blob: b21401e069bfa602b33037123f6b5a075b3e60c8 [file] [log] [blame]
//===- bolt/Passes/SplitFunctions.cpp - Pass for splitting function code --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SplitFunctions pass.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/SplitFunctions.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Core/FunctionLayout.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <iterator>
#include <memory>
#include <numeric>
#include <random>
#include <vector>
#define DEBUG_TYPE "bolt-opts"
using namespace llvm;
using namespace bolt;
namespace {
class DeprecatedSplitFunctionOptionParser : public cl::parser<bool> {
public:
explicit DeprecatedSplitFunctionOptionParser(cl::Option &O)
: cl::parser<bool>(O) {}
bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, bool &Value) {
if (Arg == "2" || Arg == "3") {
Value = true;
errs() << formatv("BOLT-WARNING: specifying non-boolean value \"{0}\" "
"for option -{1} is deprecated\n",
Arg, ArgName);
return false;
}
return cl::parser<bool>::parse(O, ArgName, Arg, Value);
}
};
} // namespace
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<bool> SplitEH;
extern cl::opt<unsigned> ExecutionCountThreshold;
extern cl::opt<uint32_t> RandomSeed;
static cl::opt<bool> AggressiveSplitting(
"split-all-cold", cl::desc("outline as many cold basic blocks as possible"),
cl::cat(BoltOptCategory));
static cl::opt<unsigned> SplitAlignThreshold(
"split-align-threshold",
cl::desc("when deciding to split a function, apply this alignment "
"while doing the size comparison (see -split-threshold). "
"Default value: 2."),
cl::init(2),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool, false, DeprecatedSplitFunctionOptionParser>
SplitFunctions("split-functions",
cl::desc("split functions into fragments"),
cl::cat(BoltOptCategory));
static cl::opt<unsigned> SplitThreshold(
"split-threshold",
cl::desc("split function only if its main size is reduced by more than "
"given amount of bytes. Default value: 0, i.e. split iff the "
"size is reduced. Note that on some architectures the size can "
"increase after splitting."),
cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<SplitFunctionsStrategy> SplitStrategy(
"split-strategy", cl::init(SplitFunctionsStrategy::Profile2),
cl::values(clEnumValN(SplitFunctionsStrategy::Profile2, "profile2",
"split each function into a hot and cold fragment "
"using profiling information")),
cl::values(clEnumValN(SplitFunctionsStrategy::CDSplit, "cdsplit",
"split each function into a hot, warm, and cold "
"fragment using profiling information")),
cl::values(clEnumValN(
SplitFunctionsStrategy::Random2, "random2",
"split each function into a hot and cold fragment at a randomly chosen "
"split point (ignoring any available profiling information)")),
cl::values(clEnumValN(
SplitFunctionsStrategy::RandomN, "randomN",
"split each function into N fragments at a randomly chosen split "
"points (ignoring any available profiling information)")),
cl::values(clEnumValN(
SplitFunctionsStrategy::All, "all",
"split all basic blocks of each function into fragments such that each "
"fragment contains exactly a single basic block")),
cl::desc("strategy used to partition blocks into fragments"),
cl::cat(BoltOptCategory));
static cl::opt<double> CallScale(
"call-scale",
cl::desc("Call score scale coefficient (when --split-strategy=cdsplit)"),
cl::init(0.95), cl::ReallyHidden, cl::cat(BoltOptCategory));
static cl::opt<double>
CallPower("call-power",
cl::desc("Call score power (when --split-strategy=cdsplit)"),
cl::init(0.05), cl::ReallyHidden, cl::cat(BoltOptCategory));
static cl::opt<double>
JumpPower("jump-power",
cl::desc("Jump score power (when --split-strategy=cdsplit)"),
cl::init(0.15), cl::ReallyHidden, cl::cat(BoltOptCategory));
} // namespace opts
namespace {
bool hasFullProfile(const BinaryFunction &BF) {
return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
return BB.getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE;
});
}
bool allBlocksCold(const BinaryFunction &BF) {
return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
return BB.getExecutionCount() == 0;
});
}
struct SplitProfile2 final : public SplitStrategy {
bool canSplit(const BinaryFunction &BF) override {
return BF.hasValidProfile() && hasFullProfile(BF) && !allBlocksCold(BF);
}
bool compactFragments() override { return true; }
void fragment(const BlockIt Start, const BlockIt End) override {
for (BinaryBasicBlock *const BB : llvm::make_range(Start, End)) {
if (BB->getExecutionCount() == 0)
BB->setFragmentNum(FragmentNum::cold());
}
}
};
struct SplitCacheDirected final : public SplitStrategy {
BinaryContext &BC;
using BasicBlockOrder = BinaryFunction::BasicBlockOrderType;
bool canSplit(const BinaryFunction &BF) override {
return BF.hasValidProfile() && hasFullProfile(BF) && !allBlocksCold(BF);
}
explicit SplitCacheDirected(BinaryContext &BC) : BC(BC) {
initializeAuxiliaryVariables();
buildCallGraph();
}
// When some functions are hot-warm split and others are hot-warm-cold split,
// we do not want to change the fragment numbers of the blocks in the hot-warm
// split functions.
bool compactFragments() override { return false; }
void fragment(const BlockIt Start, const BlockIt End) override {
BasicBlockOrder BlockOrder(Start, End);
BinaryFunction &BF = *BlockOrder.front()->getFunction();
// No need to re-split small functions.
if (BlockOrder.size() <= 2)
return;
size_t BestSplitIndex = findSplitIndex(BF, BlockOrder);
assert(BestSplitIndex < BlockOrder.size());
// Assign fragments based on the computed best split index.
// All basic blocks with index up to the best split index become hot.
// All remaining blocks are warm / cold depending on if count is
// greater than zero or not.
for (size_t Index = 0; Index < BlockOrder.size(); Index++) {
BinaryBasicBlock *BB = BlockOrder[Index];
if (Index <= BestSplitIndex)
BB->setFragmentNum(FragmentNum::main());
else
BB->setFragmentNum(BB->getKnownExecutionCount() > 0
? FragmentNum::warm()
: FragmentNum::cold());
}
}
private:
struct CallInfo {
size_t Length;
size_t Count;
};
struct SplitScore {
size_t SplitIndex = size_t(-1);
size_t HotSizeReduction = 0;
double LocalScore = 0;
double CoverCallScore = 0;
double sum() const { return LocalScore + CoverCallScore; }
};
// Auxiliary variables used by the algorithm.
size_t TotalNumBlocks{0};
size_t OrigHotSectionSize{0};
DenseMap<const BinaryBasicBlock *, size_t> GlobalIndices;
DenseMap<const BinaryBasicBlock *, size_t> BBSizes;
DenseMap<const BinaryBasicBlock *, size_t> BBOffsets;
// Call graph.
std::vector<SmallVector<const BinaryBasicBlock *, 0>> Callers;
std::vector<SmallVector<const BinaryBasicBlock *, 0>> Callees;
bool shouldConsiderForCallGraph(const BinaryFunction &BF) {
// Only a subset of the functions in the binary will be considered
// for initializing auxiliary variables and building call graph.
return BF.hasValidIndex() && BF.hasValidProfile() && !BF.empty();
}
void initializeAuxiliaryVariables() {
for (BinaryFunction *BF : BC.getSortedFunctions()) {
if (!shouldConsiderForCallGraph(*BF))
continue;
// Calculate the size of each BB after hot-cold splitting.
// This populates BinaryBasicBlock::OutputAddressRange which
// can be used to compute the size of each BB.
BC.calculateEmittedSize(*BF, /*FixBranches=*/true);
for (BinaryBasicBlock *BB : BF->getLayout().blocks()) {
// Unique global index.
GlobalIndices[BB] = TotalNumBlocks;
TotalNumBlocks++;
// Block size after hot-cold splitting.
BBSizes[BB] = BB->getOutputSize();
// Hot block offset after hot-cold splitting.
BBOffsets[BB] = OrigHotSectionSize;
if (!BB->isSplit())
OrigHotSectionSize += BBSizes[BB];
}
}
}
void buildCallGraph() {
Callers.resize(TotalNumBlocks);
Callees.resize(TotalNumBlocks);
for (const BinaryFunction *SrcFunction : BC.getSortedFunctions()) {
if (!shouldConsiderForCallGraph(*SrcFunction))
continue;
for (BinaryBasicBlock &SrcBB : SrcFunction->blocks()) {
// Skip blocks that are not executed
if (SrcBB.getKnownExecutionCount() == 0)
continue;
// Find call instructions and extract target symbols from each one
for (const MCInst &Inst : SrcBB) {
if (!BC.MIB->isCall(Inst))
continue;
// Call info
const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst);
// Ignore calls w/o information
if (!DstSym)
continue;
const BinaryFunction *DstFunction = BC.getFunctionForSymbol(DstSym);
// Ignore calls that do not have a valid target, but do not ignore
// recursive calls, because caller block could be moved to warm.
if (!DstFunction || DstFunction->getLayout().block_empty())
continue;
const BinaryBasicBlock *DstBB = &(DstFunction->front());
// Record the call only if DstBB is also in functions to consider for
// call graph.
if (GlobalIndices.contains(DstBB)) {
Callers[GlobalIndices[DstBB]].push_back(&SrcBB);
Callees[GlobalIndices[&SrcBB]].push_back(DstBB);
}
}
}
}
}
/// Populate BinaryBasicBlock::OutputAddressRange with estimated basic block
/// start and end addresses for hot and warm basic blocks, assuming hot-warm
/// splitting happens at \p SplitIndex. Also return estimated end addresses
/// of the hot fragment before and after splitting.
/// The estimations take into account the potential addition of branch
/// instructions due to split fall through branches as well as the need to
/// use longer branch instructions for split (un)conditional branches.
std::pair<size_t, size_t>
estimatePostSplitBBAddress(const BasicBlockOrder &BlockOrder,
const size_t SplitIndex) {
assert(SplitIndex < BlockOrder.size() && "Invalid split index");
// Update function layout assuming hot-warm splitting at SplitIndex.
for (size_t Index = 0; Index < BlockOrder.size(); Index++) {
BinaryBasicBlock *BB = BlockOrder[Index];
if (BB->getFragmentNum() == FragmentNum::cold())
break;
BB->setFragmentNum(Index <= SplitIndex ? FragmentNum::main()
: FragmentNum::warm());
}
BinaryFunction *BF = BlockOrder[0]->getFunction();
BF->getLayout().update(BlockOrder);
// Populate BB.OutputAddressRange under the updated layout.
BC.calculateEmittedSize(*BF);
// Populate BB.OutputAddressRange with estimated new start and end addresses
// and compute the old end address of the hot section and the new end
// address of the hot section.
size_t OldHotEndAddr{0};
size_t NewHotEndAddr{0};
size_t CurrentAddr = BBOffsets[BlockOrder[0]];
for (BinaryBasicBlock *BB : BlockOrder) {
// We only care about new addresses of blocks in hot/warm.
if (BB->getFragmentNum() == FragmentNum::cold())
break;
const size_t NewSize = BB->getOutputSize();
BB->setOutputStartAddress(CurrentAddr);
CurrentAddr += NewSize;
BB->setOutputEndAddress(CurrentAddr);
if (BB->getLayoutIndex() == SplitIndex) {
NewHotEndAddr = CurrentAddr;
// Approximate the start address of the warm fragment of the current
// function using the original hot section size.
CurrentAddr = OrigHotSectionSize;
}
OldHotEndAddr = BBOffsets[BB] + BBSizes[BB];
}
return std::make_pair(OldHotEndAddr, NewHotEndAddr);
}
/// Get a collection of "shortenable" calls, that is, calls of type X->Y
/// when the function order is [... X ... BF ... Y ...].
/// If the hot fragment size of BF is reduced, then such calls are guaranteed
/// to get shorter by the reduced hot fragment size.
std::vector<CallInfo> extractCoverCalls(const BinaryFunction &BF) {
// Record the length and the count of the calls that can be shortened
std::vector<CallInfo> CoverCalls;
if (opts::CallScale == 0)
return CoverCalls;
const BinaryFunction *ThisBF = &BF;
const BinaryBasicBlock *ThisBB = &(ThisBF->front());
const size_t ThisGI = GlobalIndices[ThisBB];
for (const BinaryFunction *DstBF : BC.getSortedFunctions()) {
if (!shouldConsiderForCallGraph(*DstBF))
continue;
const BinaryBasicBlock *DstBB = &(DstBF->front());
if (DstBB->getKnownExecutionCount() == 0)
continue;
const size_t DstGI = GlobalIndices[DstBB];
for (const BinaryBasicBlock *SrcBB : Callers[DstGI]) {
const BinaryFunction *SrcBF = SrcBB->getFunction();
if (ThisBF == SrcBF)
continue;
const size_t CallCount = SrcBB->getKnownExecutionCount();
const size_t SrcGI = GlobalIndices[SrcBB];
const bool IsCoverCall = (SrcGI < ThisGI && ThisGI < DstGI) ||
(DstGI <= ThisGI && ThisGI < SrcGI);
if (!IsCoverCall)
continue;
const size_t SrcBBEndAddr = BBOffsets[SrcBB] + BBSizes[SrcBB];
const size_t DstBBStartAddr = BBOffsets[DstBB];
const size_t CallLength =
AbsoluteDifference(SrcBBEndAddr, DstBBStartAddr);
const CallInfo CI{CallLength, CallCount};
CoverCalls.emplace_back(CI);
}
}
return CoverCalls;
}
/// Compute the edge score of a call edge.
double computeCallScore(uint64_t CallCount, size_t CallLength) {
// Increase call lengths by 1 to avoid raising 0 to a negative power.
return opts::CallScale * static_cast<double>(CallCount) /
std::pow(static_cast<double>(CallLength + 1), opts::CallPower);
}
/// Compute the edge score of a jump (branch) edge.
double computeJumpScore(uint64_t JumpCount, size_t JumpLength) {
// Increase jump lengths by 1 to avoid raising 0 to a negative power.
return static_cast<double>(JumpCount) /
std::pow(static_cast<double>(JumpLength + 1), opts::JumpPower);
}
/// Compute sum of scores over jumps within \p BlockOrder given \p SplitIndex.
/// Increament Score.LocalScore in place by the sum.
void computeJumpScore(const BasicBlockOrder &BlockOrder,
const size_t SplitIndex, SplitScore &Score) {
for (const BinaryBasicBlock *SrcBB : BlockOrder) {
if (SrcBB->getKnownExecutionCount() == 0)
continue;
const size_t SrcBBEndAddr = SrcBB->getOutputAddressRange().second;
for (const auto Pair : zip(SrcBB->successors(), SrcBB->branch_info())) {
const BinaryBasicBlock *DstBB = std::get<0>(Pair);
const BinaryBasicBlock::BinaryBranchInfo &Branch = std::get<1>(Pair);
const size_t JumpCount = Branch.Count;
if (JumpCount == 0)
continue;
const size_t DstBBStartAddr = DstBB->getOutputAddressRange().first;
const size_t NewJumpLength =
AbsoluteDifference(SrcBBEndAddr, DstBBStartAddr);
Score.LocalScore += computeJumpScore(JumpCount, NewJumpLength);
}
}
}
/// Compute sum of scores over calls originated in the current function
/// given \p SplitIndex. Increament Score.LocalScore in place by the sum.
void computeLocalCallScore(const BasicBlockOrder &BlockOrder,
const size_t SplitIndex, SplitScore &Score) {
if (opts::CallScale == 0)
return;
// Global index of the last block in the current function.
// This is later used to determine whether a call originated in the current
// function is to a function that comes after the current function.
const size_t LastGlobalIndex = GlobalIndices[BlockOrder.back()];
// The length of calls originated in the input function can increase /
// decrease depending on the splitting decision.
for (const BinaryBasicBlock *SrcBB : BlockOrder) {
const size_t CallCount = SrcBB->getKnownExecutionCount();
// If SrcBB does not call any functions, skip it.
if (CallCount == 0)
continue;
// Obtain an estimate on the end address of the src basic block
// after splitting at SplitIndex.
const size_t SrcBBEndAddr = SrcBB->getOutputAddressRange().second;
for (const BinaryBasicBlock *DstBB : Callees[GlobalIndices[SrcBB]]) {
// Obtain an estimate on the start address of the dst basic block
// after splitting at SplitIndex. If DstBB is in a function before
// the current function, then its start address remains unchanged.
size_t DstBBStartAddr = BBOffsets[DstBB];
// If DstBB is in a function after the current function, then its
// start address should be adjusted based on the reduction in hot size.
if (GlobalIndices[DstBB] > LastGlobalIndex) {
assert(DstBBStartAddr >= Score.HotSizeReduction);
DstBBStartAddr -= Score.HotSizeReduction;
}
const size_t NewCallLength =
AbsoluteDifference(SrcBBEndAddr, DstBBStartAddr);
Score.LocalScore += computeCallScore(CallCount, NewCallLength);
}
}
}
/// Compute sum of splitting scores for cover calls of the input function.
/// Increament Score.CoverCallScore in place by the sum.
void computeCoverCallScore(const BasicBlockOrder &BlockOrder,
const size_t SplitIndex,
const std::vector<CallInfo> &CoverCalls,
SplitScore &Score) {
if (opts::CallScale == 0)
return;
for (const CallInfo CI : CoverCalls) {
assert(CI.Length >= Score.HotSizeReduction &&
"Length of cover calls must exceed reduced size of hot fragment.");
// Compute the new length of the call, which is shorter than the original
// one by the size of the splitted fragment minus the total size increase.
const size_t NewCallLength = CI.Length - Score.HotSizeReduction;
Score.CoverCallScore += computeCallScore(CI.Count, NewCallLength);
}
}
/// Compute the split score of splitting a function at a given index.
/// The split score consists of local score and cover score. This function
/// returns \p Score of SplitScore type. It contains the local score and
/// cover score of the current splitting index. For easier book keeping and
/// comparison, it also stores the split index and the resulting reduction
/// in hot fragment size.
SplitScore computeSplitScore(const BinaryFunction &BF,
const BasicBlockOrder &BlockOrder,
const size_t SplitIndex,
const std::vector<CallInfo> &CoverCalls) {
// Populate BinaryBasicBlock::OutputAddressRange with estimated
// new start and end addresses after hot-warm splitting at SplitIndex.
size_t OldHotEnd;
size_t NewHotEnd;
std::tie(OldHotEnd, NewHotEnd) =
estimatePostSplitBBAddress(BlockOrder, SplitIndex);
SplitScore Score;
Score.SplitIndex = SplitIndex;
// It's not worth splitting if OldHotEnd < NewHotEnd.
if (OldHotEnd < NewHotEnd)
return Score;
// Hot fragment size reduction due to splitting.
Score.HotSizeReduction = OldHotEnd - NewHotEnd;
// First part of LocalScore is the sum over call edges originated in the
// input function. These edges can get shorter or longer depending on
// SplitIndex. Score.LocalScore is increamented in place.
computeLocalCallScore(BlockOrder, SplitIndex, Score);
// Second part of LocalScore is the sum over jump edges with src basic block
// and dst basic block in the current function. Score.LocalScore is
// increamented in place.
computeJumpScore(BlockOrder, SplitIndex, Score);
// Compute CoverCallScore and store in Score in place.
computeCoverCallScore(BlockOrder, SplitIndex, CoverCalls, Score);
return Score;
}
/// Find the most likely successor of a basic block when it has one or two
/// successors. Return nullptr otherwise.
const BinaryBasicBlock *getMostLikelySuccessor(const BinaryBasicBlock *BB) {
if (BB->succ_size() == 1)
return BB->getSuccessor();
if (BB->succ_size() == 2) {
uint64_t TakenCount = BB->getTakenBranchInfo().Count;
assert(TakenCount != BinaryBasicBlock::COUNT_NO_PROFILE);
uint64_t NonTakenCount = BB->getFallthroughBranchInfo().Count;
assert(NonTakenCount != BinaryBasicBlock::COUNT_NO_PROFILE);
if (TakenCount > NonTakenCount)
return BB->getConditionalSuccessor(true);
else if (TakenCount < NonTakenCount)
return BB->getConditionalSuccessor(false);
}
return nullptr;
}
/// Find the best index for splitting. The returned value is the index of the
/// last hot basic block. Hence, "no splitting" is equivalent to returning the
/// value which is one less than the size of the function.
size_t findSplitIndex(const BinaryFunction &BF,
const BasicBlockOrder &BlockOrder) {
assert(BlockOrder.size() > 2);
// Find all function calls that can be shortened if we move blocks of the
// current function to warm/cold
const std::vector<CallInfo> CoverCalls = extractCoverCalls(BF);
// Find the existing hot-cold splitting index.
size_t HotColdIndex = 0;
while (HotColdIndex + 1 < BlockOrder.size()) {
if (BlockOrder[HotColdIndex + 1]->getFragmentNum() == FragmentNum::cold())
break;
HotColdIndex++;
}
assert(HotColdIndex + 1 == BlockOrder.size() ||
(BlockOrder[HotColdIndex]->getFragmentNum() == FragmentNum::main() &&
BlockOrder[HotColdIndex + 1]->getFragmentNum() ==
FragmentNum::cold()));
// Try all possible split indices up to HotColdIndex (blocks that have
// Index <= SplitIndex are in hot) and find the one maximizing the
// splitting score.
SplitScore BestScore;
for (size_t Index = 0; Index <= HotColdIndex; Index++) {
const BinaryBasicBlock *LastHotBB = BlockOrder[Index];
assert(LastHotBB->getFragmentNum() != FragmentNum::cold());
// Do not break jump to the most likely successor.
if (Index + 1 < BlockOrder.size() &&
BlockOrder[Index + 1] == getMostLikelySuccessor(LastHotBB))
continue;
const SplitScore Score =
computeSplitScore(BF, BlockOrder, Index, CoverCalls);
if (Score.sum() > BestScore.sum())
BestScore = Score;
}
// If we don't find a good splitting point, fallback to the original one.
if (BestScore.SplitIndex == size_t(-1))
return HotColdIndex;
return BestScore.SplitIndex;
}
};
struct SplitRandom2 final : public SplitStrategy {
std::minstd_rand0 Gen;
SplitRandom2() : Gen(opts::RandomSeed.getValue()) {}
bool canSplit(const BinaryFunction &BF) override { return true; }
bool compactFragments() override { return true; }
void fragment(const BlockIt Start, const BlockIt End) override {
using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
const DiffT NumBlocks = End - Start;
assert(NumBlocks > 0 && "Cannot fragment empty function");
// We want to split at least one block
const auto LastSplitPoint = std::max<DiffT>(NumBlocks - 1, 1);
std::uniform_int_distribution<DiffT> Dist(1, LastSplitPoint);
const DiffT SplitPoint = Dist(Gen);
for (BinaryBasicBlock *BB : llvm::make_range(Start + SplitPoint, End))
BB->setFragmentNum(FragmentNum::cold());
LLVM_DEBUG(dbgs() << formatv("BOLT-DEBUG: randomly chose last {0} (out of "
"{1} possible) blocks to split\n",
NumBlocks - SplitPoint, End - Start));
}
};
struct SplitRandomN final : public SplitStrategy {
std::minstd_rand0 Gen;
SplitRandomN() : Gen(opts::RandomSeed.getValue()) {}
bool canSplit(const BinaryFunction &BF) override { return true; }
bool compactFragments() override { return true; }
void fragment(const BlockIt Start, const BlockIt End) override {
using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
const DiffT NumBlocks = End - Start;
assert(NumBlocks > 0 && "Cannot fragment empty function");
// With n blocks, there are n-1 places to split them.
const DiffT MaximumSplits = NumBlocks - 1;
// We want to generate at least two fragment if possible, but if there is
// only one block, no splits are possible.
const auto MinimumSplits = std::min<DiffT>(MaximumSplits, 1);
std::uniform_int_distribution<DiffT> Dist(MinimumSplits, MaximumSplits);
// Choose how many splits to perform
const DiffT NumSplits = Dist(Gen);
// Draw split points from a lottery
SmallVector<unsigned, 0> Lottery(MaximumSplits);
// Start lottery at 1, because there is no meaningful splitpoint before the
// first block.
std::iota(Lottery.begin(), Lottery.end(), 1u);
std::shuffle(Lottery.begin(), Lottery.end(), Gen);
Lottery.resize(NumSplits);
llvm::sort(Lottery);
// Add one past the end entry to lottery
Lottery.push_back(NumBlocks);
unsigned LotteryIndex = 0;
unsigned BBPos = 0;
for (BinaryBasicBlock *const BB : make_range(Start, End)) {
// Check whether to start new fragment
if (BBPos >= Lottery[LotteryIndex])
++LotteryIndex;
// Because LotteryIndex is 0 based and cold fragments are 1 based, we can
// use the index to assign fragments.
BB->setFragmentNum(FragmentNum(LotteryIndex));
++BBPos;
}
}
};
struct SplitAll final : public SplitStrategy {
bool canSplit(const BinaryFunction &BF) override { return true; }
bool compactFragments() override {
// Keeping empty fragments allows us to test, that empty fragments do not
// generate symbols.
return false;
}
void fragment(const BlockIt Start, const BlockIt End) override {
unsigned Fragment = 0;
for (BinaryBasicBlock *const BB : llvm::make_range(Start, End))
BB->setFragmentNum(FragmentNum(Fragment++));
}
};
} // namespace
namespace llvm {
namespace bolt {
bool SplitFunctions::shouldOptimize(const BinaryFunction &BF) const {
// Apply execution count threshold
if (BF.getKnownExecutionCount() < opts::ExecutionCountThreshold)
return false;
return BinaryFunctionPass::shouldOptimize(BF);
}
Error SplitFunctions::runOnFunctions(BinaryContext &BC) {
if (!opts::SplitFunctions)
return Error::success();
if (BC.IsLinuxKernel && BC.BOLTReserved.empty()) {
BC.errs() << "BOLT-ERROR: split functions require reserved space in the "
"Linux kernel binary\n";
exit(1);
}
// If split strategy is not CDSplit, then a second run of the pass is not
// needed after function reordering.
if (BC.HasFinalizedFunctionOrder &&
opts::SplitStrategy != SplitFunctionsStrategy::CDSplit)
return Error::success();
std::unique_ptr<SplitStrategy> Strategy;
bool ForceSequential = false;
switch (opts::SplitStrategy) {
case SplitFunctionsStrategy::CDSplit:
// CDSplit runs two splitting passes: hot-cold splitting (SplitPrfoile2)
// before function reordering and hot-warm-cold splitting
// (SplitCacheDirected) after function reordering.
if (BC.HasFinalizedFunctionOrder)
Strategy = std::make_unique<SplitCacheDirected>(BC);
else
Strategy = std::make_unique<SplitProfile2>();
opts::AggressiveSplitting = true;
BC.HasWarmSection = true;
break;
case SplitFunctionsStrategy::Profile2:
Strategy = std::make_unique<SplitProfile2>();
break;
case SplitFunctionsStrategy::Random2:
Strategy = std::make_unique<SplitRandom2>();
// If we split functions randomly, we need to ensure that across runs with
// the same input, we generate random numbers for each function in the same
// order.
ForceSequential = true;
break;
case SplitFunctionsStrategy::RandomN:
Strategy = std::make_unique<SplitRandomN>();
ForceSequential = true;
break;
case SplitFunctionsStrategy::All:
Strategy = std::make_unique<SplitAll>();
break;
}
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
return !shouldOptimize(BF);
};
ParallelUtilities::runOnEachFunction(
BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR,
[&](BinaryFunction &BF) { splitFunction(BF, *Strategy); }, SkipFunc,
"SplitFunctions", ForceSequential);
if (SplitBytesHot + SplitBytesCold > 0)
BC.outs() << "BOLT-INFO: splitting separates " << SplitBytesHot
<< " hot bytes from " << SplitBytesCold << " cold bytes "
<< format("(%.2lf%% of split functions is hot).\n",
100.0 * SplitBytesHot /
(SplitBytesHot + SplitBytesCold));
return Error::success();
}
void SplitFunctions::splitFunction(BinaryFunction &BF, SplitStrategy &S) {
if (BF.empty())
return;
if (!S.canSplit(BF))
return;
FunctionLayout &Layout = BF.getLayout();
BinaryFunction::BasicBlockOrderType PreSplitLayout(Layout.block_begin(),
Layout.block_end());
BinaryContext &BC = BF.getBinaryContext();
size_t OriginalHotSize;
size_t HotSize;
size_t ColdSize;
if (BC.isX86()) {
std::tie(OriginalHotSize, ColdSize) = BC.calculateEmittedSize(BF);
LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
<< " pre-split is <0x"
<< Twine::utohexstr(OriginalHotSize) << ", 0x"
<< Twine::utohexstr(ColdSize) << ">\n");
}
BinaryFunction::BasicBlockOrderType NewLayout(Layout.block_begin(),
Layout.block_end());
// Never outline the first basic block.
NewLayout.front()->setCanOutline(false);
for (BinaryBasicBlock *const BB : NewLayout) {
if (!BB->canOutline())
continue;
// Do not split extra entry points in aarch64. They can be referred by
// using ADRs and when this happens, these blocks cannot be placed far
// away due to the limited range in ADR instruction.
if (BC.isAArch64() && BB->isEntryPoint()) {
BB->setCanOutline(false);
continue;
}
if (BF.hasEHRanges() && !opts::SplitEH) {
// We cannot move landing pads (or rather entry points for landing pads).
if (BB->isLandingPad()) {
BB->setCanOutline(false);
continue;
}
// We cannot move a block that can throw since exception-handling
// runtime cannot deal with split functions. However, if we can guarantee
// that the block never throws, it is safe to move the block to
// decrease the size of the function.
for (MCInst &Instr : *BB) {
if (BC.MIB->isInvoke(Instr)) {
BB->setCanOutline(false);
break;
}
}
}
// Outlining blocks with dynamic branches is not supported yet.
if (BC.IsLinuxKernel) {
if (llvm::any_of(
*BB, [&](MCInst &Inst) { return BC.MIB->isDynamicBranch(Inst); }))
BB->setCanOutline(false);
}
}
BF.getLayout().updateLayoutIndices();
S.fragment(NewLayout.begin(), NewLayout.end());
// Make sure all non-outlineable blocks are in the main-fragment.
for (BinaryBasicBlock *const BB : NewLayout) {
if (!BB->canOutline())
BB->setFragmentNum(FragmentNum::main());
}
if (opts::AggressiveSplitting) {
// All blocks with 0 count that we can move go to the end of the function.
// Even if they were natural to cluster formation and were seen in-between
// hot basic blocks.
llvm::stable_sort(NewLayout, [&](const BinaryBasicBlock *const A,
const BinaryBasicBlock *const B) {
return A->getFragmentNum() < B->getFragmentNum();
});
} else if (BF.hasEHRanges() && !opts::SplitEH) {
// Typically functions with exception handling have landing pads at the end.
// We cannot move beginning of landing pads, but we can move 0-count blocks
// comprising landing pads to the end and thus facilitate splitting.
auto FirstLP = NewLayout.begin();
while ((*FirstLP)->isLandingPad())
++FirstLP;
std::stable_sort(FirstLP, NewLayout.end(),
[&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
return A->getFragmentNum() < B->getFragmentNum();
});
}
// Make sure that fragments are increasing.
FragmentNum CurrentFragment = NewLayout.back()->getFragmentNum();
for (BinaryBasicBlock *const BB : reverse(NewLayout)) {
if (BB->getFragmentNum() > CurrentFragment)
BB->setFragmentNum(CurrentFragment);
CurrentFragment = BB->getFragmentNum();
}
if (S.compactFragments()) {
FragmentNum CurrentFragment = FragmentNum::main();
FragmentNum NewFragment = FragmentNum::main();
for (BinaryBasicBlock *const BB : NewLayout) {
if (BB->getFragmentNum() > CurrentFragment) {
CurrentFragment = BB->getFragmentNum();
NewFragment = FragmentNum(NewFragment.get() + 1);
}
BB->setFragmentNum(NewFragment);
}
}
const bool LayoutUpdated = BF.getLayout().update(NewLayout);
// For shared objects, invoke instructions and corresponding landing pads
// have to be placed in the same fragment. When we split them, create
// trampoline landing pads that will redirect the execution to real LPs.
TrampolineSetType Trampolines;
if (BF.hasEHRanges() && BF.isSplit()) {
// If all landing pads for this fragment are grouped in one (potentially
// different) fragment, we can set LPStart to the start of that fragment
// and avoid trampoline code.
bool NeedsTrampolines = false;
for (FunctionFragment &FF : BF.getLayout().fragments()) {
// Vector of fragments that contain landing pads for this fragment.
SmallVector<FragmentNum, 4> LandingPadFragments;
for (const BinaryBasicBlock *BB : FF)
for (const BinaryBasicBlock *LPB : BB->landing_pads())
LandingPadFragments.push_back(LPB->getFragmentNum());
// Eliminate duplicate entries from the vector.
llvm::sort(LandingPadFragments);
auto Last = llvm::unique(LandingPadFragments);
LandingPadFragments.erase(Last, LandingPadFragments.end());
if (LandingPadFragments.size() == 0) {
// If the fragment has no landing pads, we can safely set itself as its
// landing pad fragment.
BF.setLPFragment(FF.getFragmentNum(), FF.getFragmentNum());
} else if (LandingPadFragments.size() == 1) {
BF.setLPFragment(FF.getFragmentNum(), LandingPadFragments.front());
} else {
if (!BC.HasFixedLoadAddress) {
NeedsTrampolines = true;
break;
} else {
BF.setLPFragment(FF.getFragmentNum(), std::nullopt);
}
}
}
// Trampolines guarantee that all landing pads for any given fragment will
// be contained in the same fragment.
if (NeedsTrampolines) {
for (FunctionFragment &FF : BF.getLayout().fragments())
BF.setLPFragment(FF.getFragmentNum(), FF.getFragmentNum());
Trampolines = createEHTrampolines(BF);
}
}
// Check the new size to see if it's worth splitting the function.
if (BC.isX86() && LayoutUpdated) {
std::tie(HotSize, ColdSize) = BC.calculateEmittedSize(BF);
LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
<< " post-split is <0x" << Twine::utohexstr(HotSize)
<< ", 0x" << Twine::utohexstr(ColdSize) << ">\n");
if (alignTo(OriginalHotSize, opts::SplitAlignThreshold) <=
alignTo(HotSize, opts::SplitAlignThreshold) + opts::SplitThreshold) {
if (opts::Verbosity >= 2) {
BC.outs() << "BOLT-INFO: Reversing splitting of function "
<< formatv("{0}:\n {1:x}, {2:x} -> {3:x}\n", BF, HotSize,
ColdSize, OriginalHotSize);
}
// Reverse the action of createEHTrampolines(). The trampolines will be
// placed immediately before the matching destination resulting in no
// extra code.
if (PreSplitLayout.size() != BF.size())
PreSplitLayout = mergeEHTrampolines(BF, PreSplitLayout, Trampolines);
for (BinaryBasicBlock &BB : BF)
BB.setFragmentNum(FragmentNum::main());
BF.getLayout().update(PreSplitLayout);
} else {
SplitBytesHot += HotSize;
SplitBytesCold += ColdSize;
}
}
// Restore LP fragment for the main fragment if the splitting was undone.
if (BF.hasEHRanges() && !BF.isSplit())
BF.setLPFragment(FragmentNum::main(), FragmentNum::main());
// Fix branches if the splitting decision of the pass after function
// reordering is different from that of the pass before function reordering.
if (LayoutUpdated && BC.HasFinalizedFunctionOrder)
BF.fixBranches();
}
SplitFunctions::TrampolineSetType
SplitFunctions::createEHTrampolines(BinaryFunction &BF) const {
const auto &MIB = BF.getBinaryContext().MIB;
// Map real landing pads to the corresponding trampolines.
TrampolineSetType LPTrampolines;
// Iterate over the copy of basic blocks since we are adding new blocks to the
// function which will invalidate its iterators.
std::vector<BinaryBasicBlock *> Blocks(BF.pbegin(), BF.pend());
for (BinaryBasicBlock *BB : Blocks) {
for (MCInst &Instr : *BB) {
const std::optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instr);
if (!EHInfo || !EHInfo->first)
continue;
const MCSymbol *LPLabel = EHInfo->first;
BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(LPLabel);
if (BB->getFragmentNum() == LPBlock->getFragmentNum())
continue;
const MCSymbol *TrampolineLabel = nullptr;
const TrampolineKey Key(BB->getFragmentNum(), LPLabel);
auto Iter = LPTrampolines.find(Key);
if (Iter != LPTrampolines.end()) {
TrampolineLabel = Iter->second;
} else {
// Create a trampoline basic block in the same fragment as the thrower.
// Note: there's no need to insert the jump instruction, it will be
// added by fixBranches().
BinaryBasicBlock *TrampolineBB = BF.addBasicBlock();
TrampolineBB->setFragmentNum(BB->getFragmentNum());
TrampolineBB->setExecutionCount(LPBlock->getExecutionCount());
TrampolineBB->addSuccessor(LPBlock, TrampolineBB->getExecutionCount());
TrampolineBB->setCFIState(LPBlock->getCFIState());
TrampolineLabel = TrampolineBB->getLabel();
LPTrampolines.insert(std::make_pair(Key, TrampolineLabel));
}
// Substitute the landing pad with the trampoline.
MIB->updateEHInfo(Instr,
MCPlus::MCLandingPad(TrampolineLabel, EHInfo->second));
}
}
if (LPTrampolines.empty())
return LPTrampolines;
// All trampoline blocks were added to the end of the function. Place them at
// the end of corresponding fragments.
BinaryFunction::BasicBlockOrderType NewLayout(BF.getLayout().block_begin(),
BF.getLayout().block_end());
stable_sort(NewLayout, [&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
return A->getFragmentNum() < B->getFragmentNum();
});
BF.getLayout().update(NewLayout);
// Conservatively introduce branch instructions.
BF.fixBranches();
// Update exception-handling CFG for the function.
BF.recomputeLandingPads();
return LPTrampolines;
}
SplitFunctions::BasicBlockOrderType SplitFunctions::mergeEHTrampolines(
BinaryFunction &BF, SplitFunctions::BasicBlockOrderType &Layout,
const SplitFunctions::TrampolineSetType &Trampolines) const {
DenseMap<const MCSymbol *, SmallVector<const MCSymbol *, 0>>
IncomingTrampolines;
for (const auto &Entry : Trampolines) {
IncomingTrampolines[Entry.getFirst().Target].emplace_back(
Entry.getSecond());
}
BasicBlockOrderType MergedLayout;
for (BinaryBasicBlock *BB : Layout) {
auto Iter = IncomingTrampolines.find(BB->getLabel());
if (Iter != IncomingTrampolines.end()) {
for (const MCSymbol *const Trampoline : Iter->getSecond()) {
BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(Trampoline);
assert(LPBlock && "Could not find matching landing pad block.");
MergedLayout.push_back(LPBlock);
}
}
MergedLayout.push_back(BB);
}
return MergedLayout;
}
} // namespace bolt
} // namespace llvm