4xi32>)
// CHECK-DAG: %[[I0:.+]] = linalg.index 0
// CHECK-DAG: %[[I1:.+]] = linalg.index 1
// CHECK-DAG: %[[SUB1:.+]] = arith.constant 1
// CHECK-DAG: %[[RDIM_MINUS_C1:.+]] = arith.subi %[[RDIM]], %[[SUB1]]
// CHECK-DAG: %[[READ_DIM:.+]] = arith.subi %[[RDIM_MINUS_C1]], %[[I1]]
// CHECK-DAG: %[[EXTRACT:.+]] = tensor.extract %arg0[%[[I0]], %[[READ_DIM]]] : tensor<5x4xi32>
// CHECK: linalg.yield %[[EXTRACT]]
%1 = tosa.reverse %arg0 {axis = 1 : i32} : (tensor<5x4xi32>) -> tensor<5x4xi32>
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: @reverse_dyn
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @reverse_dyn(%arg0: tensor<?xi32>) -> () {
// CHECK: %[[C0_1:.+]] = arith.constant 0
// CHECK: %[[D0_1:.+]] = tensor.dim %[[ARG0]], %[[C0_1]]
// CHECK: %[[C0_2:.+]] = arith.constant 0
// CHECK: %[[D0_2:.+]] = tensor.dim %[[ARG0]], %[[C0_2]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[D0_1]])
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]]], iterator_types = ["parallel"]} outs(%[[INIT]] : tensor<?xi32>)
// CHECK-DAG: %[[I0:.+]] = linalg.index 0
// CHECK-DAG: %[[SUB1:.+]] = arith.constant 1
// CHECK-DAG: %[[RDIM_MINUS_C1:.+]] = arith.subi %[[D0_2]], %[[SUB1]]
// CHECK-DAG: %[[READ_DIM:.+]] = arith.subi %[[RDIM_MINUS_C1]], %[[I0]]
// CHECK-DAG: %[[EXTRACT:.+]] = tensor.extract %arg0[%[[READ_DIM]]] : tensor<?xi32>
// CHECK: linalg.yield %[[EXTRACT]]
%0 = tosa.reverse %arg0 {axis = 0 : i32} : (tensor<?xi32>) -> tensor<?xi32>
return
}
// -----
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: @tile
// CHECK-SAME: %[[ARG0:.+]]: tensor<2x3xi8>
func.func @tile(%arg0 : tensor<2x3xi8>) -> () {
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x3xi8>) outs([[INIT]] : tensor<2x2x1x3xi8>)
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i8
// CHECK: linalg.yield %[[ARG1]] : i8
// CHECK: [[CONST3:%.+]] = tosa.const_shape {values = dense<[4, 3]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK: tosa.reshape [[GENERIC]], [[CONST3]]
%cst21 = tosa.const_shape { values = dense<[2, 1]> : tensor<2xindex> } : () -> !tosa.shape<2>
%0 = tosa.tile %arg0, %cst21: (tensor<2x3xi8>, !tosa.shape<2>) -> tensor<4x3xi8>
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x3xi8>) outs([[INIT]] : tensor<1x2x2x3xi8>)
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i8
// CHECK: linalg.yield %[[ARG1]] : i8
// CHECK: [[CONST8:%.+]] = tosa.const_shape {values = dense<[2, 6]> : tensor<2xindex>} : () -> !tosa.shape<2>
// tosa.reshape [[GENERIC]], [[CONST8]]
%cst12 = tosa.const_shape { values = dense<[1, 2]> : tensor<2xindex> } : () -> !tosa.shape<2>
%1 = tosa.tile %arg0, %cst12: (tensor<2x3xi8>, !tosa.shape<2>) -> tensor<2x6xi8>
// CHECK: [[INIT:%.+]] = tensor.empty()
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x3xi8>) outs([[INIT]] : tensor<5x2x7x3xi8>)
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i8
// CHECK: linalg.yield %[[ARG1]] : i8
%cst57 = tosa.const_shape { values = dense<[5, 7]> : tensor<2xindex> } : () -> !tosa.shape<2>
// CHECK: [[CONST13:%.+]] = tosa.const_shape {values = dense<[10, 21]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK: tosa.reshape [[GENERIC]], [[CONST13]]
%2 = tosa.tile %arg0, %cst57: (tensor<2x3xi8>, !tosa.shape<2>) -> tensor<10x21xi8>
return
}
// -----
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: @tile_dyn_input
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @tile_dyn_input(%arg0 : tensor<?x3xi8>) -> () {
// CHECK: %[[CST0:.+]] = arith.constant 0
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[CST0]] : tensor<?x3xi8>
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]])
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<?x3xi8>) outs(%[[INIT]] : tensor<2x?x1x3xi8>)
// CHECK: ^bb0(%[[ARG1:.+]]: i8,
// CHECK: linalg.yield %[[ARG1]] : i8
// CHECK: %[[CONST3:.+]] = tosa.const_shape {values = dense<[-1, 3]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK: tosa.reshape %[[GENERIC]], %[[CONST3]]
%cst21 = tosa.const_shape { values = dense<[2, 1]> : tensor<2xindex> } : () -> !tosa.shape<2>
%0 = tosa.tile %arg0, %cst21: (tensor<?x3xi8>, !tosa.shape<2>) -> tensor<?x3xi8>
return
}
// -----
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: @tile_dyn_multiples
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
func.func @tile_dyn_multiples(%arg0 : tensor<2x3xi8>) -> () {
// CHECK: %[[CST1:.+]] = arith.constant 1
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[CST1]] : tensor<2x3xi8>
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]])
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x3xi8>) outs(%[[INIT]] : tensor<2x2x?x3xi8>)
// CHECK: ^bb0(%[[ARG1:.+]]: i8,
// CHECK: linalg.yield %[[ARG1]] : i8
// CHECK: %[[CONST2:.+]] = tosa.const_shape {values = dense<[2, -1]> : tensor<2xindex>} : () -> !tosa.shape<2>
// CHECK: tosa.reshape %[[GENERIC]], %[[CONST2]]
%cst = tosa.const_shape { values = dense<[2, -1]> : tensor<2xindex> } : () -> !tosa.shape<2>
%0 = tosa.tile %arg0, %cst: (tensor<2x3xi8>, !tosa.shape<2>) -> tensor<2x?xi8>
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d1)>
// CHECK: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0)>
// CHECK: #[[$MAP3:.*]] = affine_map<(d0) -> (d0)>
// CHECK: #[[$MAP4:.*]] = affine_map<(d0) -> ()>
func.func @argmax(%arg0 : tensor<3x2xi32>, %arg1 : tensor<6xf32>) -> () {
// CHECK: [[IDX_INIT:%.+]] = tensor.empty()
// CHECK: [[IDX_MIN:%.+]] = arith.constant 0 : i32
// CHECK: [[IDX_FILL:%.+]] = linalg.fill ins([[IDX_MIN]]{{.*}}outs([[IDX_INIT]]
// CHECK: [[VAL_INIT:%.+]] = tensor.empty()
// CHECK: [[VAL_MIN:%.+]] = arith.constant -2147483648
// CHECK: [[VAL_FILL:%.+]] = linalg.fill ins([[VAL_MIN]]{{.*}}outs([[VAL_INIT]]
// CHECK: linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["reduction", "parallel"]} ins(%[[ARG0]] : tensor<3x2xi32>) outs([[IDX_FILL]], [[VAL_FILL]] : tensor<2xi32>, tensor<2xi32>)
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i32, %[[ARG2:[0-9a-zA-Z_]+]]: i32, %[[ARG3:[0-9a-zA-Z_]+]]: i32
// CHECK: [[IDX:%.+]] = linalg.index 0
// CHECK: [[CAST:%.+]] = arith.index_cast [[IDX]]
// CHECK: [[CMP:%.+]] = arith.cmpi sgt, %[[ARG1]], %[[ARG3]]
// CHECK: [[SELECT_VAL:%.+]] = arith.select [[CMP]], %[[ARG1]], %[[ARG3]]
// CHECK: [[SELECT_IDX:%.+]] = arith.select [[CMP]], [[CAST]], %[[ARG2]]
// CHECK: linalg.yield [[SELECT_IDX]], [[SELECT_VAL]]
%0 = tosa.argmax %arg0 { axis = 0 : i32} : (tensor<3x2xi32>) -> tensor<2xi32>
// CHECK: [[IDX_INIT:%.+]] = tensor.empty()
// CHECK: [[IDX_MIN:%.+]] = arith.constant 0 : i32
// CHECK: [[IDX_FILL:%.+]] = linalg.fill ins([[IDX_MIN]]{{.*}}outs([[IDX_INIT]]
// CHECK: [[VAL_INIT:%.+]] = tensor.empty()
// CHECK: [[VAL_MIN:%.+]] = arith.constant -2147483648
// CHECK: [[VAL_FILL:%.+]] = linalg.fill ins([[VAL_MIN]]{{.*}}outs([[VAL_INIT]]
// CHECK: linalg.generic {indexing_maps = [#map, #map2, #map2], iterator_types = ["parallel", "reduction"]} ins(%[[ARG0]] : tensor<3x2xi32>) outs([[IDX_FILL]], [[VAL_FILL]] : tensor<3xi32>, tensor<3xi32>)
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i32, %[[ARG2:[0-9a-zA-Z_]+]]: i32, %[[ARG3:[0-9a-zA-Z_]+]]: i32
// CHECK: [[IDX:%.+]] = linalg.index 1
// CHECK: [[CAST:%.+]] = arith.index_cast [[IDX]]
// CHECK: [[CMP:%.+]] = arith.cmpi sgt, %[[ARG1]], %[[ARG3]]
// CHECK: [[SELECT_VAL:%.+]] = arith.select [[CMP]], %[[ARG1]], %[[ARG3]]
// CHECK: [[SELECT_IDX:%.+]] = arith.select [[CMP]], [[CAST]], %[[ARG2]]
// CHECK: linalg.yield [[SELECT_IDX]], [[SELECT_VAL]]
%1 = tosa.argmax %arg0 { axis = 1 : i32} : (tensor<3x2xi32>) -> tensor<3xi32>
// CHECK: arith.constant -3.40282347E+38 : f32
// CHECK: linalg.index
// CHECK: arith.index_cast
// CHECK: arith.cmpf ugt
// CHECK: arith.cmpf ord
// CHECK: andi
// CHECK: select
// CHECK: select
// CHECK: linalg.yield
%2 = tosa.argmax %arg1 { axis = 0 : i32} : (tensor<6xf32>) -> tensor<i32>
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d1)>
func.func @argmax_dyn_non_axis(%arg0 : tensor<3x?xi32>) -> () {
// CHECK: %[[CST1:.+]] = arith.constant 1
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[CST1]]
// CHECK: %[[IDX_INIT:.+]] = tensor.empty(%[[DYN]])
// CHECK: %[[IDX_MIN:.+]] = arith.constant 0 : i32
// CHECK: %[[IDX_FILL:.+]] = linalg.fill ins(%[[IDX_MIN]]{{.*}}outs(%[[IDX_INIT]]
// CHECK: %[[VAL_INIT:.+]] = tensor.empty(%[[DYN]])
// CHECK: %[[VAL_MIN:.+]] = arith.constant -2147483648
// CHECK: %[[VAL_FILL:.+]] = linalg.fill ins(%[[VAL_MIN]]{{.*}}outs(%[[VAL_INIT]]
// CHECK: linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["reduction", "parallel"]} ins(%[[ARG0]] : tensor<3x?xi32>) outs(%[[IDX_FILL]], %[[VAL_FILL]] : tensor<?xi32>, tensor<?xi32>)
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i32, %[[ARG2:[0-9a-zA-Z_]+]]: i32, %[[ARG3:[0-9a-zA-Z_]+]]: i32
// CHECK: %[[IDX:.+]] = linalg.index 0
// CHECK: %[[CAST:.+]] = arith.index_cast %[[IDX]]
// CHECK: %[[CMP:.+]] = arith.cmpi sgt, %[[ARG1]], %[[ARG3]]
// CHECK: %[[SELECT_VAL:.+]] = arith.select %[[CMP]], %[[ARG1]], %[[ARG3]]
// CHECK: %[[SELECT_IDX:.+]] = arith.select %[[CMP]], %[[CAST]], %[[ARG2]]
// CHECK: linalg.yield %[[SELECT_IDX]], %[[SELECT_VAL]]
%0 = tosa.argmax %arg0 { axis = 0 : i32} : (tensor<3x?xi32>) -> tensor<?xi32>
return
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d0)>
func.func @argmax_dyn_axis(%arg0 : tensor<3x?xi32>) -> () {
// CHECK: %[[IDX_INIT:.+]] = tensor.empty()
// CHECK: %[[IDX_MIN:.+]] = arith.constant 0 : i32
// CHECK: %[[IDX_FILL:.+]] = linalg.fill ins(%[[IDX_MIN]]{{.*}}outs(%[[IDX_INIT]]
// CHECK: %[[VAL_INIT:.+]] = tensor.empty()
// CHECK: %[[VAL_MIN:.+]] = arith.constant -2147483648
// CHECK: %[[VAL_FILL:.+]] = linalg.fill ins(%[[VAL_MIN]]{{.*}}outs(%[[VAL_INIT]]
// CHECK: linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "reduction"]} ins(%[[ARG0]] : tensor<3x?xi32>) outs(%[[IDX_FILL]], %[[VAL_FILL]] : tensor<3xi32>, tensor<3xi32>)
// CHECK: %[[IDX:.+]] = linalg.index 1
// CHECK: %[[CAST:.+]] = arith.index_cast %[[IDX]]
// CHECK: %[[CMP:.+]] = arith.cmpi sgt, %[[ARG1]], %[[ARG3]]
// CHECK: %[[SELECT_VAL:.+]] = arith.select %[[CMP]], %[[ARG1]], %[[ARG3]]
// CHECK: %[[SELECT_IDX:.+]] = arith.select %[[CMP]], %[[CAST]], %[[ARG2]]
// CHECK: linalg.yield %[[SELECT_IDX]], %[[SELECT_VAL]]
%0 = tosa.argmax %arg0 { axis = 1 : i32} : (tensor<3x?xi32>) -> tensor<3xi32>
return
}
// -----
// CHECK-LABEL: @gather_float
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]
func.func @gather_float(%arg0: tensor<2x3x2xf32>, %arg1: tensor<2x3xi32>) -> () {
// CHECK: %[[INIT:.+]] = tensor.empty()
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[ARG1]] : tensor<2x3xi32>) outs(%[[INIT]] : tensor<2x3x2xf32>)
// CHECK: ^bb0(%[[BBARG0:.+]]: i32, %[[BBARG1:.+]]: f32)
// CHECK: %[[IDX0:.+]] = linalg.index 0
// CHECK: %[[CAST:.+]] = arith.index_cast %[[BBARG0]]
// CHECK: %[[IDX2:.+]] = linalg.index 2
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG0]][%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<2x3x2xf32>
// CHECK: linalg.yield %[[EXTRACT]]
%0 = tosa.gather %arg0, %arg1 : (tensor<2x3x2xf32>, tensor<2x3xi32>) -> tensor<2x3x2xf32>
return
}
// -----
// CHECK-LABEL: @gather_float_dyn
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]
func.func @gather_float_dyn(%arg0: tensor<?x3x2xf32>, %arg1: tensor<?x3xi32>) -> () {
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[BATCH:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[BATCH]])
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[ARG1]] : tensor<?x3xi32>) outs(%[[INIT]] : tensor<?x3x2xf32>)
// CHECK: ^bb0(%[[BBARG0:.+]]: i32, %[[BBARG1:.+]]: f32)
// CHECK: %[[IDX0:.+]] = linalg.index 0
// CHECK: %[[CAST:.+]] = arith.index_cast %[[BBARG0]]
// CHECK: %[[IDX2:.+]] = linalg.index 2
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG0]][%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<?x3x2xf32>
// CHECK: linalg.yield %[[EXTRACT]]
%0 = tosa.gather %arg0, %arg1 : (tensor<?x3x2xf32>, tensor<?x3xi32>) -> tensor<?x3x2xf32>
return
}
// -----
// CHECK-LABEL: @gather_float_all_dynamic
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]
func.func @gather_float_all_dynamic(%arg0: tensor<?x?x?xf32>, %arg1: tensor<?x?xi32>) -> () {
// CHECK: %[[C0:.+]] = arith.constant 0
// CHECK: %[[BATCH:.+]] = tensor.dim %[[ARG0]], %[[C0]]
// CHECK: %[[C1:.+]] = arith.constant 1
// CHECK: %[[INDEX:.+]] = tensor.dim %[[ARG1]], %[[C1]]
// CHECK: %[[C2:.+]] = arith.constant 2
// CHECK: %[[CHANNEL:.+]] = tensor.dim %[[ARG0]], %[[C2]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[BATCH]], %[[INDEX]], %[[CHANNEL]])
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[ARG1]] : tensor<?x?xi32>) outs(%[[INIT]] : tensor<?x?x?xf32>)
// CHECK: ^bb0(%[[BBARG0:.+]]: i32, %[[BBARG1:.+]]: f32)
// CHECK: %[[IDX0:.+]] = linalg.index 0
// CHECK: %[[CAST:.+]] = arith.index_cast %[[BBARG0]]
// CHECK: %[[IDX2:.+]] = linalg.index 2
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG0]][%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<?x?x?xf32>
// CHECK: linalg.yield %[[EXTRACT]]
%0 = tosa.gather %arg0, %arg1 : (tensor<?x?x?xf32>, tensor<?x?xi32>) -> tensor<?x?x?xf32>
return
}
// -----
// CHECK-LABEL: @gather_int
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]
func.func @gather_int(%arg0: tensor<2x3x2xi32>, %arg1: tensor<2x3xi32>) -> () {
// CHECK: %[[INIT:.+]] = tensor.empty()
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[ARG1]] : tensor<2x3xi32>) outs(%[[INIT]] : tensor<2x3x2xi32>)
// CHECK: ^bb0(%[[BBARG0:.+]]: i32, %[[BBARG1:.+]]: i32)
// CHECK: %[[IDX0:.+]] = linalg.index 0
// CHECK: %[[CAST:.+]] = arith.index_cast %[[BBARG0]]
// CHECK: %[[IDX2:.+]] = linalg.index 2
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG0]][%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<2x3x2xi32>
// CHECK: linalg.yield %[[EXTRACT]]
%0 = tosa.gather %arg0, %arg1 : (tensor<2x3x2xi32>, tensor<2x3xi32>) -> tensor<2x3x2xi32>
return
}
// -----
// CHECK-LABEL: @table8
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @table8(%arg0: tensor<6xi8>, %arg1: tensor<512xi8>) -> () {
// CHECK: %[[INIT:.+]] = tensor.empty()
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<6xi8>) outs(%[[INIT]] : tensor<6xi8>)
// CHECK: ^bb0(%[[ARG_IN:.+]]: i8, %[[ARG_INIT:.+]]: i8)
// CHECK: %[[CAST:.+]] = arith.index_cast %[[ARG_IN]]
// CHECK: %[[OFFSET:.+]] = arith.constant 128
// CHECK: %[[ADD:.+]] = arith.addi %[[CAST]], %[[OFFSET]]
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG1]][%[[ADD]]]
// CHECK: linalg.yield %[[EXTRACT]]
%0 = tosa.table %arg0, %arg1 : (tensor<6xi8>, tensor<512xi8>) -> tensor<6xi8>
return
}
// -----
// CHECK-LABEL: @table16
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @table16(%arg0: tensor<6xi16>, %arg1: tensor<513xi16>) -> () {
// CHECK: %[[INIT:.+]] = tensor.empty()
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<6xi16>) outs(%[[INIT]] : tensor<6xi32>)
// CHECK: ^bb0(%[[ARG2:.*]]: i16, %[[ARG3:.*]]: i32)
// CHECK: %[[EXT_IN:.+]] = arith.extsi %[[ARG2]]
// CHECK: %[[C32768:.+]] = arith.constant 32768
// CHECK: %[[C7:.+]] = arith.constant 7
// CHECK: %[[C1:.+]] = arith.constant 1
// CHECK: %[[C127:.+]] = arith.constant 127
// CHECK: %[[INADD:.+]] = arith.addi %[[EXT_IN]], %[[C32768]]
// CHECK: %[[IDX:.+]] = arith.shrui %[[INADD]], %[[C7]]
// CHECK: %[[FRACTION:.+]] = arith.andi %[[INADD]], %[[C127]]
// CHECK: %[[IDXPLUS1:.+]] = arith.addi %[[IDX]], %[[C1]]
// CHECK: %[[IDX_CAST:.+]] = arith.index_cast %[[IDX]]
// CHECK: %[[IDXPLUS1_CAST:.+]] = arith.index_cast %[[IDXPLUS1]]
// CHECK: %[[BASE:.+]] = tensor.extract %[[ARG1]][%[[IDX_CAST]]]
// CHECK: %[[NEXT:.+]] = tensor.extract %[[ARG1]][%[[IDXPLUS1_CAST]]]
// CHECK: %[[BASE_EXT:.+]] = arith.extsi %[[BASE]]
// CHECK: %[[NEXT_EXT:.+]] = arith.extsi %[[NEXT]]
// CHECK: %[[BASE_MUL:.+]] = arith.shli %[[BASE_EXT]], %[[C7]]
// CHECK: %[[DIFF:.+]] = arith.subi %[[NEXT_EXT]], %[[BASE_EXT]]
// CHECK: %[[DIFF_MUL:.+]] = arith.muli %[[DIFF]], %[[FRACTION]]
// CHECK: %[[RESULT:.+]] = arith.addi %[[BASE_MUL]], %[[DIFF_MUL]]
// CHECK: linalg.yield %[[RESULT]]
%0 = tosa.table %arg0, %arg1 : (tensor<6xi16>, tensor<513xi16>) -> tensor<6xi32>
return
}
// -----
// CHECK-LABEL: @table8_dyn
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @table8_dyn(%arg0: tensor<?xi8>, %arg1: tensor<512xi8>) -> () {
// CHECK: %[[CST0:.+]] = arith.constant 0
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[CST0]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]])
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<?xi8>) outs(%[[INIT]] : tensor<?xi8>)
// CHECK: ^bb0(%[[ARG_IN:.+]]: i8, %[[ARG_INIT:.+]]: i8)
// CHECK: %[[CAST:.+]] = arith.index_cast %[[ARG_IN]]
// CHECK: %[[OFFSET:.+]] = arith.constant 128
// CHECK: %[[ADD:.+]] = arith.addi %[[CAST]], %[[OFFSET]]
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG1]][%[[ADD]]]
// CHECK: linalg.yield %[[EXTRACT]]
%0 = tosa.table %arg0, %arg1 : (tensor<?xi8>, tensor<512xi8>) -> tensor<?xi8>
return
}
// -----
// CHECK-LABEL: @table8_dyn_table
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
func.func @table8_dyn_table(%arg0: tensor<6xi8>, %arg1: tensor<?xi8>) -> () {
// CHECK: %[[INIT:.+]] = tensor.empty()
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<6xi8>) outs(%[[INIT]] : tensor<6xi8>)
// CHECK: ^bb0(%[[ARG_IN:.+]]: i8, %[[ARG_INIT:.+]]: i8)
// CHECK: %[[CAST:.+]] = arith.index_cast %[[ARG_IN]]
// CHECK: %[[OFFSET:.+]] = arith.constant 128
// CHECK: %[[ADD:.+]] = arith.addi %[[CAST]], %[[OFFSET]]
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG1]][%[[ADD]]]
// CHECK: linalg.yield %[[EXTRACT]]
%0 = tosa.table %arg0, %arg1 : (tensor<6xi8>, tensor<?xi8>) -> tensor<6xi8>
return
}
// -----
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>
// CHECK-LABEL: func.func @test_static_rfft2d(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<5x4x8xf32>) -> (tensor<5x4x5xf32>, tensor<5x4x5xf32>) {
// CHECK: %[[VAL_1:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_2:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_3:.*]] = arith.constant 8 : index
// CHECK: %[[VAL_4:.*]] = arith.constant 4 : index
// CHECK: %[[VAL_5:.*]] = arith.constant 5 : index
// CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<5x4x5xf32>
// CHECK: %[[VAL_7:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_8:.*]] = linalg.fill ins(%[[VAL_7]] : f32) outs(%[[VAL_6]] : tensor<5x4x5xf32>) -> tensor<5x4x5xf32>
// CHECK: %[[VAL_9:.*]] = tensor.empty() : tensor<5x4x5xf32>
// CHECK: %[[VAL_10:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_11:.*]] = linalg.fill ins(%[[VAL_10]] : f32) outs(%[[VAL_9]] : tensor<5x4x5xf32>) -> tensor<5x4x5xf32>
// CHECK: %[[VAL_12:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_13:.*]] = arith.constant 4 : index
// CHECK: %[[VAL_14:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_15:.*]] = arith.constant 8 : index
// CHECK: %[[VAL_16:.*]] = arith.constant 6.28318548 : f32
// CHECK: %[[VAL_17:.*]] = arith.index_castui %[[VAL_13]] : index to i32
// CHECK: %[[VAL_18:.*]] = arith.uitofp %[[VAL_17]] : i32 to f32
// CHECK: %[[VAL_19:.*]] = arith.index_castui %[[VAL_15]] : index to i32
// CHECK: %[[VAL_20:.*]] = arith.uitofp %[[VAL_19]] : i32 to f32
// CHECK: %[[VAL_21:.*]]:2 = linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_1]]], iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]} ins(%[[VAL_0]] : tensor<5x4x8xf32>) outs(%[[VAL_8]], %[[VAL_11]] : tensor<5x4x5xf32>, tensor<5x4x5xf32>) {
// CHECK: ^bb0(%[[VAL_22:.*]]: f32, %[[VAL_23:.*]]: f32, %[[VAL_24:.*]]: f32):
// CHECK: %[[VAL_25:.*]] = linalg.index 1 : index
// CHECK: %[[VAL_26:.*]] = linalg.index 2 : index
// CHECK: %[[VAL_27:.*]] = linalg.index 3 : index
// CHECK: %[[VAL_28:.*]] = linalg.index 4 : index
// CHECK: %[[VAL_29:.*]] = index.mul %[[VAL_27]], %[[VAL_25]]
// CHECK: %[[VAL_30:.*]] = index.mul %[[VAL_28]], %[[VAL_26]]
// CHECK: %[[VAL_31:.*]] = index.remu %[[VAL_29]], %[[VAL_13]]
// CHECK: %[[VAL_32:.*]] = index.remu %[[VAL_30]], %[[VAL_15]]
// CHECK: %[[VAL_33:.*]] = arith.index_castui %[[VAL_31]] : index to i32
// CHECK: %[[VAL_34:.*]] = arith.uitofp %[[VAL_33]] : i32 to f32
// CHECK: %[[VAL_35:.*]] = arith.index_castui %[[VAL_32]] : index to i32
// CHECK: %[[VAL_36:.*]] = arith.uitofp %[[VAL_35]] : i32 to f32
// CHECK: %[[VAL_37:.*]] = arith.divf %[[VAL_34]], %[[VAL_18]] : f32
// CHECK: %[[VAL_38:.*]] = arith.divf %[[VAL_36]], %[[VAL_20]] : f32
// CHECK: %[[VAL_39:.*]] = arith.addf %[[VAL_37]], %[[VAL_38]] : f32
// CHECK: %[[VAL_40:.*]] = arith.mulf %[[VAL_16]], %[[VAL_39]] : f32
// CHECK: %[[VAL_41:.*]] = math.cos %[[VAL_40]] : f32
// CHECK: %[[VAL_42:.*]] = math.sin %[[VAL_40]] : f32
// CHECK: %[[VAL_43:.*]] = arith.mulf %[[VAL_22]], %[[VAL_41]] : f32
// CHECK: %[[VAL_44:.*]] = arith.mulf %[[VAL_22]], %[[VAL_42]] : f32
// CHECK: %[[VAL_45:.*]] = arith.addf %[[VAL_23]], %[[VAL_43]] : f32
// CHECK: %[[VAL_46:.*]] = arith.subf %[[VAL_24]], %[[VAL_44]] : f32
// CHECK: linalg.yield %[[VAL_45]], %[[VAL_46]] : f32, f32
// CHECK: } -> (tensor<5x4x5xf32>, tensor<5x4x5xf32>)
// CHECK: return %[[VAL_47:.*]]#0, %[[VAL_47]]#1 : tensor<5x4x5xf32>, tensor<5x4x5xf32>
// CHECK: }
func.func @test_static_rfft2d(%arg0: tensor<5x4x8xf32>) -> (tensor<5x4x5xf32>, tensor<5x4x5xf32>) {
%output_real, %output_imag = "tosa.rfft2d"(%arg0) {} : (tensor<5x4x8xf32>) -> (tensor<5x4x5xf32>, tensor<5x4x5xf32>)
return %output_real, %output_imag : tensor<5x4x5xf32>, tensor<5x4x5xf32>
}
// -----
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>
// CHECK-LABEL: func.func @test_dynamic_rfft2d(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
// CHECK: %[[VAL_1:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_2:.*]] = tensor.dim %[[VAL_0]], %[[VAL_1]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_4:.*]] = tensor.dim %[[VAL_0]], %[[VAL_3]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_5:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_6:.*]] = tensor.dim %[[VAL_0]], %[[VAL_5]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_7:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_8:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_9:.*]] = arith.divui %[[VAL_6]], %[[VAL_8]] : index
// CHECK: %[[VAL_10:.*]] = arith.addi %[[VAL_9]], %[[VAL_7]] : index
// CHECK: %[[VAL_11:.*]] = tensor.empty(%[[VAL_2]], %[[VAL_4]], %[[VAL_10]]) : tensor<?x?x?xf32>
// CHECK: %[[VAL_12:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_13:.*]] = linalg.fill ins(%[[VAL_12]] : f32) outs(%[[VAL_11]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
// CHECK: %[[VAL_14:.*]] = tensor.empty(%[[VAL_2]], %[[VAL_4]], %[[VAL_10]]) : tensor<?x?x?xf32>
// CHECK: %[[VAL_15:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_16:.*]] = linalg.fill ins(%[[VAL_15]] : f32) outs(%[[VAL_14]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
// CHECK: %[[VAL_17:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_18:.*]] = tensor.dim %[[VAL_0]], %[[VAL_17]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_19:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_20:.*]] = tensor.dim %[[VAL_0]], %[[VAL_19]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_21:.*]] = arith.constant 6.28318548 : f32
// CHECK: %[[VAL_22:.*]] = arith.index_castui %[[VAL_18]] : index to i32
// CHECK: %[[VAL_23:.*]] = arith.uitofp %[[VAL_22]] : i32 to f32
// CHECK: %[[VAL_24:.*]] = arith.index_castui %[[VAL_20]] : index to i32
// CHECK: %[[VAL_25:.*]] = arith.uitofp %[[VAL_24]] : i32 to f32
// CHECK: %[[VAL_26:.*]]:2 = linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_1]]], iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]} ins(%[[VAL_0]] : tensor<?x?x?xf32>) outs(%[[VAL_13]], %[[VAL_16]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
// CHECK: ^bb0(%[[VAL_27:.*]]: f32, %[[VAL_28:.*]]: f32, %[[VAL_29:.*]]: f32):
// CHECK: %[[VAL_30:.*]] = linalg.index 1 : index
// CHECK: %[[VAL_31:.*]] = linalg.index 2 : index
// CHECK: %[[VAL_32:.*]] = linalg.index 3 : index
// CHECK: %[[VAL_33:.*]] = linalg.index 4 : index
// CHECK: %[[VAL_34:.*]] = index.mul %[[VAL_32]], %[[VAL_30]]
// CHECK: %[[VAL_35:.*]] = index.mul %[[VAL_33]], %[[VAL_31]]
// CHECK: %[[VAL_36:.*]] = index.remu %[[VAL_34]], %[[VAL_18]]
// CHECK: %[[VAL_37:.*]] = index.remu %[[VAL_35]], %[[VAL_20]]
// CHECK: %[[VAL_38:.*]] = arith.index_castui %[[VAL_36]] : index to i32
// CHECK: %[[VAL_39:.*]] = arith.uitofp %[[VAL_38]] : i32 to f32
// CHECK: %[[VAL_40:.*]] = arith.index_castui %[[VAL_37]] : index to i32
// CHECK: %[[VAL_41:.*]] = arith.uitofp %[[VAL_40]] : i32 to f32
// CHECK: %[[VAL_42:.*]] = arith.divf %[[VAL_39]], %[[VAL_23]] : f32
// CHECK: %[[VAL_43:.*]] = arith.divf %[[VAL_41]], %[[VAL_25]] : f32
// CHECK: %[[VAL_44:.*]] = arith.addf %[[VAL_42]], %[[VAL_43]] : f32
// CHECK: %[[VAL_45:.*]] = arith.mulf %[[VAL_21]], %[[VAL_44]] : f32
// CHECK: %[[VAL_46:.*]] = math.cos %[[VAL_45]] : f32
// CHECK: %[[VAL_47:.*]] = math.sin %[[VAL_45]] : f32
// CHECK: %[[VAL_48:.*]] = arith.mulf %[[VAL_27]], %[[VAL_46]] : f32
// CHECK: %[[VAL_49:.*]] = arith.mulf %[[VAL_27]], %[[VAL_47]] : f32
// CHECK: %[[VAL_50:.*]] = arith.addf %[[VAL_28]], %[[VAL_48]] : f32
// CHECK: %[[VAL_51:.*]] = arith.subf %[[VAL_29]], %[[VAL_49]] : f32
// CHECK: linalg.yield %[[VAL_50]], %[[VAL_51]] : f32, f32
// CHECK: } -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
// CHECK: return %[[VAL_52:.*]]#0, %[[VAL_52]]#1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>
// CHECK: }
func.func @test_dynamic_rfft2d(%arg0: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
%output_real, %output_imag = "tosa.rfft2d"(%arg0) {} : (tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
return %output_real, %output_imag : tensor<?x?x?xf32>, tensor<?x?x?xf32>
}
// -----
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>
// CHECK-LABEL: func.func @test_static_fft2d(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<8x8x8xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<8x8x8xf32>) -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>) {
// CHECK: %[[VAL_2:.*]] = tensor.empty() : tensor<8x8x8xf32>
// CHECK: %[[VAL_3:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_4:.*]] = linalg.fill ins(%[[VAL_3]] : f32) outs(%[[VAL_2]] : tensor<8x8x8xf32>) -> tensor<8x8x8xf32>
// CHECK: %[[VAL_5:.*]] = tensor.empty() : tensor<8x8x8xf32>
// CHECK: %[[VAL_6:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_7:.*]] = linalg.fill ins(%[[VAL_6]] : f32) outs(%[[VAL_5]] : tensor<8x8x8xf32>) -> tensor<8x8x8xf32>
// CHECK: %[[VAL_8:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_9:.*]] = arith.constant 8 : index
// CHECK: %[[VAL_10:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_11:.*]] = arith.constant 8 : index
// CHECK: %[[VAL_12:.*]] = arith.constant 6.28318548 : f32
// CHECK: %[[VAL_13:.*]] = arith.index_castui %[[VAL_9]] : index to i32
// CHECK: %[[VAL_14:.*]] = arith.uitofp %[[VAL_13]] : i32 to f32
// CHECK: %[[VAL_15:.*]] = arith.index_castui %[[VAL_11]] : index to i32
// CHECK: %[[VAL_16:.*]] = arith.uitofp %[[VAL_15]] : i32 to f32
// CHECK: %[[VAL_17:.*]]:2 = linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_1]]], iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]} ins(%[[VAL_0]], %[[VAL_1]] : tensor<8x8x8xf32>, tensor<8x8x8xf32>) outs(%[[VAL_4]], %[[VAL_7]] : tensor<8x8x8xf32>, tensor<8x8x8xf32>) {
// CHECK: ^bb0(%[[VAL_18:.*]]: f32, %[[VAL_19:.*]]: f32, %[[VAL_20:.*]]: f32, %[[VAL_21:.*]]: f32):
// CHECK: %[[VAL_22:.*]] = linalg.index 1 : index
// CHECK: %[[VAL_23:.*]] = linalg.index 2 : index
// CHECK: %[[VAL_24:.*]] = linalg.index 3 : index
// CHECK: %[[VAL_25:.*]] = linalg.index 4 : index
// CHECK: %[[VAL_26:.*]] = index.mul %[[VAL_24]], %[[VAL_22]]
// CHECK: %[[VAL_27:.*]] = index.mul %[[VAL_25]], %[[VAL_23]]
// CHECK: %[[VAL_28:.*]] = index.remu %[[VAL_26]], %[[VAL_9]]
// CHECK: %[[VAL_29:.*]] = index.remu %[[VAL_27]], %[[VAL_11]]
// CHECK: %[[VAL_30:.*]] = arith.index_castui %[[VAL_28]] : index to i32
// CHECK: %[[VAL_31:.*]] = arith.uitofp %[[VAL_30]] : i32 to f32
// CHECK: %[[VAL_32:.*]] = arith.index_castui %[[VAL_29]] : index to i32
// CHECK: %[[VAL_33:.*]] = arith.uitofp %[[VAL_32]] : i32 to f32
// CHECK: %[[VAL_34:.*]] = arith.divf %[[VAL_31]], %[[VAL_14]] : f32
// CHECK: %[[VAL_35:.*]] = arith.divf %[[VAL_33]], %[[VAL_16]] : f32
// CHECK: %[[VAL_36:.*]] = arith.addf %[[VAL_34]], %[[VAL_35]] : f32
// CHECK: %[[VAL_37:.*]] = arith.mulf %[[VAL_12]], %[[VAL_36]] : f32
// CHECK: %[[VAL_38:.*]] = math.cos %[[VAL_37]] : f32
// CHECK: %[[VAL_39:.*]] = math.sin %[[VAL_37]] : f32
// CHECK: %[[VAL_40:.*]] = arith.mulf %[[VAL_18]], %[[VAL_38]] : f32
// CHECK: %[[VAL_41:.*]] = arith.mulf %[[VAL_19]], %[[VAL_39]] : f32
// CHECK: %[[VAL_42:.*]] = arith.addf %[[VAL_40]], %[[VAL_41]] : f32
// CHECK: %[[VAL_43:.*]] = arith.mulf %[[VAL_19]], %[[VAL_38]] : f32
// CHECK: %[[VAL_44:.*]] = arith.mulf %[[VAL_18]], %[[VAL_39]] : f32
// CHECK: %[[VAL_45:.*]] = arith.subf %[[VAL_43]], %[[VAL_44]] : f32
// CHECK: %[[VAL_46:.*]] = arith.addf %[[VAL_20]], %[[VAL_42]] : f32
// CHECK: %[[VAL_47:.*]] = arith.addf %[[VAL_21]], %[[VAL_45]] : f32
// CHECK: linalg.yield %[[VAL_46]], %[[VAL_47]] : f32, f32
// CHECK: } -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>)
// CHECK: return %[[VAL_48:.*]]#0, %[[VAL_48]]#1 : tensor<8x8x8xf32>, tensor<8x8x8xf32>
// CHECK: }
func.func @test_static_fft2d(%arg0: tensor<8x8x8xf32>, %arg1: tensor<8x8x8xf32>) -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>) {
%output_real, %output_imag = "tosa.fft2d"(%arg0, %arg1) {inverse=false} : (tensor<8x8x8xf32>, tensor<8x8x8xf32>) -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>)
return %output_real, %output_imag : tensor<8x8x8xf32>, tensor<8x8x8xf32>
}
// -----
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>
// CHECK-LABEL: func.func @test_dynamic_fft2d(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?x?xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_3:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_6:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_6]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_8:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_5]], %[[VAL_7]]) : tensor<?x?x?xf32>
// CHECK: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_10:.*]] = linalg.fill ins(%[[VAL_9]] : f32) outs(%[[VAL_8]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
// CHECK: %[[VAL_11:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_5]], %[[VAL_7]]) : tensor<?x?x?xf32>
// CHECK: %[[VAL_12:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_13:.*]] = linalg.fill ins(%[[VAL_12]] : f32) outs(%[[VAL_11]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
// CHECK: %[[VAL_14:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_15:.*]] = tensor.dim %[[VAL_0]], %[[VAL_14]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_16:.*]] = arith.constant 2 : index
// CHECK: %[[VAL_17:.*]] = tensor.dim %[[VAL_0]], %[[VAL_16]] : tensor<?x?x?xf32>
// CHECK: %[[VAL_18:.*]] = arith.constant 6.28318548 : f32
// CHECK: %[[VAL_19:.*]] = arith.index_castui %[[VAL_15]] : index to i32
// CHECK: %[[VAL_20:.*]] = arith.uitofp %[[VAL_19]] : i32 to f32
// CHECK: %[[VAL_21:.*]] = arith.index_castui %[[VAL_17]] : index to i32
// CHECK: %[[VAL_22:.*]] = arith.uitofp %[[VAL_21]] : i32 to f32
// CHECK: %[[VAL_23:.*]]:2 = linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_1]]], iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]} ins(%[[VAL_0]], %[[VAL_1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>) outs(%[[VAL_10]], %[[VAL_13]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
// CHECK: ^bb0(%[[VAL_24:.*]]: f32, %[[VAL_25:.*]]: f32, %[[VAL_26:.*]]: f32, %[[VAL_27:.*]]: f32):
// CHECK: %[[VAL_28:.*]] = linalg.index 1 : index
// CHECK: %[[VAL_29:.*]] = linalg.index 2 : index
// CHECK: %[[VAL_30:.*]] = linalg.index 3 : index
// CHECK: %[[VAL_31:.*]] = linalg.index 4 : index
// CHECK: %[[VAL_32:.*]] = index.mul %[[VAL_30]], %[[VAL_28]]
// CHECK: %[[VAL_33:.*]] = index.mul %[[VAL_31]], %[[VAL_29]]
// CHECK: %[[VAL_34:.*]] = index.remu %[[VAL_32]], %[[VAL_15]]
// CHECK: %[[VAL_35:.*]] = index.remu %[[VAL_33]], %[[VAL_17]]
// CHECK: %[[VAL_36:.*]] = arith.index_castui %[[VAL_34]] : index to i32
// CHECK: %[[VAL_37:.*]] = arith.uitofp %[[VAL_36]] : i32 to f32
// CHECK: %[[VAL_38:.*]] = arith.index_castui %[[VAL_35]] : index to i32
// CHECK: %[[VAL_39:.*]] = arith.uitofp %[[VAL_38]] : i32 to f32
// CHECK: %[[VAL_40:.*]] = arith.divf %[[VAL_37]], %[[VAL_20]] : f32
// CHECK: %[[VAL_41:.*]] = arith.divf %[[VAL_39]], %[[VAL_22]] : f32
// CHECK: %[[VAL_42:.*]] = arith.addf %[[VAL_40]], %[[VAL_41]] : f32
// CHECK: %[[VAL_43:.*]] = arith.mulf %[[VAL_18]], %[[VAL_42]] : f32
// CHECK: %[[VAL_44:.*]] = arith.constant -1.000000e+00 : f32
// CHECK: %[[VAL_45:.*]] = arith.mulf %[[VAL_43]], %[[VAL_44]] : f32
// CHECK: %[[VAL_46:.*]] = math.cos %[[VAL_45]] : f32
// CHECK: %[[VAL_47:.*]] = math.sin %[[VAL_45]] : f32
// CHECK: %[[VAL_48:.*]] = arith.mulf %[[VAL_24]], %[[VAL_46]] : f32
// CHECK: %[[VAL_49:.*]] = arith.mulf %[[VAL_25]], %[[VAL_47]] : f32
// CHECK: %[[VAL_50:.*]] = arith.addf %[[VAL_48]], %[[VAL_49]] : f32
// CHECK: %[[VAL_51:.*]] = arith.mulf %[[VAL_25]], %[[VAL_46]] : f32
// CHECK: %[[VAL_52:.*]] = arith.mulf %[[VAL_24]], %[[VAL_47]] : f32
// CHECK: %[[VAL_53:.*]] = arith.subf %[[VAL_51]], %[[VAL_52]] : f32
// CHECK: %[[VAL_54:.*]] = arith.addf %[[VAL_26]], %[[VAL_50]] : f32
// CHECK: %[[VAL_55:.*]] = arith.addf %[[VAL_27]], %[[VAL_53]] : f32
// CHECK: linalg.yield %[[VAL_54]], %[[VAL_55]] : f32, f32
// CHECK: } -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
// CHECK: return %[[VAL_56:.*]]#0, %[[VAL_56]]#1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>
// CHECK: }
func.func @test_dynamic_fft2d(%arg0: tensor<?x?x?xf32>, %arg1: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
%output_real, %output_imag = "tosa.fft2d"(%arg0, %arg1) {inverse = true} : (tensor<?x?x?xf32>, tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
return %output_real, %output_imag : tensor<?x?x?xf32>, tensor<?x?x?xf32>
}
// -----
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func.func @test_cast_fp32_i64(
// CHECK-SAME: %[[ARG0:.*]]: tensor<1xf32>) -> tensor<1xi64> {
// CHECK: %[[EMPTY_TENSOR:.*]] = tensor.empty() : tensor<1xi64>
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<1xf32>) outs(%[[EMPTY_TENSOR]] : tensor<1xi64>) {
// CHECK: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: i64):
// CHECK: %[[ROUND_EVEN:.*]] = math.roundeven %[[IN]] : f32
// CHECK: %[[FP_INT_MIN:.*]] = arith.constant -9.22337203E+18 : f32
// CHECK: %[[FP_INT_MAX_PLUS_ONE:.*]] = arith.constant 9.22337203E+18 : f32
// CHECK: %[[INT_MAX:.*]] = arith.constant 9223372036854775807 : i64
// CHECK: %[[MAX:.*]] = arith.maximumf %[[ROUND_EVEN]], %[[FP_INT_MIN]] : f32
// CHECK: %[[FPTOSI:.*]] = arith.fptosi %[[MAX]] : f32 to i64
// CHECK: %[[CMPF:.*]] = arith.cmpf uge, %[[ROUND_EVEN]], %[[FP_INT_MAX_PLUS_ONE]] : f32
// CHECK: %[[SELECT:.*]] = arith.select %[[CMPF]], %[[INT_MAX]], %[[FPTOSI]] : i64
// CHECK: linalg.yield %[[SELECT]] : i64
// CHECK: } -> tensor<1xi64>
// CHECK: return %[[RESULT]] : tensor<1xi64>
func.func @test_cast_fp32_i64(%arg0: tensor<1xf32>) -> (tensor<1xi64>) {
%0 = tosa.cast %arg0 : (tensor<1xf32>) -> tensor<1xi64>
return %0: tensor<1xi64>
}
// -----
// CHECK-LABEL: @reduce_min_nan_propagate
func.func @reduce_min_nan_propagate(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.reduce
// CHECK: arith.minimumf
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
// CHECK-NOT: arith.constant 0x7FC00000
// CHECK-NOT: tensor.empty()
// CHECK-NOT: linalg.fill
// CHECK-NOT: tensor.empty()
// CHECK-NOT: select
// CHECK: return
%3 = tosa.reduce_min %arg0 {axis = 0 : i32, nan_mode = "PROPAGATE"} : (tensor<5x4xf32>) -> tensor<1x4xf32>
return
}
// -----
// CHECK-LABEL: @reduce_max_nan_propagate
func.func @reduce_max_nan_propagate(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.reduce
// CHECK: arith.maximumf
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
// CHECK-NOT: arith.constant 0x7FC00000
// CHECK-NOT: tensor.empty()
// CHECK-NOT: linalg.fill
// CHECK-NOT: tensor.empty()
// CHECK-NOT: select
// CHECK: return
%4 = tosa.reduce_max %arg0 {axis = 0 : i32, nan_mode = "PROPAGATE"} : (tensor<5x4xf32>) -> tensor<1x4xf32>
return
}
// -----
// CHECK-LABEL: @reduce_min_nan_ignore_int
func.func @reduce_min_nan_ignore_int(%arg0: tensor<5x4xi8>, %arg1: tensor<5x4xi8>) -> () {
// CHECK: linalg.reduce
// CHECK: arith.minsi
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
// CHECK-NOT: arith.constant 0x7FC00000
// CHECK-NOT: tensor.empty()
// CHECK-NOT: linalg.fill
// CHECK-NOT: tensor.empty()
// CHECK-NOT: select
// CHECK: return
%5 = tosa.reduce_min %arg0 {axis = 0 : i32, nan_mode = "IGNORE"} : (tensor<5x4xi8>) -> tensor<1x4xi8>
return
}
// -----
// CHECK-LABEL: @reduce_max_nan_ignore_int
func.func @reduce_max_nan_ignore_int(%arg0: tensor<5x4xi8>, %arg1: tensor<5x4xi8>) -> () {
// CHECK: linalg.reduce
// CHECK: arith.maxsi
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
// CHECK-NOT: arith.constant 0x7FC00000
// CHECK-NOT: tensor.empty()
// CHECK-NOT: linalg.fill
// CHECK-NOT: tensor.empty()
// CHECK-NOT: select
// CHECK: return
%6 = tosa.reduce_max %arg0 {axis = 0 : i32, nan_mode = "IGNORE"} : (tensor<5x4xi8>) -> tensor<1x4xi8>
return
}
// -----
// CHECK-LABEL: @reduce_min_nan_ignore
func.func @reduce_min_nan_ignore(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.reduce
// CHECK: arith.minimumf
// CHECK: arith.cmpf uno
// CHECK: arith.select
// CHECK: linalg.yield
// CHECK: arith.constant 0x7FC00000
// CHECK: tensor.empty()
// CHECK: linalg.fill
// CHECK: tensor.empty()
// CHECK: select
%5 = tosa.reduce_min %arg0 {axis = 0 : i32, nan_mode = "IGNORE"} : (tensor<5x4xf32>) -> tensor<1x4xf32>
return
}
// -----
// CHECK-LABEL: @reduce_max_nan_ignore
func.func @reduce_max_nan_ignore(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.reduce
// CHECK: arith.maximumf
// CHECK: arith.cmpf uno
// CHECK: arith.select
// CHECK: linalg.yield
// CHECK: arith.constant 0x7FC00000
// CHECK: tensor.empty()
// CHECK: linalg.fill
// CHECK: tensor.empty()
// CHECK: select
%6 = tosa.reduce_max %arg0 {axis = 0 : i32, nan_mode = "IGNORE"} : (tensor<5x4xf32>) -> tensor<1x4xf32>
return
}
// -----
// CHECK-LABEL: @minimum_nan_propagate
func.func @minimum_nan_propagate(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.generic
// CHECK: arith.minimumf
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
%7 = tosa.minimum %arg0, %arg1 {nan_mode = "PROPAGATE"} : (tensor<5x4xf32>, tensor<5x4xf32>) -> tensor<5x4xf32>
return
}
// -----
// CHECK-LABEL: @maximum_nan_propagate
func.func @maximum_nan_propagate(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.generic
// CHECK: arith.maximumf
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
%8 = tosa.maximum %arg0, %arg1 {nan_mode = "PROPAGATE"} : (tensor<5x4xf32>, tensor<5x4xf32>) -> tensor<5x4xf32>
return
}
// -----
// CHECK-LABEL: @minimum_nan_ignore_int
func.func @minimum_nan_ignore_int(%arg0: tensor<5x4xi8>, %arg1: tensor<5x4xi8>) -> () {
// CHECK: linalg.generic
// CHECK: arith.minsi
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
%9 = tosa.minimum %arg0, %arg1 {nan_mode = "IGNORE"} : (tensor<5x4xi8>, tensor<5x4xi8>) -> tensor<5x4xi8>
return
}
// -----
// CHECK-LABEL: @maximum_nan_ignore_int
func.func @maximum_nan_ignore_int(%arg0: tensor<5x4xi8>, %arg1: tensor<5x4xi8>) -> () {
// CHECK: linalg.generic
// CHECK: arith.maxsi
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
%10 = tosa.maximum %arg0, %arg1 {nan_mode = "IGNORE"} : (tensor<5x4xi8>, tensor<5x4xi8>) -> tensor<5x4xi8>
return
}
// -----
// CHECK-LABEL: @minimum_nan_ignore
func.func @minimum_nan_ignore(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.generic
// CHECK: arith.minimumf
// CHECK: arith.cmpf uno
// CHECK: arith.cmpf uno
// CHECK: arith.select
// CHECK: arith.select
// CHECK: linalg.yield
%9 = tosa.minimum %arg0, %arg1 {nan_mode = "IGNORE"} : (tensor<5x4xf32>, tensor<5x4xf32>) -> tensor<5x4xf32>
return
}
// -----
// CHECK-LABEL: @maximum_nan_ignore
func.func @maximum_nan_ignore(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.generic
// CHECK: arith.maximumf
// CHECK: arith.cmpf uno
// CHECK: arith.cmpf uno
// CHECK: arith.select
// CHECK: arith.select
// CHECK: linalg.yield
%10 = tosa.maximum %arg0, %arg1 {nan_mode = "IGNORE"} : (tensor<5x4xf32>, tensor<5x4xf32>) -> tensor<5x4xf32>
return
}
// -----
// CHECK-LABEL: @argmax_nan_propagate
func.func @argmax_nan_propagate(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.generic
// CHECK: arith.cmpf ugt
// CHECK: arith.cmpf ord
// CHECK: andi
// CHECK: arith.select
// CHECK: arith.select
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
%11 = tosa.argmax %arg0 {axis = 0 : i32, nan_mode = "PROPAGATE"} : (tensor<5x4xf32>) -> tensor<4xi32>
return
}
// -----
// CHECK-LABEL: @argmax_nan_ignore_int
func.func @argmax_nan_ignore_int(%arg0: tensor<5x4xi8>, %arg1: tensor<5x4xi8>) -> () {
// CHECK: linalg.generic
// CHECK: arith.cmpi sgt
// CHECK: arith.select
// CHECK: arith.select
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK-NOT: arith.select
// CHECK: linalg.yield
%12 = tosa.argmax %arg0 {axis = 0 : i32, nan_mode = "IGNORE"} : (tensor<5x4xi8>) -> tensor<4xi32>
return
}
// -----
// CHECK-LABEL: @argmax_nan_ignore
func.func @argmax_nan_ignore(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.generic
// CHECK: arith.cmpf ogt
// CHECK: arith.select
// CHECK: arith.select
// CHECK: linalg.yield
%12 = tosa.argmax %arg0 {axis = 0 : i32, nan_mode = "IGNORE"} : (tensor<5x4xf32>) -> tensor<4xi32>
return
}
// -----
// CHECK-LABEL: @clamp_nan_propagate
func.func @clamp_nan_propagate(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.generic
// CHECK: arith.minimumf
// CHECK: arith.maximumf
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
%13 = tosa.clamp %arg0 {min_val = 1.0 : f32, max_val = 5.0 : f32, nan_mode = "PROPAGATE"} : (tensor<5x4xf32>) -> tensor<5x4xf32>
return
}
// -----
// CHECK-LABEL: @clamp_nan_ignore_int
func.func @clamp_nan_ignore_int(%arg0: tensor<5x4xi8>, %arg1: tensor<5x4xi8>) -> () {
// CHECK: linalg.generic
// CHECK: arith.maxsi
// CHECK: arith.minsi
// CHECK-NOT: arith.cmpf uno
// CHECK-NOT: arith.select
// CHECK: linalg.yield
%14 = tosa.clamp %arg0 {min_val = 1 : i8, max_val = 5 : i8, nan_mode = "IGNORE"} : (tensor<5x4xi8>) -> tensor<5x4xi8>
return
}
// -----
// CHECK-LABEL: @clamp_nan_ignore
func.func @clamp_nan_ignore(%arg0: tensor<5x4xf32>, %arg1: tensor<5x4xf32>) -> () {
// CHECK: linalg.generic
// CHECK: arith.minimumf
// CHECK: arith.maximumf
// CHECK: arith.cmpf uno
// CHECK: arith.select
// CHECK: linalg.yield
%14 = tosa.clamp %arg0 {min_val = 1.0 : f32, max_val = 5.0 : f32, nan_mode = "IGNORE"} : (tensor<5x4xf32>) -> tensor<5x4xf32>
return
}
// -----
// CHECK-LABEL: @test_0d_input
func.func @test_0d_input(%arg0: tensor<i32>) -> () {
// CHECK: linalg.generic
// CHECK: arith.muli
%shift1 = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
%0 = tosa.mul %arg0, %arg0, %shift1 : (tensor<i32>, tensor<i32>, tensor<1xi8>) -> tensor<i32>
// CHECK: linalg.generic
// CHECK: ^bb0(%[[ARG1:.*]]: i32, %[[ARG2:.*]]: i32):
// CHECK: [[ZERO:%.+]] = arith.constant 0
// CHECK: arith.subi [[ZERO]], %[[ARG1]]
%in_zp = "tosa.const"() <{values = dense<0> : tensor<1xi32>}> : () -> tensor<1xi32>
%out_zp = "tosa.const"() <{values = dense<0> : tensor<1xi32>}> : () -> tensor<1xi32>
%5 = tosa.negate %arg0, %in_zp, %out_zp : (tensor<i32>, tensor<1xi32>, tensor<1xi32>) -> tensor<i32>
return
}