| //===-- lib/Semantics/expression.cpp --------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "flang/Semantics/expression.h" |
| #include "check-call.h" |
| #include "pointer-assignment.h" |
| #include "resolve-names-utils.h" |
| #include "resolve-names.h" |
| #include "flang/Common/Fortran.h" |
| #include "flang/Common/idioms.h" |
| #include "flang/Evaluate/common.h" |
| #include "flang/Evaluate/fold.h" |
| #include "flang/Evaluate/tools.h" |
| #include "flang/Parser/characters.h" |
| #include "flang/Parser/dump-parse-tree.h" |
| #include "flang/Parser/parse-tree-visitor.h" |
| #include "flang/Parser/parse-tree.h" |
| #include "flang/Semantics/scope.h" |
| #include "flang/Semantics/semantics.h" |
| #include "flang/Semantics/symbol.h" |
| #include "flang/Semantics/tools.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <functional> |
| #include <optional> |
| #include <set> |
| #include <vector> |
| |
| // Typedef for optional generic expressions (ubiquitous in this file) |
| using MaybeExpr = |
| std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; |
| |
| // Much of the code that implements semantic analysis of expressions is |
| // tightly coupled with their typed representations in lib/Evaluate, |
| // and appears here in namespace Fortran::evaluate for convenience. |
| namespace Fortran::evaluate { |
| |
| using common::LanguageFeature; |
| using common::NumericOperator; |
| using common::TypeCategory; |
| |
| static inline std::string ToUpperCase(std::string_view str) { |
| return parser::ToUpperCaseLetters(str); |
| } |
| |
| struct DynamicTypeWithLength : public DynamicType { |
| explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} |
| std::optional<Expr<SubscriptInteger>> LEN() const; |
| std::optional<Expr<SubscriptInteger>> length; |
| }; |
| |
| std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { |
| if (length) { |
| return length; |
| } else { |
| return GetCharLength(); |
| } |
| } |
| |
| static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( |
| const std::optional<parser::TypeSpec> &spec) { |
| if (spec) { |
| if (const semantics::DeclTypeSpec *typeSpec{spec->declTypeSpec}) { |
| // Name resolution sets TypeSpec::declTypeSpec only when it's valid |
| // (viz., an intrinsic type with valid known kind or a non-polymorphic |
| // & non-ABSTRACT derived type). |
| if (const semantics::IntrinsicTypeSpec *intrinsic{ |
| typeSpec->AsIntrinsic()}) { |
| TypeCategory category{intrinsic->category()}; |
| if (auto optKind{ToInt64(intrinsic->kind())}) { |
| int kind{static_cast<int>(*optKind)}; |
| if (category == TypeCategory::Character) { |
| const semantics::CharacterTypeSpec &cts{ |
| typeSpec->characterTypeSpec()}; |
| const semantics::ParamValue &len{cts.length()}; |
| // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & |
| // type guards, but not in array constructors. |
| return DynamicTypeWithLength{DynamicType{kind, len}}; |
| } else { |
| return DynamicTypeWithLength{DynamicType{category, kind}}; |
| } |
| } |
| } else if (const semantics::DerivedTypeSpec *derived{ |
| typeSpec->AsDerived()}) { |
| return DynamicTypeWithLength{DynamicType{*derived}}; |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Utilities to set a source location, if we have one, on an actual argument, |
| // when it is statically present. |
| static void SetArgSourceLocation(ActualArgument &x, parser::CharBlock at) { |
| x.set_sourceLocation(at); |
| } |
| static void SetArgSourceLocation( |
| std::optional<ActualArgument> &x, parser::CharBlock at) { |
| if (x) { |
| x->set_sourceLocation(at); |
| } |
| } |
| static void SetArgSourceLocation( |
| std::optional<ActualArgument> &x, std::optional<parser::CharBlock> at) { |
| if (x && at) { |
| x->set_sourceLocation(*at); |
| } |
| } |
| |
| class ArgumentAnalyzer { |
| public: |
| explicit ArgumentAnalyzer(ExpressionAnalyzer &context) |
| : context_{context}, source_{context.GetContextualMessages().at()}, |
| isProcedureCall_{false} {} |
| ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source, |
| bool isProcedureCall = false) |
| : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {} |
| bool fatalErrors() const { return fatalErrors_; } |
| ActualArguments &&GetActuals() { |
| CHECK(!fatalErrors_); |
| return std::move(actuals_); |
| } |
| const Expr<SomeType> &GetExpr(std::size_t i) const { |
| return DEREF(actuals_.at(i).value().UnwrapExpr()); |
| } |
| Expr<SomeType> &&MoveExpr(std::size_t i) { |
| return std::move(DEREF(actuals_.at(i).value().UnwrapExpr())); |
| } |
| void Analyze(const common::Indirection<parser::Expr> &x) { |
| Analyze(x.value()); |
| } |
| void Analyze(const parser::Expr &x) { |
| actuals_.emplace_back(AnalyzeExpr(x)); |
| SetArgSourceLocation(actuals_.back(), x.source); |
| fatalErrors_ |= !actuals_.back(); |
| } |
| void Analyze(const parser::Variable &); |
| void Analyze(const parser::ActualArgSpec &, bool isSubroutine); |
| void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i, |
| std::optional<DynamicType> otherType); |
| |
| bool IsIntrinsicRelational( |
| RelationalOperator, const DynamicType &, const DynamicType &) const; |
| bool IsIntrinsicLogical() const; |
| bool IsIntrinsicNumeric(NumericOperator) const; |
| bool IsIntrinsicConcat() const; |
| |
| bool CheckConformance(); |
| bool CheckAssignmentConformance(); |
| bool CheckForNullPointer(const char *where = "as an operand here"); |
| |
| // Find and return a user-defined operator or report an error. |
| // The provided message is used if there is no such operator. |
| // If a definedOpSymbolPtr is provided, the caller must check |
| // for its accessibility. |
| MaybeExpr TryDefinedOp( |
| const char *, parser::MessageFixedText, bool isUserOp = false); |
| template <typename E> |
| MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) { |
| return TryDefinedOp( |
| context_.context().languageFeatures().GetNames(opr), msg); |
| } |
| // Find and return a user-defined assignment |
| std::optional<ProcedureRef> TryDefinedAssignment(); |
| std::optional<ProcedureRef> GetDefinedAssignmentProc(); |
| std::optional<DynamicType> GetType(std::size_t) const; |
| void Dump(llvm::raw_ostream &); |
| |
| private: |
| MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText); |
| MaybeExpr TryBoundOp(const Symbol &, int passIndex); |
| std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &); |
| std::optional<ActualArgument> AnalyzeVariable(const parser::Variable &); |
| MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &); |
| bool AreConformable() const; |
| const Symbol *FindBoundOp(parser::CharBlock, int passIndex, |
| const Symbol *&generic, bool isSubroutine); |
| void AddAssignmentConversion( |
| const DynamicType &lhsType, const DynamicType &rhsType); |
| bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs); |
| int GetRank(std::size_t) const; |
| bool IsBOZLiteral(std::size_t i) const { |
| return evaluate::IsBOZLiteral(GetExpr(i)); |
| } |
| void SayNoMatch(const std::string &, bool isAssignment = false); |
| std::string TypeAsFortran(std::size_t); |
| bool AnyUntypedOrMissingOperand(); |
| |
| ExpressionAnalyzer &context_; |
| ActualArguments actuals_; |
| parser::CharBlock source_; |
| bool fatalErrors_{false}; |
| const bool isProcedureCall_; // false for user-defined op or assignment |
| }; |
| |
| // Wraps a data reference in a typed Designator<>, and a procedure |
| // or procedure pointer reference in a ProcedureDesignator. |
| MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { |
| const Symbol &last{ref.GetLastSymbol()}; |
| const Symbol &symbol{BypassGeneric(last).GetUltimate()}; |
| if (semantics::IsProcedure(symbol)) { |
| if (symbol.attrs().test(semantics::Attr::ABSTRACT)) { |
| Say("Abstract procedure interface '%s' may not be used as a designator"_err_en_US, |
| last.name()); |
| } |
| if (auto *component{std::get_if<Component>(&ref.u)}) { |
| if (!CheckDataRef(ref)) { |
| return std::nullopt; |
| } |
| return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; |
| } else if (!std::holds_alternative<SymbolRef>(ref.u)) { |
| DIE("unexpected alternative in DataRef"); |
| } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) { |
| if (symbol.has<semantics::GenericDetails>()) { |
| Say("'%s' is not a specific procedure"_err_en_US, last.name()); |
| } else { |
| return Expr<SomeType>{ProcedureDesignator{symbol}}; |
| } |
| } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction( |
| symbol.name().ToString())}; |
| interface && !interface->isRestrictedSpecific) { |
| SpecificIntrinsic intrinsic{ |
| symbol.name().ToString(), std::move(*interface)}; |
| intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific; |
| return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}}; |
| } else { |
| Say("'%s' is not an unrestricted specific intrinsic procedure"_err_en_US, |
| last.name()); |
| } |
| return std::nullopt; |
| } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) { |
| return result; |
| } else if (semantics::HadUseError( |
| context_, GetContextualMessages().at(), &symbol)) { |
| return std::nullopt; |
| } else { |
| if (!context_.HasError(last) && !context_.HasError(symbol)) { |
| AttachDeclaration( |
| Say("'%s' is not an object that can appear in an expression"_err_en_US, |
| last.name()), |
| symbol); |
| context_.SetError(last); |
| } |
| return std::nullopt; |
| } |
| } |
| |
| // Some subscript semantic checks must be deferred until all of the |
| // subscripts are in hand. |
| MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { |
| const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; |
| int symbolRank{symbol.Rank()}; |
| int subscripts{static_cast<int>(ref.size())}; |
| if (subscripts == 0) { |
| return std::nullopt; // error recovery |
| } else if (subscripts != symbolRank) { |
| if (symbolRank != 0) { |
| Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, |
| symbolRank, symbol.name(), subscripts); |
| } |
| return std::nullopt; |
| } else if (symbol.has<semantics::ObjectEntityDetails>() || |
| symbol.has<semantics::AssocEntityDetails>()) { |
| // C928 & C1002 |
| if (Triplet *last{std::get_if<Triplet>(&ref.subscript().back().u)}) { |
| if (!last->upper() && IsAssumedSizeArray(symbol)) { |
| Say("Assumed-size array '%s' must have explicit final " |
| "subscript upper bound value"_err_en_US, |
| symbol.name()); |
| return std::nullopt; |
| } |
| } |
| } else { |
| // Shouldn't get here from Analyze(ArrayElement) without a valid base, |
| // which, if not an object, must be a construct entity from |
| // SELECT TYPE/RANK or ASSOCIATE. |
| CHECK(symbol.has<semantics::AssocEntityDetails>()); |
| } |
| if (!semantics::IsNamedConstant(symbol) && !inDataStmtObject_) { |
| // Subscripts of named constants are checked in folding. |
| // Subscripts of DATA statement objects are checked in data statement |
| // conversion to initializers. |
| CheckConstantSubscripts(ref); |
| } |
| return Designate(DataRef{std::move(ref)}); |
| } |
| |
| // Applies subscripts to a data reference. |
| MaybeExpr ExpressionAnalyzer::ApplySubscripts( |
| DataRef &&dataRef, std::vector<Subscript> &&subscripts) { |
| if (subscripts.empty()) { |
| return std::nullopt; // error recovery |
| } |
| return common::visit( |
| common::visitors{ |
| [&](SymbolRef &&symbol) { |
| return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)}); |
| }, |
| [&](Component &&c) { |
| return CompleteSubscripts( |
| ArrayRef{std::move(c), std::move(subscripts)}); |
| }, |
| [&](auto &&) -> MaybeExpr { |
| DIE("bad base for ArrayRef"); |
| return std::nullopt; |
| }, |
| }, |
| std::move(dataRef.u)); |
| } |
| |
| void ExpressionAnalyzer::CheckConstantSubscripts(ArrayRef &ref) { |
| // Fold subscript expressions and check for an empty triplet. |
| const Symbol &arraySymbol{ref.base().GetLastSymbol()}; |
| Shape lb{GetLBOUNDs(foldingContext_, NamedEntity{arraySymbol})}; |
| CHECK(lb.size() >= ref.subscript().size()); |
| Shape ub{GetUBOUNDs(foldingContext_, NamedEntity{arraySymbol})}; |
| CHECK(ub.size() >= ref.subscript().size()); |
| bool anyPossiblyEmptyDim{false}; |
| int dim{0}; |
| for (Subscript &ss : ref.subscript()) { |
| if (Triplet * triplet{std::get_if<Triplet>(&ss.u)}) { |
| auto expr{Fold(triplet->stride())}; |
| auto stride{ToInt64(expr)}; |
| triplet->set_stride(std::move(expr)); |
| std::optional<ConstantSubscript> lower, upper; |
| if (auto expr{triplet->lower()}) { |
| *expr = Fold(std::move(*expr)); |
| lower = ToInt64(*expr); |
| triplet->set_lower(std::move(*expr)); |
| } else { |
| lower = ToInt64(lb[dim]); |
| } |
| if (auto expr{triplet->upper()}) { |
| *expr = Fold(std::move(*expr)); |
| upper = ToInt64(*expr); |
| triplet->set_upper(std::move(*expr)); |
| } else { |
| upper = ToInt64(ub[dim]); |
| } |
| if (stride) { |
| if (*stride == 0) { |
| Say("Stride of triplet must not be zero"_err_en_US); |
| return; |
| } |
| if (lower && upper) { |
| if (*stride > 0) { |
| anyPossiblyEmptyDim |= *lower > *upper; |
| } else { |
| anyPossiblyEmptyDim |= *lower < *upper; |
| } |
| } else { |
| anyPossiblyEmptyDim = true; |
| } |
| } else { // non-constant stride |
| if (lower && upper && *lower == *upper) { |
| // stride is not relevant |
| } else { |
| anyPossiblyEmptyDim = true; |
| } |
| } |
| } else { // not triplet |
| auto &expr{std::get<IndirectSubscriptIntegerExpr>(ss.u).value()}; |
| expr = Fold(std::move(expr)); |
| anyPossiblyEmptyDim |= expr.Rank() > 0; // vector subscript |
| } |
| ++dim; |
| } |
| if (anyPossiblyEmptyDim) { |
| return; |
| } |
| dim = 0; |
| for (Subscript &ss : ref.subscript()) { |
| auto dimLB{ToInt64(lb[dim])}; |
| auto dimUB{ToInt64(ub[dim])}; |
| std::optional<ConstantSubscript> val[2]; |
| int vals{0}; |
| if (auto *triplet{std::get_if<Triplet>(&ss.u)}) { |
| auto stride{ToInt64(triplet->stride())}; |
| std::optional<ConstantSubscript> lower, upper; |
| if (const auto *lowerExpr{triplet->GetLower()}) { |
| lower = ToInt64(*lowerExpr); |
| } else if (lb[dim]) { |
| lower = ToInt64(*lb[dim]); |
| } |
| if (const auto *upperExpr{triplet->GetUpper()}) { |
| upper = ToInt64(*upperExpr); |
| } else if (ub[dim]) { |
| upper = ToInt64(*ub[dim]); |
| } |
| if (lower) { |
| val[vals++] = *lower; |
| if (upper && *upper != lower && (stride && *stride != 0)) { |
| // Normalize upper bound for non-unit stride |
| // 1:10:2 -> 1:9:2, 10:1:-2 -> 10:2:-2 |
| val[vals++] = *lower + *stride * ((*upper - *lower) / *stride); |
| } |
| } |
| } else { |
| val[vals++] = |
| ToInt64(std::get<IndirectSubscriptIntegerExpr>(ss.u).value()); |
| } |
| for (int j{0}; j < vals; ++j) { |
| if (val[j]) { |
| std::optional<parser::MessageFixedText> msg; |
| std::optional<ConstantSubscript> bound; |
| if (dimLB && *val[j] < *dimLB) { |
| msg = |
| "Subscript %jd is less than lower bound %jd for dimension %d of array"_err_en_US; |
| bound = *dimLB; |
| } else if (dimUB && *val[j] > *dimUB) { |
| msg = |
| "Subscript %jd is greater than upper bound %jd for dimension %d of array"_err_en_US; |
| bound = *dimUB; |
| if (dim + 1 == arraySymbol.Rank() && IsDummy(arraySymbol) && |
| *bound == 1) { |
| // Old-school overindexing of a dummy array isn't fatal when |
| // it's on the last dimension and the extent is 1. |
| msg->set_severity(parser::Severity::Warning); |
| } |
| } |
| if (msg) { |
| AttachDeclaration( |
| Say(std::move(*msg), static_cast<std::intmax_t>(*val[j]), |
| static_cast<std::intmax_t>(bound.value()), dim + 1), |
| arraySymbol); |
| } |
| } |
| } |
| ++dim; |
| } |
| } |
| |
| // C919a - only one part-ref of a data-ref may have rank > 0 |
| bool ExpressionAnalyzer::CheckRanks(const DataRef &dataRef) { |
| return common::visit( |
| common::visitors{ |
| [this](const Component &component) { |
| const Symbol &symbol{component.GetLastSymbol()}; |
| if (int componentRank{symbol.Rank()}; componentRank > 0) { |
| if (int baseRank{component.base().Rank()}; baseRank > 0) { |
| Say("Reference to whole rank-%d component '%s' of rank-%d array of derived type is not allowed"_err_en_US, |
| componentRank, symbol.name(), baseRank); |
| return false; |
| } |
| } else { |
| return CheckRanks(component.base()); |
| } |
| return true; |
| }, |
| [this](const ArrayRef &arrayRef) { |
| if (const auto *component{arrayRef.base().UnwrapComponent()}) { |
| int subscriptRank{0}; |
| for (const Subscript &subscript : arrayRef.subscript()) { |
| subscriptRank += subscript.Rank(); |
| } |
| if (subscriptRank > 0) { |
| if (int componentBaseRank{component->base().Rank()}; |
| componentBaseRank > 0) { |
| Say("Subscripts of component '%s' of rank-%d derived type array have rank %d but must all be scalar"_err_en_US, |
| component->GetLastSymbol().name(), componentBaseRank, |
| subscriptRank); |
| return false; |
| } |
| } else { |
| return CheckRanks(component->base()); |
| } |
| } |
| return true; |
| }, |
| [](const SymbolRef &) { return true; }, |
| [](const CoarrayRef &) { return true; }, |
| }, |
| dataRef.u); |
| } |
| |
| // C911 - if the last name in a data-ref has an abstract derived type, |
| // it must also be polymorphic. |
| bool ExpressionAnalyzer::CheckPolymorphic(const DataRef &dataRef) { |
| if (auto type{DynamicType::From(dataRef.GetLastSymbol())}) { |
| if (type->category() == TypeCategory::Derived && !type->IsPolymorphic()) { |
| const Symbol &typeSymbol{ |
| type->GetDerivedTypeSpec().typeSymbol().GetUltimate()}; |
| if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { |
| AttachDeclaration( |
| Say("Reference to object with abstract derived type '%s' must be polymorphic"_err_en_US, |
| typeSymbol.name()), |
| typeSymbol); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool ExpressionAnalyzer::CheckDataRef(const DataRef &dataRef) { |
| // Always check both, don't short-circuit |
| bool ranksOk{CheckRanks(dataRef)}; |
| bool polyOk{CheckPolymorphic(dataRef)}; |
| return ranksOk && polyOk; |
| } |
| |
| // Parse tree correction after a substring S(j:k) was misparsed as an |
| // array section. Fortran substrings must have a range, not a |
| // single index. |
| static std::optional<parser::Substring> FixMisparsedSubstringDataRef( |
| parser::DataRef &dataRef) { |
| if (auto *ae{ |
| std::get_if<common::Indirection<parser::ArrayElement>>(&dataRef.u)}) { |
| // ...%a(j:k) and "a" is a character scalar |
| parser::ArrayElement &arrElement{ae->value()}; |
| if (arrElement.subscripts.size() == 1) { |
| if (auto *triplet{std::get_if<parser::SubscriptTriplet>( |
| &arrElement.subscripts.front().u)}) { |
| if (!std::get<2 /*stride*/>(triplet->t).has_value()) { |
| if (const Symbol *symbol{ |
| parser::GetLastName(arrElement.base).symbol}) { |
| const Symbol &ultimate{symbol->GetUltimate()}; |
| if (const semantics::DeclTypeSpec *type{ultimate.GetType()}) { |
| if (!ultimate.IsObjectArray() && |
| type->category() == semantics::DeclTypeSpec::Character) { |
| // The ambiguous S(j:k) was parsed as an array section |
| // reference, but it's now clear that it's a substring. |
| // Fix the parse tree in situ. |
| return arrElement.ConvertToSubstring(); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // When a designator is a misparsed type-param-inquiry of a misparsed |
| // substring -- it looks like a structure component reference of an array |
| // slice -- fix the substring and then convert to an intrinsic function |
| // call to KIND() or LEN(). And when the designator is a misparsed |
| // substring, convert it into a substring reference in place. |
| MaybeExpr ExpressionAnalyzer::FixMisparsedSubstring( |
| const parser::Designator &d) { |
| auto &mutate{const_cast<parser::Designator &>(d)}; |
| if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { |
| if (auto *sc{std::get_if<common::Indirection<parser::StructureComponent>>( |
| &dataRef->u)}) { |
| parser::StructureComponent &structComponent{sc->value()}; |
| parser::CharBlock which{structComponent.component.source}; |
| if (which == "kind" || which == "len") { |
| if (auto substring{ |
| FixMisparsedSubstringDataRef(structComponent.base)}) { |
| // ...%a(j:k)%kind or %len and "a" is a character scalar |
| mutate.u = std::move(*substring); |
| if (MaybeExpr substringExpr{Analyze(d)}) { |
| return MakeFunctionRef(which, |
| ActualArguments{ActualArgument{std::move(*substringExpr)}}); |
| } |
| } |
| } |
| } else if (auto substring{FixMisparsedSubstringDataRef(*dataRef)}) { |
| mutate.u = std::move(*substring); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { |
| auto restorer{GetContextualMessages().SetLocation(d.source)}; |
| if (auto substringInquiry{FixMisparsedSubstring(d)}) { |
| return substringInquiry; |
| } |
| // These checks have to be deferred to these "top level" data-refs where |
| // we can be sure that there are no following subscripts (yet). |
| MaybeExpr result{Analyze(d.u)}; |
| if (result) { |
| std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}; |
| if (!dataRef) { |
| dataRef = ExtractDataRef(std::move(result), /*intoSubstring=*/true); |
| } |
| if (!dataRef) { |
| dataRef = ExtractDataRef(std::move(result), |
| /*intoSubstring=*/false, /*intoComplexPart=*/true); |
| } |
| if (dataRef && !CheckDataRef(*dataRef)) { |
| result.reset(); |
| } |
| } |
| return result; |
| } |
| |
| // A utility subroutine to repackage optional expressions of various levels |
| // of type specificity as fully general MaybeExpr values. |
| template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { |
| return AsGenericExpr(std::move(x)); |
| } |
| template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { |
| if (x) { |
| return AsMaybeExpr(std::move(*x)); |
| } |
| return std::nullopt; |
| } |
| |
| // Type kind parameter values for literal constants. |
| int ExpressionAnalyzer::AnalyzeKindParam( |
| const std::optional<parser::KindParam> &kindParam, int defaultKind) { |
| if (!kindParam) { |
| return defaultKind; |
| } |
| std::int64_t kind{common::visit( |
| common::visitors{ |
| [](std::uint64_t k) { return static_cast<std::int64_t>(k); }, |
| [&](const parser::Scalar< |
| parser::Integer<parser::Constant<parser::Name>>> &n) { |
| if (MaybeExpr ie{Analyze(n)}) { |
| return ToInt64(*ie).value_or(defaultKind); |
| } |
| return static_cast<std::int64_t>(defaultKind); |
| }, |
| }, |
| kindParam->u)}; |
| if (kind != static_cast<int>(kind)) { |
| Say("Unsupported type kind value (%jd)"_err_en_US, |
| static_cast<std::intmax_t>(kind)); |
| kind = defaultKind; |
| } |
| return static_cast<int>(kind); |
| } |
| |
| // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant |
| struct IntTypeVisitor { |
| using Result = MaybeExpr; |
| using Types = IntegerTypes; |
| template <typename T> Result Test() { |
| if (T::kind >= kind) { |
| const char *p{digits.begin()}; |
| using Int = typename T::Scalar; |
| typename Int::ValueWithOverflow num{0, false}; |
| if (isNegated) { |
| auto unsignedNum{Int::Read(p, 10, false /*unsigned*/)}; |
| num.value = unsignedNum.value.Negate().value; |
| num.overflow = unsignedNum.overflow || num.value > Int{0}; |
| if (!num.overflow && num.value.Negate().overflow && |
| analyzer.context().ShouldWarn(LanguageFeature::BigIntLiterals) && |
| !analyzer.context().IsInModuleFile(digits)) { |
| analyzer.Say(digits, |
| "negated maximum INTEGER(KIND=%d) literal"_port_en_US, T::kind); |
| } |
| } else { |
| num = Int::Read(p, 10, true /*signed*/); |
| } |
| if (!num.overflow) { |
| if (T::kind > kind) { |
| if (!isDefaultKind || |
| !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) { |
| return std::nullopt; |
| } else if (analyzer.context().ShouldWarn( |
| LanguageFeature::BigIntLiterals)) { |
| analyzer.Say(digits, |
| "Integer literal is too large for default INTEGER(KIND=%d); " |
| "assuming INTEGER(KIND=%d)"_port_en_US, |
| kind, T::kind); |
| } |
| } |
| return Expr<SomeType>{ |
| Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(num.value)}}}}; |
| } |
| } |
| return std::nullopt; |
| } |
| ExpressionAnalyzer &analyzer; |
| parser::CharBlock digits; |
| std::int64_t kind; |
| bool isDefaultKind; |
| bool isNegated; |
| }; |
| |
| template <typename PARSED> |
| MaybeExpr ExpressionAnalyzer::IntLiteralConstant( |
| const PARSED &x, bool isNegated) { |
| const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; |
| bool isDefaultKind{!kindParam}; |
| int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; |
| if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { |
| auto digits{std::get<parser::CharBlock>(x.t)}; |
| if (MaybeExpr result{common::SearchTypes( |
| IntTypeVisitor{*this, digits, kind, isDefaultKind, isNegated})}) { |
| return result; |
| } else if (isDefaultKind) { |
| Say(digits, |
| "Integer literal is too large for any allowable " |
| "kind of INTEGER"_err_en_US); |
| } else { |
| Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, |
| kind); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::IntLiteralConstant &x, bool isNegated) { |
| auto restorer{ |
| GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))}; |
| return IntLiteralConstant(x, isNegated); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::SignedIntLiteralConstant &x) { |
| auto restorer{GetContextualMessages().SetLocation(x.source)}; |
| return IntLiteralConstant(x); |
| } |
| |
| template <typename TYPE> |
| Constant<TYPE> ReadRealLiteral( |
| parser::CharBlock source, FoldingContext &context) { |
| const char *p{source.begin()}; |
| auto valWithFlags{ |
| Scalar<TYPE>::Read(p, context.targetCharacteristics().roundingMode())}; |
| CHECK(p == source.end()); |
| RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); |
| auto value{valWithFlags.value}; |
| if (context.targetCharacteristics().areSubnormalsFlushedToZero()) { |
| value = value.FlushSubnormalToZero(); |
| } |
| return {value}; |
| } |
| |
| struct RealTypeVisitor { |
| using Result = std::optional<Expr<SomeReal>>; |
| using Types = RealTypes; |
| |
| RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) |
| : kind{k}, literal{lit}, context{ctx} {} |
| |
| template <typename T> Result Test() { |
| if (kind == T::kind) { |
| return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; |
| } |
| return std::nullopt; |
| } |
| |
| int kind; |
| parser::CharBlock literal; |
| FoldingContext &context; |
| }; |
| |
| // Reads a real literal constant and encodes it with the right kind. |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { |
| // Use a local message context around the real literal for better |
| // provenance on any messages. |
| auto restorer{GetContextualMessages().SetLocation(x.real.source)}; |
| // If a kind parameter appears, it defines the kind of the literal and the |
| // letter used in an exponent part must be 'E' (e.g., the 'E' in |
| // "6.02214E+23"). In the absence of an explicit kind parameter, any |
| // exponent letter determines the kind. Otherwise, defaults apply. |
| auto &defaults{context_.defaultKinds()}; |
| int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; |
| const char *end{x.real.source.end()}; |
| char expoLetter{' '}; |
| std::optional<int> letterKind; |
| for (const char *p{x.real.source.begin()}; p < end; ++p) { |
| if (parser::IsLetter(*p)) { |
| expoLetter = *p; |
| switch (expoLetter) { |
| case 'e': |
| letterKind = defaults.GetDefaultKind(TypeCategory::Real); |
| break; |
| case 'd': |
| letterKind = defaults.doublePrecisionKind(); |
| break; |
| case 'q': |
| letterKind = defaults.quadPrecisionKind(); |
| break; |
| default: |
| Say("Unknown exponent letter '%c'"_err_en_US, expoLetter); |
| } |
| break; |
| } |
| } |
| if (letterKind) { |
| defaultKind = *letterKind; |
| } |
| // C716 requires 'E' as an exponent. |
| // Extension: allow exponent-letter matching the kind-param. |
| auto kind{AnalyzeKindParam(x.kind, defaultKind)}; |
| if (letterKind && expoLetter != 'e') { |
| if (kind != *letterKind) { |
| Say("Explicit kind parameter on real constant disagrees with " |
| "exponent letter '%c'"_warn_en_US, |
| expoLetter); |
| } else if (x.kind && |
| context_.ShouldWarn( |
| common::LanguageFeature::ExponentMatchingKindParam)) { |
| Say("Explicit kind parameter together with non-'E' exponent letter " |
| "is not standard"_port_en_US); |
| } |
| } |
| auto result{common::SearchTypes( |
| RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; |
| if (!result) { // C717 |
| Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); |
| } |
| return AsMaybeExpr(std::move(result)); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::SignedRealLiteralConstant &x) { |
| if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { |
| auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; |
| if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { |
| if (sign == parser::Sign::Negative) { |
| return AsGenericExpr(-std::move(realExpr)); |
| } |
| } |
| return result; |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::SignedComplexLiteralConstant &x) { |
| auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))}; |
| if (!result) { |
| return std::nullopt; |
| } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) { |
| return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u))); |
| } else { |
| return result; |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { |
| return Analyze(x.u); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { |
| return AnalyzeComplex(Analyze(std::get<0>(z.t)), Analyze(std::get<1>(z.t)), |
| "complex literal constant"); |
| } |
| |
| // CHARACTER literal processing. |
| MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { |
| if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { |
| return std::nullopt; |
| } |
| switch (kind) { |
| case 1: |
| return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ |
| parser::DecodeString<std::string, parser::Encoding::LATIN_1>( |
| string, true)}); |
| case 2: |
| return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ |
| parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( |
| string, true)}); |
| case 4: |
| return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ |
| parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( |
| string, true)}); |
| default: |
| CRASH_NO_CASE; |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { |
| int kind{ |
| AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; |
| auto value{std::get<std::string>(x.t)}; |
| return AnalyzeString(std::move(value), kind); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::HollerithLiteralConstant &x) { |
| int kind{GetDefaultKind(TypeCategory::Character)}; |
| auto result{AnalyzeString(std::string{x.v}, kind)}; |
| if (auto *constant{UnwrapConstantValue<Ascii>(result)}) { |
| constant->set_wasHollerith(true); |
| } |
| return result; |
| } |
| |
| // .TRUE. and .FALSE. of various kinds |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { |
| auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), |
| GetDefaultKind(TypeCategory::Logical))}; |
| bool value{std::get<bool>(x.t)}; |
| auto result{common::SearchTypes( |
| TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ |
| kind, std::move(value)})}; |
| if (!result) { |
| Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728 |
| } |
| return result; |
| } |
| |
| // BOZ typeless literals |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { |
| const char *p{x.v.c_str()}; |
| std::uint64_t base{16}; |
| switch (*p++) { |
| case 'b': |
| base = 2; |
| break; |
| case 'o': |
| base = 8; |
| break; |
| case 'z': |
| break; |
| case 'x': |
| break; |
| default: |
| CRASH_NO_CASE; |
| } |
| CHECK(*p == '"'); |
| ++p; |
| auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; |
| if (*p != '"') { |
| Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, |
| x.v); // C7107, C7108 |
| return std::nullopt; |
| } |
| if (value.overflow) { |
| Say("BOZ literal '%s' too large"_err_en_US, x.v); |
| return std::nullopt; |
| } |
| return AsGenericExpr(std::move(value.value)); |
| } |
| |
| // Names and named constants |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { |
| auto restorer{GetContextualMessages().SetLocation(n.source)}; |
| if (std::optional<int> kind{IsImpliedDo(n.source)}) { |
| return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( |
| *kind, AsExpr(ImpliedDoIndex{n.source}))); |
| } |
| if (context_.HasError(n.symbol)) { // includes case of no symbol |
| return std::nullopt; |
| } else { |
| const Symbol &ultimate{n.symbol->GetUltimate()}; |
| if (ultimate.has<semantics::TypeParamDetails>()) { |
| // A bare reference to a derived type parameter within a parameterized |
| // derived type definition. |
| auto dyType{DynamicType::From(ultimate)}; |
| if (!dyType) { |
| // When the integer kind of this type parameter is not known now, |
| // it's either an error or because it depends on earlier-declared kind |
| // type parameters. So assume that it's a subscript integer for now |
| // while processing other specification expressions in the PDT |
| // definition; the right kind value will be used later in each of its |
| // instantiations. |
| int kind{SubscriptInteger::kind}; |
| if (const auto *typeSpec{ultimate.GetType()}) { |
| if (const semantics::IntrinsicTypeSpec * |
| intrinType{typeSpec->AsIntrinsic()}) { |
| if (auto k{ToInt64(Fold(semantics::KindExpr{intrinType->kind()}))}; |
| k && IsValidKindOfIntrinsicType(TypeCategory::Integer, *k)) { |
| kind = *k; |
| } |
| } |
| } |
| dyType = DynamicType{TypeCategory::Integer, kind}; |
| } |
| return Fold(ConvertToType( |
| *dyType, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate}))); |
| } else { |
| if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) { |
| if (const semantics::Scope *pure{semantics::FindPureProcedureContaining( |
| context_.FindScope(n.source))}) { |
| SayAt(n, |
| "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US, |
| n.source, DEREF(pure->symbol()).name()); |
| n.symbol->attrs().reset(semantics::Attr::VOLATILE); |
| } |
| } |
| if (!isWholeAssumedSizeArrayOk_ && |
| semantics::IsAssumedSizeArray( |
| ResolveAssociations(*n.symbol))) { // C1002, C1014, C1231 |
| AttachDeclaration( |
| SayAt(n, |
| "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US, |
| n.source), |
| *n.symbol); |
| } |
| return Designate(DataRef{*n.symbol}); |
| } |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { |
| auto restorer{GetContextualMessages().SetLocation(n.v.source)}; |
| if (MaybeExpr value{Analyze(n.v)}) { |
| Expr<SomeType> folded{Fold(std::move(*value))}; |
| if (IsConstantExpr(folded)) { |
| return folded; |
| } |
| Say(n.v.source, "must be a constant"_err_en_US); // C718 |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) { |
| auto restorer{AllowNullPointer()}; |
| if (MaybeExpr value{Analyze(n.v.value())}) { |
| // Subtle: when the NullInit is a DataStmtConstant, it might |
| // be a misparse of a structure constructor without parameters |
| // or components (e.g., T()). Checking the result to ensure |
| // that a "=>" data entity initializer actually resolved to |
| // a null pointer has to be done by the caller. |
| return Fold(std::move(*value)); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::StmtFunctionStmt &stmtFunc) { |
| inStmtFunctionDefinition_ = true; |
| return Analyze(std::get<parser::Scalar<parser::Expr>>(stmtFunc.t)); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) { |
| return Analyze(x.value()); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) { |
| if (const auto &repeat{ |
| std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) { |
| x.repetitions = -1; |
| if (MaybeExpr expr{Analyze(repeat->u)}) { |
| Expr<SomeType> folded{Fold(std::move(*expr))}; |
| if (auto value{ToInt64(folded)}) { |
| if (*value >= 0) { // C882 |
| x.repetitions = *value; |
| } else { |
| Say(FindSourceLocation(repeat), |
| "Repeat count (%jd) for data value must not be negative"_err_en_US, |
| *value); |
| } |
| } |
| } |
| } |
| return Analyze(std::get<parser::DataStmtConstant>(x.t)); |
| } |
| |
| // Substring references |
| std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( |
| const std::optional<parser::ScalarIntExpr> &bound) { |
| if (bound) { |
| if (MaybeExpr expr{Analyze(*bound)}) { |
| if (expr->Rank() > 1) { |
| Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); |
| } |
| if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { |
| if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { |
| return {std::move(*ssIntExpr)}; |
| } |
| return {Expr<SubscriptInteger>{ |
| Convert<SubscriptInteger, TypeCategory::Integer>{ |
| std::move(*intExpr)}}}; |
| } else { |
| Say("substring bound expression is not INTEGER"_err_en_US); |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { |
| if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { |
| if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { |
| if (MaybeExpr newBaseExpr{Designate(std::move(*dataRef))}) { |
| if (std::optional<DataRef> checked{ |
| ExtractDataRef(std::move(*newBaseExpr))}) { |
| const parser::SubstringRange &range{ |
| std::get<parser::SubstringRange>(ss.t)}; |
| std::optional<Expr<SubscriptInteger>> first{ |
| Fold(GetSubstringBound(std::get<0>(range.t)))}; |
| std::optional<Expr<SubscriptInteger>> last{ |
| Fold(GetSubstringBound(std::get<1>(range.t)))}; |
| const Symbol &symbol{checked->GetLastSymbol()}; |
| if (std::optional<DynamicType> dynamicType{ |
| DynamicType::From(symbol)}) { |
| if (dynamicType->category() == TypeCategory::Character) { |
| auto lbValue{ToInt64(first)}; |
| if (!lbValue) { |
| lbValue = 1; |
| } |
| auto ubValue{ToInt64(last)}; |
| auto len{dynamicType->knownLength()}; |
| if (!ubValue) { |
| ubValue = len; |
| } |
| if (lbValue && ubValue && *lbValue > *ubValue) { |
| // valid, substring is empty |
| } else if (lbValue && *lbValue < 1 && (ubValue || !last)) { |
| Say("Substring must begin at 1 or later, not %jd"_err_en_US, |
| static_cast<std::intmax_t>(*lbValue)); |
| return std::nullopt; |
| } else if (ubValue && len && *ubValue > *len && |
| (lbValue || !first)) { |
| Say("Substring must end at %zd or earlier, not %jd"_err_en_US, |
| static_cast<std::intmax_t>(*len), |
| static_cast<std::intmax_t>(*ubValue)); |
| return std::nullopt; |
| } |
| return WrapperHelper<TypeCategory::Character, Designator, |
| Substring>(dynamicType->kind(), |
| Substring{std::move(checked.value()), std::move(first), |
| std::move(last)}); |
| } |
| } |
| Say("substring may apply only to CHARACTER"_err_en_US); |
| } |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // CHARACTER literal substrings |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::CharLiteralConstantSubstring &x) { |
| const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; |
| std::optional<Expr<SubscriptInteger>> lower{ |
| GetSubstringBound(std::get<0>(range.t))}; |
| std::optional<Expr<SubscriptInteger>> upper{ |
| GetSubstringBound(std::get<1>(range.t))}; |
| if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { |
| if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { |
| Expr<SubscriptInteger> length{ |
| common::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); }, |
| charExpr->u)}; |
| if (!lower) { |
| lower = Expr<SubscriptInteger>{1}; |
| } |
| if (!upper) { |
| upper = Expr<SubscriptInteger>{ |
| static_cast<std::int64_t>(ToInt64(length).value())}; |
| } |
| return common::visit( |
| [&](auto &&ckExpr) -> MaybeExpr { |
| using Result = ResultType<decltype(ckExpr)>; |
| auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; |
| CHECK(DEREF(cp).size() == 1); |
| StaticDataObject::Pointer staticData{StaticDataObject::Create()}; |
| staticData->set_alignment(Result::kind) |
| .set_itemBytes(Result::kind) |
| .Push(cp->GetScalarValue().value(), |
| foldingContext_.targetCharacteristics().isBigEndian()); |
| Substring substring{std::move(staticData), std::move(lower.value()), |
| std::move(upper.value())}; |
| return AsGenericExpr( |
| Expr<Result>{Designator<Result>{std::move(substring)}}); |
| }, |
| std::move(charExpr->u)); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // substring%KIND/LEN |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::SubstringInquiry &x) { |
| if (MaybeExpr substring{Analyze(x.v)}) { |
| CHECK(x.source.size() >= 8); |
| int nameLen{x.source.end()[-1] == 'n' ? 3 /*LEN*/ : 4 /*KIND*/}; |
| parser::CharBlock name{ |
| x.source.end() - nameLen, static_cast<std::size_t>(nameLen)}; |
| CHECK(name == "len" || name == "kind"); |
| return MakeFunctionRef( |
| name, ActualArguments{ActualArgument{std::move(*substring)}}); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| // Subscripted array references |
| std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( |
| MaybeExpr &&expr) { |
| if (expr) { |
| if (expr->Rank() > 1) { |
| Say("Subscript expression has rank %d greater than 1"_err_en_US, |
| expr->Rank()); |
| } |
| if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { |
| if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { |
| return std::move(*ssIntExpr); |
| } else { |
| return Expr<SubscriptInteger>{ |
| Convert<SubscriptInteger, TypeCategory::Integer>{ |
| std::move(*intExpr)}}; |
| } |
| } else { |
| Say("Subscript expression is not INTEGER"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( |
| const std::optional<parser::Subscript> &s) { |
| if (s) { |
| return AsSubscript(Analyze(*s)); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( |
| const parser::SectionSubscript &ss) { |
| return common::visit( |
| common::visitors{ |
| [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> { |
| const auto &lower{std::get<0>(t.t)}; |
| const auto &upper{std::get<1>(t.t)}; |
| const auto &stride{std::get<2>(t.t)}; |
| auto result{Triplet{ |
| TripletPart(lower), TripletPart(upper), TripletPart(stride)}}; |
| if ((lower && !result.lower()) || (upper && !result.upper())) { |
| return std::nullopt; |
| } else { |
| return std::make_optional<Subscript>(result); |
| } |
| }, |
| [&](const auto &s) -> std::optional<Subscript> { |
| if (auto subscriptExpr{AsSubscript(Analyze(s))}) { |
| return Subscript{std::move(*subscriptExpr)}; |
| } else { |
| return std::nullopt; |
| } |
| }, |
| }, |
| ss.u); |
| } |
| |
| // Empty result means an error occurred |
| std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( |
| const std::list<parser::SectionSubscript> &sss) { |
| bool error{false}; |
| std::vector<Subscript> subscripts; |
| for (const auto &s : sss) { |
| if (auto subscript{AnalyzeSectionSubscript(s)}) { |
| subscripts.emplace_back(std::move(*subscript)); |
| } else { |
| error = true; |
| } |
| } |
| return !error ? subscripts : std::vector<Subscript>{}; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { |
| MaybeExpr baseExpr; |
| { |
| auto restorer{AllowWholeAssumedSizeArray()}; |
| baseExpr = Analyze(ae.base); |
| } |
| if (baseExpr) { |
| if (ae.subscripts.empty()) { |
| // will be converted to function call later or error reported |
| } else if (baseExpr->Rank() == 0) { |
| if (const Symbol *symbol{GetLastSymbol(*baseExpr)}) { |
| if (!context_.HasError(symbol)) { |
| if (inDataStmtConstant_) { |
| // Better error for NULL(X) with a MOLD= argument |
| Say("'%s' must be an array or structure constructor if used with non-empty parentheses as a DATA statement constant"_err_en_US, |
| symbol->name()); |
| } else { |
| Say("'%s' is not an array"_err_en_US, symbol->name()); |
| } |
| context_.SetError(*symbol); |
| } |
| } |
| } else if (std::optional<DataRef> dataRef{ |
| ExtractDataRef(std::move(*baseExpr))}) { |
| return ApplySubscripts( |
| std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts)); |
| } else { |
| Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); |
| } |
| } |
| // error was reported: analyze subscripts without reporting more errors |
| auto restorer{GetContextualMessages().DiscardMessages()}; |
| AnalyzeSectionSubscripts(ae.subscripts); |
| return std::nullopt; |
| } |
| |
| // Type parameter inquiries apply to data references, but don't depend |
| // on any trailing (co)subscripts. |
| static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { |
| return common::visit( |
| common::visitors{ |
| [](SymbolRef &&symbol) { return NamedEntity{symbol}; }, |
| [](Component &&component) { |
| return NamedEntity{std::move(component)}; |
| }, |
| [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, |
| [](CoarrayRef &&coarrayRef) { |
| return NamedEntity{coarrayRef.GetLastSymbol()}; |
| }, |
| }, |
| std::move(designator.u)); |
| } |
| |
| // Components, but not bindings, of parent derived types are explicitly |
| // represented as such. |
| std::optional<Component> ExpressionAnalyzer::CreateComponent(DataRef &&base, |
| const Symbol &component, const semantics::Scope &scope, |
| bool C919bAlreadyEnforced) { |
| if (!C919bAlreadyEnforced && IsAllocatableOrPointer(component) && |
| base.Rank() > 0) { // C919b |
| Say("An allocatable or pointer component reference must be applied to a scalar base"_err_en_US); |
| } |
| if (&component.owner() == &scope || |
| component.has<semantics::ProcBindingDetails>()) { |
| return Component{std::move(base), component}; |
| } |
| if (const Symbol *typeSymbol{scope.GetSymbol()}) { |
| if (const Symbol *parentComponent{typeSymbol->GetParentComponent(&scope)}) { |
| if (const auto *object{ |
| parentComponent->detailsIf<semantics::ObjectEntityDetails>()}) { |
| if (const auto *parentType{object->type()}) { |
| if (const semantics::Scope *parentScope{ |
| parentType->derivedTypeSpec().scope()}) { |
| return CreateComponent( |
| DataRef{Component{std::move(base), *parentComponent}}, |
| component, *parentScope, C919bAlreadyEnforced); |
| } |
| } |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Derived type component references and type parameter inquiries |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { |
| Symbol *sym{sc.component.symbol}; |
| if (context_.HasError(sym)) { |
| return std::nullopt; |
| } |
| const auto *misc{sym->detailsIf<semantics::MiscDetails>()}; |
| bool isTypeParamInquiry{sym->has<semantics::TypeParamDetails>() || |
| (misc && |
| (misc->kind() == semantics::MiscDetails::Kind::KindParamInquiry || |
| misc->kind() == semantics::MiscDetails::Kind::LenParamInquiry))}; |
| MaybeExpr base; |
| if (isTypeParamInquiry) { |
| auto restorer{AllowWholeAssumedSizeArray()}; |
| base = Analyze(sc.base); |
| } else { |
| base = Analyze(sc.base); |
| } |
| if (!base) { |
| return std::nullopt; |
| } |
| const auto &name{sc.component.source}; |
| if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { |
| const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; |
| if (isTypeParamInquiry) { |
| if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { |
| if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { |
| if (dyType->category() == TypeCategory::Integer) { |
| auto restorer{GetContextualMessages().SetLocation(name)}; |
| return Fold(ConvertToType(*dyType, |
| AsGenericExpr(TypeParamInquiry{ |
| IgnoreAnySubscripts(std::move(*designator)), *sym}))); |
| } |
| } |
| Say(name, "Type parameter is not INTEGER"_err_en_US); |
| } else { |
| Say(name, |
| "A type parameter inquiry must be applied to a designator"_err_en_US); |
| } |
| } else if (!dtSpec || !dtSpec->scope()) { |
| CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty()); |
| return std::nullopt; |
| } else if (std::optional<DataRef> dataRef{ |
| ExtractDataRef(std::move(*dtExpr))}) { |
| auto restorer{GetContextualMessages().SetLocation(name)}; |
| if (auto component{ |
| CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { |
| return Designate(DataRef{std::move(*component)}); |
| } else { |
| Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, |
| dtSpec->typeSymbol().name()); |
| } |
| } else { |
| Say(name, |
| "Base of component reference must be a data reference"_err_en_US); |
| } |
| } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { |
| // special part-ref: %re, %im, %kind, %len |
| // Type errors on the base of %re/%im/%len are detected and |
| // reported in name resolution. |
| using MiscKind = semantics::MiscDetails::Kind; |
| MiscKind kind{details->kind()}; |
| if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { |
| if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { |
| if (std::optional<DataRef> dataRef{ExtractDataRef(*zExpr)}) { |
| // Represent %RE/%IM as a designator |
| Expr<SomeReal> realExpr{common::visit( |
| [&](const auto &z) { |
| using PartType = typename ResultType<decltype(z)>::Part; |
| auto part{kind == MiscKind::ComplexPartRe |
| ? ComplexPart::Part::RE |
| : ComplexPart::Part::IM}; |
| return AsCategoryExpr(Designator<PartType>{ |
| ComplexPart{std::move(*dataRef), part}}); |
| }, |
| zExpr->u)}; |
| return AsGenericExpr(std::move(realExpr)); |
| } |
| } |
| } else if (isTypeParamInquiry) { // %kind or %len |
| ActualArgument arg{std::move(*base)}; |
| SetArgSourceLocation(arg, name); |
| return MakeFunctionRef(name, ActualArguments{std::move(arg)}); |
| } else { |
| DIE("unexpected MiscDetails::Kind"); |
| } |
| } else { |
| Say(name, "derived type required before component reference"_err_en_US); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) { |
| if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) { |
| DataRef *dataRef{&*maybeDataRef}; |
| std::vector<Subscript> subscripts; |
| SymbolVector reversed; |
| if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) { |
| subscripts = std::move(aRef->subscript()); |
| reversed.push_back(aRef->GetLastSymbol()); |
| if (Component *component{aRef->base().UnwrapComponent()}) { |
| dataRef = &component->base(); |
| } else { |
| dataRef = nullptr; |
| } |
| } |
| if (dataRef) { |
| while (auto *component{std::get_if<Component>(&dataRef->u)}) { |
| reversed.push_back(component->GetLastSymbol()); |
| dataRef = &component->base(); |
| } |
| if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) { |
| reversed.push_back(*baseSym); |
| } else { |
| Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US); |
| } |
| } |
| std::vector<Expr<SubscriptInteger>> cosubscripts; |
| bool cosubsOk{true}; |
| for (const auto &cosub : |
| std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) { |
| MaybeExpr coex{Analyze(cosub)}; |
| if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) { |
| cosubscripts.push_back( |
| ConvertToType<SubscriptInteger>(std::move(*intExpr))); |
| } else { |
| cosubsOk = false; |
| } |
| } |
| if (cosubsOk && !reversed.empty()) { |
| int numCosubscripts{static_cast<int>(cosubscripts.size())}; |
| const Symbol &symbol{reversed.front()}; |
| if (numCosubscripts != symbol.Corank()) { |
| Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US, |
| symbol.name(), symbol.Corank(), numCosubscripts); |
| } |
| } |
| for (const auto &imageSelSpec : |
| std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) { |
| common::visit( |
| common::visitors{ |
| [&](const auto &x) { Analyze(x.v); }, |
| }, |
| imageSelSpec.u); |
| } |
| // Reverse the chain of symbols so that the base is first and coarray |
| // ultimate component is last. |
| if (cosubsOk) { |
| return Designate( |
| DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()}, |
| std::move(subscripts), std::move(cosubscripts)}}); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| int ExpressionAnalyzer::IntegerTypeSpecKind( |
| const parser::IntegerTypeSpec &spec) { |
| Expr<SubscriptInteger> value{ |
| AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; |
| if (auto kind{ToInt64(value)}) { |
| return static_cast<int>(*kind); |
| } |
| SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); |
| return GetDefaultKind(TypeCategory::Integer); |
| } |
| |
| // Array constructors |
| |
| // Inverts a collection of generic ArrayConstructorValues<SomeType> that |
| // all happen to have the same actual type T into one ArrayConstructor<T>. |
| template <typename T> |
| ArrayConstructorValues<T> MakeSpecific( |
| ArrayConstructorValues<SomeType> &&from) { |
| ArrayConstructorValues<T> to; |
| for (ArrayConstructorValue<SomeType> &x : from) { |
| common::visit( |
| common::visitors{ |
| [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { |
| auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; |
| to.Push(std::move(DEREF(typed))); |
| }, |
| [&](ImpliedDo<SomeType> &&impliedDo) { |
| to.Push(ImpliedDo<T>{impliedDo.name(), |
| std::move(impliedDo.lower()), std::move(impliedDo.upper()), |
| std::move(impliedDo.stride()), |
| MakeSpecific<T>(std::move(impliedDo.values()))}); |
| }, |
| }, |
| std::move(x.u)); |
| } |
| return to; |
| } |
| |
| class ArrayConstructorContext { |
| public: |
| ArrayConstructorContext( |
| ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t) |
| : exprAnalyzer_{c}, type_{std::move(t)} {} |
| |
| void Add(const parser::AcValue &); |
| MaybeExpr ToExpr(); |
| |
| // These interfaces allow *this to be used as a type visitor argument to |
| // common::SearchTypes() to convert the array constructor to a typed |
| // expression in ToExpr(). |
| using Result = MaybeExpr; |
| using Types = AllTypes; |
| template <typename T> Result Test() { |
| if (type_ && type_->category() == T::category) { |
| if constexpr (T::category == TypeCategory::Derived) { |
| if (!type_->IsUnlimitedPolymorphic()) { |
| return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(), |
| MakeSpecific<T>(std::move(values_))}); |
| } |
| } else if (type_->kind() == T::kind) { |
| ArrayConstructor<T> result{MakeSpecific<T>(std::move(values_))}; |
| if constexpr (T::category == TypeCategory::Character) { |
| if (auto len{LengthIfGood()}) { |
| // The ac-do-variables may be treated as constant expressions, |
| // if some conditions on ac-implied-do-control hold (10.1.12 (12)). |
| // At the same time, they may be treated as constant expressions |
| // only in the context of the ac-implied-do, but setting |
| // the character length here may result in complete elimination |
| // of the ac-implied-do. For example: |
| // character(10) :: c |
| // ... len([(c(i:i), integer(8)::i = 1,4)]) |
| // would be evaulated into: |
| // ... int(max(0_8,i-i+1_8),kind=4) |
| // with a dangling reference to the ac-do-variable. |
| // Prevent this by checking for the ac-do-variable references |
| // in the 'len' expression. |
| result.set_LEN(std::move(*len)); |
| } |
| } |
| return AsMaybeExpr(std::move(result)); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| private: |
| using ImpliedDoIntType = ResultType<ImpliedDoIndex>; |
| |
| std::optional<Expr<SubscriptInteger>> LengthIfGood() const { |
| if (type_) { |
| auto len{type_->LEN()}; |
| if (len && IsConstantExpr(*len) && !ContainsAnyImpliedDoIndex(*len)) { |
| return len; |
| } |
| } |
| return std::nullopt; |
| } |
| bool NeedLength() const { |
| return type_ && type_->category() == TypeCategory::Character && |
| !LengthIfGood(); |
| } |
| void Push(MaybeExpr &&); |
| void Add(const parser::AcValue::Triplet &); |
| void Add(const parser::Expr &); |
| void Add(const parser::AcImpliedDo &); |
| void UnrollConstantImpliedDo(const parser::AcImpliedDo &, |
| parser::CharBlock name, std::int64_t lower, std::int64_t upper, |
| std::int64_t stride); |
| |
| template <int KIND, typename A> |
| std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( |
| const A &x) { |
| if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) { |
| Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; |
| return Fold(exprAnalyzer_.GetFoldingContext(), |
| ConvertToType<Type<TypeCategory::Integer, KIND>>( |
| std::move(DEREF(intExpr)))); |
| } |
| return std::nullopt; |
| } |
| |
| // Nested array constructors all reference the same ExpressionAnalyzer, |
| // which represents the nest of active implied DO loop indices. |
| ExpressionAnalyzer &exprAnalyzer_; |
| std::optional<DynamicTypeWithLength> type_; |
| bool explicitType_{type_.has_value()}; |
| std::optional<std::int64_t> constantLength_; |
| ArrayConstructorValues<SomeType> values_; |
| std::uint64_t messageDisplayedSet_{0}; |
| }; |
| |
| void ArrayConstructorContext::Push(MaybeExpr &&x) { |
| if (!x) { |
| return; |
| } |
| if (!type_) { |
| if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { |
| // Treat an array constructor of BOZ as if default integer. |
| if (exprAnalyzer_.context().ShouldWarn( |
| common::LanguageFeature::BOZAsDefaultInteger)) { |
| exprAnalyzer_.Say( |
| "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); |
| } |
| x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( |
| exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), |
| std::move(*boz))); |
| } |
| } |
| std::optional<DynamicType> dyType{x->GetType()}; |
| if (!dyType) { |
| if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) { |
| if (!type_) { |
| // Treat an array constructor of BOZ as if default integer. |
| if (exprAnalyzer_.context().ShouldWarn( |
| common::LanguageFeature::BOZAsDefaultInteger)) { |
| exprAnalyzer_.Say( |
| "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_port_en_US); |
| } |
| x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>( |
| exprAnalyzer_.GetDefaultKind(TypeCategory::Integer), |
| std::move(*boz))); |
| dyType = x.value().GetType(); |
| } else if (auto cast{ConvertToType(*type_, std::move(*x))}) { |
| x = std::move(cast); |
| dyType = *type_; |
| } else { |
| if (!(messageDisplayedSet_ & 0x80)) { |
| exprAnalyzer_.Say( |
| "BOZ literal is not suitable for use in this array constructor"_err_en_US); |
| messageDisplayedSet_ |= 0x80; |
| } |
| return; |
| } |
| } else { // procedure name, &c. |
| if (!(messageDisplayedSet_ & 0x40)) { |
| exprAnalyzer_.Say( |
| "Item is not suitable for use in an array constructor"_err_en_US); |
| messageDisplayedSet_ |= 0x40; |
| } |
| return; |
| } |
| } else if (dyType->IsUnlimitedPolymorphic()) { |
| if (!(messageDisplayedSet_ & 8)) { |
| exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an " |
| "array constructor"_err_en_US); // C7113 |
| messageDisplayedSet_ |= 8; |
| } |
| return; |
| } else if (dyType->category() == TypeCategory::Derived && |
| dyType->GetDerivedTypeSpec().typeSymbol().attrs().test( |
| semantics::Attr::ABSTRACT)) { // F'2023 C7125 |
| if (!(messageDisplayedSet_ & 0x200)) { |
| exprAnalyzer_.Say( |
| "An item whose declared type is ABSTRACT may not appear in an array constructor"_err_en_US); |
| messageDisplayedSet_ |= 0x200; |
| } |
| } |
| DynamicTypeWithLength xType{dyType.value()}; |
| if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { |
| CHECK(xType.category() == TypeCategory::Character); |
| xType.length = |
| common::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); |
| } |
| if (!type_) { |
| // If there is no explicit type-spec in an array constructor, the type |
| // of the array is the declared type of all of the elements, which must |
| // be well-defined and all match. |
| // TODO: Possible language extension: use the most general type of |
| // the values as the type of a numeric constructed array, convert all |
| // of the other values to that type. Alternative: let the first value |
| // determine the type, and convert the others to that type. |
| CHECK(!explicitType_); |
| type_ = std::move(xType); |
| constantLength_ = ToInt64(type_->length); |
| values_.Push(std::move(*x)); |
| } else if (!explicitType_) { |
| if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) { |
| values_.Push(std::move(*x)); |
| auto xLen{xType.LEN()}; |
| if (auto thisLen{ToInt64(xLen)}) { |
| if (constantLength_) { |
| if (exprAnalyzer_.context().ShouldWarn( |
| common::LanguageFeature::DistinctArrayConstructorLengths) && |
| *thisLen != *constantLength_) { |
| if (!(messageDisplayedSet_ & 1)) { |
| exprAnalyzer_.Say( |
| "Character literal in array constructor without explicit " |
| "type has different length than earlier elements"_port_en_US); |
| messageDisplayedSet_ |= 1; |
| } |
| } |
| if (*thisLen > *constantLength_) { |
| // Language extension: use the longest literal to determine the |
| // length of the array constructor's character elements, not the |
| // first, when there is no explicit type. |
| *constantLength_ = *thisLen; |
| type_->length = std::move(xLen); |
| } |
| } else { |
| constantLength_ = *thisLen; |
| type_->length = std::move(xLen); |
| } |
| } else if (xLen && NeedLength()) { |
| type_->length = std::move(xLen); |
| } |
| } else { |
| if (!(messageDisplayedSet_ & 2)) { |
| exprAnalyzer_.Say( |
| "Values in array constructor must have the same declared type " |
| "when no explicit type appears"_err_en_US); // C7110 |
| messageDisplayedSet_ |= 2; |
| } |
| } |
| } else { |
| if (auto cast{ConvertToType(*type_, std::move(*x))}) { |
| values_.Push(std::move(*cast)); |
| } else if (!(messageDisplayedSet_ & 4)) { |
| exprAnalyzer_.Say("Value in array constructor of type '%s' could not " |
| "be converted to the type of the array '%s'"_err_en_US, |
| x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112 |
| messageDisplayedSet_ |= 4; |
| } |
| } |
| } |
| |
| void ArrayConstructorContext::Add(const parser::AcValue &x) { |
| common::visit( |
| common::visitors{ |
| [&](const parser::AcValue::Triplet &triplet) { Add(triplet); }, |
| [&](const common::Indirection<parser::Expr> &expr) { |
| Add(expr.value()); |
| }, |
| [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { |
| Add(impliedDo.value()); |
| }, |
| }, |
| x.u); |
| } |
| |
| // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' |
| void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) { |
| std::optional<Expr<ImpliedDoIntType>> lower{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))}; |
| std::optional<Expr<ImpliedDoIntType>> upper{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))}; |
| std::optional<Expr<ImpliedDoIntType>> stride{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))}; |
| if (lower && upper) { |
| if (!stride) { |
| stride = Expr<ImpliedDoIntType>{1}; |
| } |
| if (!type_) { |
| type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()}; |
| } |
| auto v{std::move(values_)}; |
| parser::CharBlock anonymous; |
| Push(Expr<SomeType>{ |
| Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}}); |
| std::swap(v, values_); |
| values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower), |
| std::move(*upper), std::move(*stride), std::move(v)}); |
| } |
| } |
| |
| void ArrayConstructorContext::Add(const parser::Expr &expr) { |
| auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)}; |
| Push(exprAnalyzer_.Analyze(expr)); |
| } |
| |
| void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) { |
| const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)}; |
| const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; |
| exprAnalyzer_.Analyze(bounds.name); |
| parser::CharBlock name{bounds.name.thing.thing.source}; |
| const Symbol *symbol{bounds.name.thing.thing.symbol}; |
| int kind{ImpliedDoIntType::kind}; |
| if (const auto dynamicType{DynamicType::From(symbol)}) { |
| kind = dynamicType->kind(); |
| } |
| std::optional<Expr<ImpliedDoIntType>> lower{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)}; |
| std::optional<Expr<ImpliedDoIntType>> upper{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)}; |
| if (lower && upper) { |
| std::optional<Expr<ImpliedDoIntType>> stride{ |
| GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)}; |
| if (!stride) { |
| stride = Expr<ImpliedDoIntType>{1}; |
| } |
| if (exprAnalyzer_.AddImpliedDo(name, kind)) { |
| // Check for constant bounds; the loop may require complete unrolling |
| // of the parse tree if all bounds are constant in order to allow the |
| // implied DO loop index to qualify as a constant expression. |
| auto cLower{ToInt64(lower)}; |
| auto cUpper{ToInt64(upper)}; |
| auto cStride{ToInt64(stride)}; |
| if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) { |
| exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source, |
| "The stride of an implied DO loop must not be zero"_err_en_US); |
| messageDisplayedSet_ |= 0x10; |
| } |
| bool isConstant{cLower && cUpper && cStride && *cStride != 0}; |
| bool isNonemptyConstant{isConstant && |
| ((*cStride > 0 && *cLower <= *cUpper) || |
| (*cStride < 0 && *cLower >= *cUpper))}; |
| bool isEmpty{isConstant && !isNonemptyConstant}; |
| bool unrollConstantLoop{false}; |
| parser::Messages buffer; |
| auto saveMessagesDisplayed{messageDisplayedSet_}; |
| { |
| auto messageRestorer{ |
| exprAnalyzer_.GetContextualMessages().SetMessages(buffer)}; |
| auto v{std::move(values_)}; |
| for (const auto &value : |
| std::get<std::list<parser::AcValue>>(impliedDo.t)) { |
| Add(value); |
| } |
| std::swap(v, values_); |
| if (isNonemptyConstant && buffer.AnyFatalError()) { |
| unrollConstantLoop = true; |
| } else { |
| values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), |
| std::move(*upper), std::move(*stride), std::move(v)}); |
| } |
| } |
| // F'2023 7.8 p5 |
| if (!(messageDisplayedSet_ & 0x100) && isEmpty && NeedLength()) { |
| exprAnalyzer_.SayAt(name, |
| "Array constructor implied DO loop has no iterations and indeterminate character length"_err_en_US); |
| messageDisplayedSet_ |= 0x100; |
| } |
| if (unrollConstantLoop) { |
| messageDisplayedSet_ = saveMessagesDisplayed; |
| UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride); |
| } else if (auto *messages{ |
| exprAnalyzer_.GetContextualMessages().messages()}) { |
| messages->Annex(std::move(buffer)); |
| } |
| exprAnalyzer_.RemoveImpliedDo(name); |
| } else if (!(messageDisplayedSet_ & 0x20)) { |
| exprAnalyzer_.SayAt(name, |
| "Implied DO index '%s' is active in a surrounding implied DO loop " |
| "and may not have the same name"_err_en_US, |
| name); // C7115 |
| messageDisplayedSet_ |= 0x20; |
| } |
| } |
| } |
| |
| // Fortran considers an implied DO index of an array constructor to be |
| // a constant expression if the bounds of the implied DO loop are constant. |
| // Usually this doesn't matter, but if we emitted spurious messages as a |
| // result of not using constant values for the index while analyzing the |
| // items, we need to do it again the "hard" way with multiple iterations over |
| // the parse tree. |
| void ArrayConstructorContext::UnrollConstantImpliedDo( |
| const parser::AcImpliedDo &impliedDo, parser::CharBlock name, |
| std::int64_t lower, std::int64_t upper, std::int64_t stride) { |
| auto &foldingContext{exprAnalyzer_.GetFoldingContext()}; |
| auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()}; |
| for (auto &at{foldingContext.StartImpliedDo(name, lower)}; |
| (stride > 0 && at <= upper) || (stride < 0 && at >= upper); |
| at += stride) { |
| for (const auto &value : |
| std::get<std::list<parser::AcValue>>(impliedDo.t)) { |
| Add(value); |
| } |
| } |
| foldingContext.EndImpliedDo(name); |
| } |
| |
| MaybeExpr ArrayConstructorContext::ToExpr() { |
| return common::SearchTypes(std::move(*this)); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { |
| const parser::AcSpec &acSpec{array.v}; |
| ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)}; |
| for (const parser::AcValue &value : acSpec.values) { |
| acContext.Add(value); |
| } |
| return acContext.ToExpr(); |
| } |
| |
| // Check if implicit conversion of expr to the symbol type is legal (if needed), |
| // and make it explicit if requested. |
| static MaybeExpr implicitConvertTo(const semantics::Symbol &sym, |
| Expr<SomeType> &&expr, bool keepConvertImplicit) { |
| if (!keepConvertImplicit) { |
| return ConvertToType(sym, std::move(expr)); |
| } else { |
| // Test if a convert could be inserted, but do not make it explicit to |
| // preserve the information that expr is a variable. |
| if (ConvertToType(sym, common::Clone(expr))) { |
| return MaybeExpr{std::move(expr)}; |
| } |
| } |
| // Illegal implicit convert. |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::StructureConstructor &structure) { |
| auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; |
| parser::Name structureType{std::get<parser::Name>(parsedType.t)}; |
| parser::CharBlock &typeName{structureType.source}; |
| if (semantics::Symbol *typeSymbol{structureType.symbol}) { |
| if (typeSymbol->has<semantics::DerivedTypeDetails>()) { |
| semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()}; |
| if (!CheckIsValidForwardReference(dtSpec)) { |
| return std::nullopt; |
| } |
| } |
| } |
| if (!parsedType.derivedTypeSpec) { |
| return std::nullopt; |
| } |
| const auto &spec{*parsedType.derivedTypeSpec}; |
| const Symbol &typeSymbol{spec.typeSymbol()}; |
| if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) { |
| return std::nullopt; // error recovery |
| } |
| const semantics::Scope &scope{context_.FindScope(typeName)}; |
| const semantics::Scope *pureContext{FindPureProcedureContaining(scope)}; |
| const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; |
| const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; |
| |
| if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 |
| AttachDeclaration(Say(typeName, |
| "ABSTRACT derived type '%s' may not be used in a " |
| "structure constructor"_err_en_US, |
| typeName), |
| typeSymbol); // C7114 |
| } |
| |
| // This iterator traverses all of the components in the derived type and its |
| // parents. The symbols for whole parent components appear after their |
| // own components and before the components of the types that extend them. |
| // E.g., TYPE :: A; REAL X; END TYPE |
| // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE |
| // produces the component list X, A, Y. |
| // The order is important below because a structure constructor can |
| // initialize X or A by name, but not both. |
| auto components{semantics::OrderedComponentIterator{spec}}; |
| auto nextAnonymous{components.begin()}; |
| |
| std::set<parser::CharBlock> unavailable; |
| bool anyKeyword{false}; |
| StructureConstructor result{spec}; |
| bool checkConflicts{true}; // until we hit one |
| auto &messages{GetContextualMessages()}; |
| |
| // NULL() can be a valid component |
| auto restorer{AllowNullPointer()}; |
| |
| for (const auto &component : |
| std::get<std::list<parser::ComponentSpec>>(structure.t)) { |
| const parser::Expr &expr{ |
| std::get<parser::ComponentDataSource>(component.t).v.value()}; |
| parser::CharBlock source{expr.source}; |
| auto restorer{messages.SetLocation(source)}; |
| const Symbol *symbol{nullptr}; |
| MaybeExpr value{Analyze(expr)}; |
| std::optional<DynamicType> valueType{DynamicType::From(value)}; |
| if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { |
| anyKeyword = true; |
| source = kw->v.source; |
| symbol = kw->v.symbol; |
| if (!symbol) { |
| // Skip overridden inaccessible parent components in favor of |
| // their later overrides. |
| for (const Symbol &sym : components) { |
| if (sym.name() == source) { |
| symbol = &sym; |
| } |
| } |
| } |
| if (!symbol) { // C7101 |
| Say(source, |
| "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, |
| source, typeName); |
| } |
| } else { |
| if (anyKeyword) { // C7100 |
| Say(source, |
| "Value in structure constructor lacks a component name"_err_en_US); |
| checkConflicts = false; // stem cascade |
| } |
| // Here's a regrettably common extension of the standard: anonymous |
| // initialization of parent components, e.g., T(PT(1)) rather than |
| // T(1) or T(PT=PT(1)). |
| if (nextAnonymous == components.begin() && parentComponent && |
| valueType == DynamicType::From(*parentComponent) && |
| context().IsEnabled(LanguageFeature::AnonymousParents)) { |
| auto iter{ |
| std::find(components.begin(), components.end(), *parentComponent)}; |
| if (iter != components.end()) { |
| symbol = parentComponent; |
| nextAnonymous = ++iter; |
| if (context().ShouldWarn(LanguageFeature::AnonymousParents)) { |
| Say(source, |
| "Whole parent component '%s' in structure " |
| "constructor should not be anonymous"_port_en_US, |
| symbol->name()); |
| } |
| } |
| } |
| while (!symbol && nextAnonymous != components.end()) { |
| const Symbol &next{*nextAnonymous}; |
| ++nextAnonymous; |
| if (!next.test(Symbol::Flag::ParentComp)) { |
| symbol = &next; |
| } |
| } |
| if (!symbol) { |
| Say(source, "Unexpected value in structure constructor"_err_en_US); |
| } |
| } |
| if (symbol) { |
| const semantics::Scope &innermost{context_.FindScope(expr.source)}; |
| if (auto msg{CheckAccessibleSymbol(innermost, *symbol)}) { |
| Say(expr.source, std::move(*msg)); |
| } |
| if (checkConflicts) { |
| auto componentIter{ |
| std::find(components.begin(), components.end(), *symbol)}; |
| if (unavailable.find(symbol->name()) != unavailable.cend()) { |
| // C797, C798 |
| Say(source, |
| "Component '%s' conflicts with another component earlier in " |
| "this structure constructor"_err_en_US, |
| symbol->name()); |
| } else if (symbol->test(Symbol::Flag::ParentComp)) { |
| // Make earlier components unavailable once a whole parent appears. |
| for (auto it{components.begin()}; it != componentIter; ++it) { |
| unavailable.insert(it->name()); |
| } |
| } else { |
| // Make whole parent components unavailable after any of their |
| // constituents appear. |
| for (auto it{componentIter}; it != components.end(); ++it) { |
| if (it->test(Symbol::Flag::ParentComp)) { |
| unavailable.insert(it->name()); |
| } |
| } |
| } |
| } |
| unavailable.insert(symbol->name()); |
| if (value) { |
| if (symbol->has<semantics::TypeParamDetails>()) { |
| Say(expr.source, |
| "Type parameter '%s' may not appear as a component of a structure constructor"_err_en_US, |
| symbol->name()); |
| } |
| if (!(symbol->has<semantics::ProcEntityDetails>() || |
| symbol->has<semantics::ObjectEntityDetails>())) { |
| continue; // recovery |
| } |
| if (IsPointer(*symbol)) { // C7104, C7105, C1594(4) |
| semantics::CheckStructConstructorPointerComponent( |
| context_, *symbol, *value, innermost); |
| result.Add(*symbol, Fold(std::move(*value))); |
| continue; |
| } |
| if (IsNullPointer(*value)) { |
| if (IsAllocatable(*symbol)) { |
| if (IsBareNullPointer(&*value)) { |
| // NULL() with no arguments allowed by 7.5.10 para 6 for |
| // ALLOCATABLE. |
| result.Add(*symbol, Expr<SomeType>{NullPointer{}}); |
| continue; |
| } |
| if (IsNullObjectPointer(*value)) { |
| if (context().ShouldWarn(common::LanguageFeature:: |
| NullMoldAllocatableComponentValue)) { |
| AttachDeclaration( |
| Say(expr.source, |
| "NULL() with arguments is not standard conforming as the value for allocatable component '%s'"_port_en_US, |
| symbol->name()), |
| *symbol); |
| } |
| // proceed to check type & shape |
| } else { |
| AttachDeclaration( |
| Say(expr.source, |
| "A NULL procedure pointer may not be used as the value for component '%s'"_err_en_US, |
| symbol->name()), |
| *symbol); |
| continue; |
| } |
| } else { |
| AttachDeclaration( |
| Say(expr.source, |
| "A NULL pointer may not be used as the value for component '%s'"_err_en_US, |
| symbol->name()), |
| *symbol); |
| continue; |
| } |
| } else if (const Symbol * pointer{FindPointerComponent(*symbol)}; |
| pointer && pureContext) { // C1594(4) |
| if (const Symbol * |
| visible{semantics::FindExternallyVisibleObject( |
| *value, *pureContext)}) { |
| Say(expr.source, |
| "The externally visible object '%s' may not be used in a pure procedure as the value for component '%s' which has the pointer component '%s'"_err_en_US, |
| visible->name(), symbol->name(), pointer->name()); |
| } |
| } |
| // Make implicit conversion explicit to allow folding of the structure |
| // constructors and help semantic checking, unless the component is |
| // allocatable, in which case the value could be an unallocated |
| // allocatable (see Fortran 2018 7.5.10 point 7). The explicit |
| // convert would cause a segfault. Lowering will deal with |
| // conditionally converting and preserving the lower bounds in this |
| // case. |
| if (MaybeExpr converted{implicitConvertTo( |
| *symbol, std::move(*value), IsAllocatable(*symbol))}) { |
| if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) { |
| if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) { |
| if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) { |
| AttachDeclaration( |
| Say(expr.source, |
| "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US, |
| GetRank(*valueShape), symbol->name()), |
| *symbol); |
| } else { |
| auto checked{ |
| CheckConformance(messages, *componentShape, *valueShape, |
| CheckConformanceFlags::RightIsExpandableDeferred, |
| "component", "value")}; |
| if (checked && *checked && GetRank(*componentShape) > 0 && |
| GetRank(*valueShape) == 0 && |
| (IsDeferredShape(*symbol) || |
| !IsExpandableScalar(*converted, GetFoldingContext(), |
| *componentShape, true /*admit PURE call*/))) { |
| AttachDeclaration( |
| Say(expr.source, |
| "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US, |
| symbol->name()), |
| *symbol); |
| } |
| if (checked.value_or(true)) { |
| result.Add(*symbol, std::move(*converted)); |
| } |
| } |
| } else { |
| Say(expr.source, "Shape of value cannot be determined"_err_en_US); |
| } |
| } else { |
| AttachDeclaration( |
| Say(expr.source, |
| "Shape of component '%s' cannot be determined"_err_en_US, |
| symbol->name()), |
| *symbol); |
| } |
| } else if (auto symType{DynamicType::From(symbol)}) { |
| if (IsAllocatable(*symbol) && symType->IsUnlimitedPolymorphic() && |
| valueType) { |
| // ok |
| } else if (valueType) { |
| AttachDeclaration( |
| Say(expr.source, |
| "Value in structure constructor of type '%s' is " |
| "incompatible with component '%s' of type '%s'"_err_en_US, |
| valueType->AsFortran(), symbol->name(), |
| symType->AsFortran()), |
| *symbol); |
| } else { |
| AttachDeclaration( |
| Say(expr.source, |
| "Value in structure constructor is incompatible with " |
| "component '%s' of type %s"_err_en_US, |
| symbol->name(), symType->AsFortran()), |
| *symbol); |
| } |
| } |
| } |
| } |
| } |
| |
| // Ensure that unmentioned component objects have default initializers. |
| for (const Symbol &symbol : components) { |
| if (!symbol.test(Symbol::Flag::ParentComp) && |
| unavailable.find(symbol.name()) == unavailable.cend()) { |
| if (IsAllocatable(symbol)) { |
| // Set all remaining allocatables to explicit NULL(). |
| result.Add(symbol, Expr<SomeType>{NullPointer{}}); |
| } else { |
| const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; |
| if (object && object->init()) { |
| result.Add(symbol, common::Clone(*object->init())); |
| } else if (IsPointer(symbol)) { |
| result.Add(symbol, Expr<SomeType>{NullPointer{}}); |
| } else if (object) { // C799 |
| AttachDeclaration(Say(typeName, |
| "Structure constructor lacks a value for " |
| "component '%s'"_err_en_US, |
| symbol.name()), |
| symbol); |
| } |
| } |
| } |
| } |
| |
| return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); |
| } |
| |
| static std::optional<parser::CharBlock> GetPassName( |
| const semantics::Symbol &proc) { |
| return common::visit( |
| [](const auto &details) { |
| if constexpr (std::is_base_of_v<semantics::WithPassArg, |
| std::decay_t<decltype(details)>>) { |
| return details.passName(); |
| } else { |
| return std::optional<parser::CharBlock>{}; |
| } |
| }, |
| proc.details()); |
| } |
| |
| static std::optional<int> GetPassIndex(const Symbol &proc) { |
| CHECK(!proc.attrs().test(semantics::Attr::NOPASS)); |
| std::optional<parser::CharBlock> passName{GetPassName(proc)}; |
| const auto *interface { |
| semantics::FindInterface(proc) |
| }; |
| if (!passName || !interface) { |
| return 0; // first argument is passed-object |
| } |
| const auto &subp{interface->get<semantics::SubprogramDetails>()}; |
| int index{0}; |
| for (const auto *arg : subp.dummyArgs()) { |
| if (arg && arg->name() == passName) { |
| return index; |
| } |
| ++index; |
| } |
| return std::nullopt; |
| } |
| |
| // Injects an expression into an actual argument list as the "passed object" |
| // for a type-bound procedure reference that is not NOPASS. Adds an |
| // argument keyword if possible, but not when the passed object goes |
| // before a positional argument. |
| // e.g., obj%tbp(x) -> tbp(obj,x). |
| static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr, |
| const Symbol &component, bool isPassedObject = true) { |
| if (component.attrs().test(semantics::Attr::NOPASS)) { |
| return; |
| } |
| std::optional<int> passIndex{GetPassIndex(component)}; |
| if (!passIndex) { |
| return; // error recovery |
| } |
| auto iter{actuals.begin()}; |
| int at{0}; |
| while (iter < actuals.end() && at < *passIndex) { |
| if (*iter && (*iter)->keyword()) { |
| iter = actuals.end(); |
| break; |
| } |
| ++iter; |
| ++at; |
| } |
| ActualArgument passed{AsGenericExpr(common::Clone(expr))}; |
| passed.set_isPassedObject(isPassedObject); |
| if (iter == actuals.end()) { |
| if (auto passName{GetPassName(component)}) { |
| passed.set_keyword(*passName); |
| } |
| } |
| actuals.emplace(iter, std::move(passed)); |
| } |
| |
| // Return the compile-time resolution of a procedure binding, if possible. |
| static const Symbol *GetBindingResolution( |
| const std::optional<DynamicType> &baseType, const Symbol &component) { |
| const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()}; |
| if (!binding) { |
| return nullptr; |
| } |
| if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) && |
| (!baseType || baseType->IsPolymorphic())) { |
| return nullptr; |
| } |
| return &binding->symbol(); |
| } |
| |
| auto ExpressionAnalyzer::AnalyzeProcedureComponentRef( |
| const parser::ProcComponentRef &pcr, ActualArguments &&arguments, |
| bool isSubroutine) -> std::optional<CalleeAndArguments> { |
| const parser::StructureComponent &sc{pcr.v.thing}; |
| if (MaybeExpr base{Analyze(sc.base)}) { |
| if (const Symbol *sym{sc.component.symbol}) { |
| if (context_.HasError(sym)) { |
| return std::nullopt; |
| } |
| if (!IsProcedure(*sym)) { |
| AttachDeclaration( |
| Say(sc.component.source, "'%s' is not a procedure"_err_en_US, |
| sc.component.source), |
| *sym); |
| return std::nullopt; |
| } |
| if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { |
| if (sym->has<semantics::GenericDetails>()) { |
| const Symbol &generic{*sym}; |
| auto dyType{dtExpr->GetType()}; |
| AdjustActuals adjustment{ |
| [&](const Symbol &proc, ActualArguments &actuals) { |
| if (!proc.attrs().test(semantics::Attr::NOPASS)) { |
| AddPassArg(actuals, std::move(*dtExpr), proc); |
| } |
| return true; |
| }}; |
| auto pair{ |
| ResolveGeneric(generic, arguments, adjustment, isSubroutine)}; |
| sym = pair.first; |
| if (!sym) { |
| EmitGenericResolutionError(generic, pair.second, isSubroutine); |
| return std::nullopt; |
| } |
| // re-resolve the name to the specific binding |
| CHECK(sym->has<semantics::ProcBindingDetails>()); |
| // Use the most recent override of a binding, respecting |
| // the rule that inaccessible bindings may not be overridden |
| // outside their module. Fortran doesn't allow a PUBLIC |
| // binding to be overridden by a PRIVATE one. |
| CHECK(dyType && dyType->category() == TypeCategory::Derived && |
| !dyType->IsUnlimitedPolymorphic()); |
| if (const Symbol * |
| latest{DEREF(dyType->GetDerivedTypeSpec().typeSymbol().scope()) |
| .FindComponent(sym->name())}) { |
| if (sym->attrs().test(semantics::Attr::PRIVATE)) { |
| const auto *bindingModule{FindModuleContaining(generic.owner())}; |
| const Symbol *s{latest}; |
| while (s && FindModuleContaining(s->owner()) != bindingModule) { |
| if (const auto *parent{s->owner().GetDerivedTypeParent()}) { |
| s = parent->FindComponent(sym->name()); |
| } else { |
| s = nullptr; |
| } |
| } |
| if (s && !s->attrs().test(semantics::Attr::PRIVATE)) { |
| // The latest override in the same module as the binding |
| // is public, so it can be overridden. |
| } else { |
| latest = s; |
| } |
| } |
| if (latest) { |
| sym = latest; |
| } |
| } |
| sc.component.symbol = const_cast<Symbol *>(sym); |
| } |
| std::optional<DataRef> dataRef{ExtractDataRef(std::move(*dtExpr))}; |
| if (dataRef && !CheckDataRef(*dataRef)) { |
| return std::nullopt; |
| } |
| if (dataRef && dataRef->Rank() > 0) { |
| if (sym->has<semantics::ProcBindingDetails>() && |
| sym->attrs().test(semantics::Attr::NOPASS)) { |
| // F'2023 C1529 seems unnecessary and most compilers don't |
| // enforce it. |
| if (context().ShouldWarn( |
| common::LanguageFeature::NopassScalarBase)) { |
| AttachDeclaration( |
| Say(sc.component.source, |
| "Base of NOPASS type-bound procedure reference should be scalar"_port_en_US), |
| *sym); |
| } |
| } else if (IsProcedurePointer(*sym)) { // C919 |
| Say(sc.component.source, |
| "Base of procedure component reference must be scalar"_err_en_US); |
| } |
| } |
| if (const Symbol *resolution{ |
| GetBindingResolution(dtExpr->GetType(), *sym)}) { |
| AddPassArg(arguments, std::move(*dtExpr), *sym, false); |
| return CalleeAndArguments{ |
| ProcedureDesignator{*resolution}, std::move(arguments)}; |
| } else if (dataRef.has_value()) { |
| if (sym->attrs().test(semantics::Attr::NOPASS)) { |
| const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())}; |
| if (dtSpec && dtSpec->scope()) { |
| if (auto component{CreateComponent(std::move(*dataRef), *sym, |
| *dtSpec->scope(), /*C919bAlreadyEnforced=*/true)}) { |
| return CalleeAndArguments{ |
| ProcedureDesignator{std::move(*component)}, |
| std::move(arguments)}; |
| } |
| } |
| Say(sc.component.source, |
| "Component is not in scope of base derived type"_err_en_US); |
| return std::nullopt; |
| } else { |
| AddPassArg(arguments, |
| Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}}, |
| *sym); |
| return CalleeAndArguments{ |
| ProcedureDesignator{*sym}, std::move(arguments)}; |
| } |
| } |
| } |
| Say(sc.component.source, |
| "Base of procedure component reference is not a derived-type object"_err_en_US); |
| } |
| } |
| CHECK(context_.AnyFatalError()); |
| return std::nullopt; |
| } |
| |
| // Can actual be argument associated with dummy? |
| static bool CheckCompatibleArgument(bool isElemental, |
| const ActualArgument &actual, const characteristics::DummyArgument &dummy) { |
| const auto *expr{actual.UnwrapExpr()}; |
| return common::visit( |
| common::visitors{ |
| [&](const characteristics::DummyDataObject &x) { |
| if (x.attrs.test(characteristics::DummyDataObject::Attr::Pointer) && |
| IsBareNullPointer(expr)) { |
| // NULL() without MOLD= is compatible with any dummy data pointer |
| // but cannot be allowed to lead to ambiguity. |
| return true; |
| } else if (!isElemental && actual.Rank() != x.type.Rank() && |
| !x.type.attrs().test( |
| characteristics::TypeAndShape::Attr::AssumedRank) && |
| !x.ignoreTKR.test(common::IgnoreTKR::Rank)) { |
| return false; |
| } else if (auto actualType{actual.GetType()}) { |
| return x.type.type().IsTkCompatibleWith(*actualType, x.ignoreTKR); |
| } |
| return false; |
| }, |
| [&](const characteristics::DummyProcedure &) { |
| return expr && IsProcedurePointerTarget(*expr); |
| }, |
| [&](const characteristics::AlternateReturn &) { |
| return actual.isAlternateReturn(); |
| }, |
| }, |
| dummy.u); |
| } |
| |
| // Are the actual arguments compatible with the dummy arguments of procedure? |
| static bool CheckCompatibleArguments( |
| const characteristics::Procedure &procedure, |
| const ActualArguments &actuals) { |
| bool isElemental{procedure.IsElemental()}; |
| const auto &dummies{procedure.dummyArguments}; |
| CHECK(dummies.size() == actuals.size()); |
| for (std::size_t i{0}; i < dummies.size(); ++i) { |
| const characteristics::DummyArgument &dummy{dummies[i]}; |
| const std::optional<ActualArgument> &actual{actuals[i]}; |
| if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Handles a forward reference to a module function from what must |
| // be a specification expression. Return false if the symbol is |
| // an invalid forward reference. |
| bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) { |
| if (context_.HasError(symbol)) { |
| return false; |
| } |
| if (const auto *details{ |
| symbol.detailsIf<semantics::SubprogramNameDetails>()}) { |
| if (details->kind() == semantics::SubprogramKind::Module) { |
| // If this symbol is still a SubprogramNameDetails, we must be |
| // checking a specification expression in a sibling module |
| // procedure. Resolve its names now so that its interface |
| // is known. |
| semantics::ResolveSpecificationParts(context_, symbol); |
| if (symbol.has<semantics::SubprogramNameDetails>()) { |
| // When the symbol hasn't had its details updated, we must have |
| // already been in the process of resolving the function's |
| // specification part; but recursive function calls are not |
| // allowed in specification parts (10.1.11 para 5). |
| Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US, |
| symbol.name()); |
| context_.SetError(symbol); |
| return false; |
| } |
| } else if (inStmtFunctionDefinition_) { |
| semantics::ResolveSpecificationParts(context_, symbol); |
| CHECK(symbol.has<semantics::SubprogramDetails>()); |
| } else { // 10.1.11 para 4 |
| Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US, |
| symbol.name()); |
| context_.SetError(symbol); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // Resolve a call to a generic procedure with given actual arguments. |
| // adjustActuals is called on procedure bindings to handle pass arg. |
| std::pair<const Symbol *, bool> ExpressionAnalyzer::ResolveGeneric( |
| const Symbol &symbol, const ActualArguments &actuals, |
| const AdjustActuals &adjustActuals, bool isSubroutine, |
| bool mightBeStructureConstructor) { |
| const Symbol *elemental{nullptr}; // matching elemental specific proc |
| const Symbol *nonElemental{nullptr}; // matching non-elemental specific |
| const Symbol &ultimate{symbol.GetUltimate()}; |
| // Check for a match with an explicit INTRINSIC |
| if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) { |
| parser::Messages buffer; |
| auto restorer{foldingContext_.messages().SetMessages(buffer)}; |
| ActualArguments localActuals{actuals}; |
| if (context_.intrinsics().Probe( |
| CallCharacteristics{ultimate.name().ToString(), isSubroutine}, |
| localActuals, foldingContext_) && |
| !buffer.AnyFatalError()) { |
| return {&ultimate, false}; |
| } |
| } |
| if (const auto *details{ultimate.detailsIf<semantics::GenericDetails>()}) { |
| for (const Symbol &specific0 : details->specificProcs()) { |
| const Symbol &specific{BypassGeneric(specific0)}; |
| if (isSubroutine != !IsFunction(specific)) { |
| continue; |
| } |
| if (!ResolveForward(specific)) { |
| continue; |
| } |
| if (std::optional<characteristics::Procedure> procedure{ |
| characteristics::Procedure::Characterize( |
| ProcedureDesignator{specific}, context_.foldingContext())}) { |
| ActualArguments localActuals{actuals}; |
| if (specific.has<semantics::ProcBindingDetails>()) { |
| if (!adjustActuals.value()(specific, localActuals)) { |
| continue; |
| } |
| } |
| if (semantics::CheckInterfaceForGeneric(*procedure, localActuals, |
| context_, false /* no integer conversions */) && |
| CheckCompatibleArguments(*procedure, localActuals)) { |
| if ((procedure->IsElemental() && elemental) || |
| (!procedure->IsElemental() && nonElemental)) { |
| // 16.9.144(6): a bare NULL() is not allowed as an actual |
| // argument to a generic procedure if the specific procedure |
| // cannot be unambiguously distinguished |
| // Underspecified external procedure actual arguments can |
| // also lead to ambiguity. |
| return {nullptr, true /* due to ambiguity */}; |
| } |
| if (!procedure->IsElemental()) { |
| // takes priority over elemental match |
| nonElemental = &specific; |
| } else { |
| elemental = &specific; |
| } |
| } |
| } |
| } |
| if (nonElemental) { |
| return {&AccessSpecific(symbol, *nonElemental), false}; |
| } else if (elemental) { |
| return {&AccessSpecific(symbol, *elemental), false}; |
| } |
| // Check parent derived type |
| if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) { |
| if (const Symbol *extended{parentScope->FindComponent(symbol.name())}) { |
| auto pair{ResolveGeneric( |
| *extended, actuals, adjustActuals, isSubroutine, false)}; |
| if (pair.first) { |
| return pair; |
| } |
| } |
| } |
| if (mightBeStructureConstructor && details->derivedType()) { |
| return {details->derivedType(), false}; |
| } |
| } |
| // Check for generic or explicit INTRINSIC of the same name in outer scopes. |
| // See 15.5.5.2 for details. |
| if (!symbol.owner().IsGlobal() && !symbol.owner().IsDerivedType()) { |
| for (const std::string &n : GetAllNames(context_, symbol.name())) { |
| if (const Symbol *outer{symbol.owner().parent().FindSymbol(n)}) { |
| auto pair{ResolveGeneric(*outer, actuals, adjustActuals, isSubroutine, |
| mightBeStructureConstructor)}; |
| if (pair.first) { |
| return pair; |
| } |
| } |
| } |
| } |
| return {nullptr, false}; |
| } |
| |
| const Symbol &ExpressionAnalyzer::AccessSpecific( |
| const Symbol &originalGeneric, const Symbol &specific) { |
| if (const auto *hosted{ |
| originalGeneric.detailsIf<semantics::HostAssocDetails>()}) { |
| return AccessSpecific(hosted->symbol(), specific); |
| } else if (const auto *used{ |
| originalGeneric.detailsIf<semantics::UseDetails>()}) { |
| const auto &scope{originalGeneric.owner()}; |
| if (auto iter{scope.find(specific.name())}; iter != scope.end()) { |
| if (const auto *useDetails{ |
| iter->second->detailsIf<semantics::UseDetails>()}) { |
| const Symbol &usedSymbol{useDetails->symbol()}; |
| const auto *usedGeneric{ |
| usedSymbol.detailsIf<semantics::GenericDetails>()}; |
| if (&usedSymbol == &specific || |
| (usedGeneric && usedGeneric->specific() == &specific)) { |
| return specific; |
| } |
| } |
| } |
| // Create a renaming USE of the specific procedure. |
| auto rename{context_.SaveTempName( |
| used->symbol().owner().GetName().value().ToString() + "$" + |
| specific.owner().GetName().value().ToString() + "$" + |
| specific.name().ToString())}; |
| return *const_cast<semantics::Scope &>(scope) |
| .try_emplace(rename, specific.attrs(), |
| semantics::UseDetails{rename, specific}) |
| .first->second; |
| } else { |
| return specific; |
| } |
| } |
| |
| void ExpressionAnalyzer::EmitGenericResolutionError( |
| const Symbol &symbol, bool dueToAmbiguity, bool isSubroutine) { |
| Say(dueToAmbiguity |
| ? "The actual arguments to the generic procedure '%s' matched multiple specific procedures, perhaps due to use of NULL() without MOLD= or an actual procedure with an implicit interface"_err_en_US |
| : semantics::IsGenericDefinedOp(symbol) |
| ? "No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US |
| : isSubroutine |
| ? "No specific subroutine of generic '%s' matches the actual arguments"_err_en_US |
| : "No specific function of generic '%s' matches the actual arguments"_err_en_US, |
| symbol.name()); |
| } |
| |
| auto ExpressionAnalyzer::GetCalleeAndArguments( |
| const parser::ProcedureDesignator &pd, ActualArguments &&arguments, |
| bool isSubroutine, bool mightBeStructureConstructor) |
| -> std::optional<CalleeAndArguments> { |
| return common::visit(common::visitors{ |
| [&](const parser::Name &name) { |
| return GetCalleeAndArguments(name, |
| std::move(arguments), isSubroutine, |
| mightBeStructureConstructor); |
| }, |
| [&](const parser::ProcComponentRef &pcr) { |
| return AnalyzeProcedureComponentRef( |
| pcr, std::move(arguments), isSubroutine); |
| }, |
| }, |
| pd.u); |
| } |
| |
| auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name, |
| ActualArguments &&arguments, bool isSubroutine, |
| bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> { |
| const Symbol *symbol{name.symbol}; |
| if (context_.HasError(symbol)) { |
| return std::nullopt; // also handles null symbol |
| } |
| const Symbol &ultimate{DEREF(symbol).GetUltimate()}; |
| CheckForBadRecursion(name.source, ultimate); |
| bool dueToAmbiguity{false}; |
| bool isGenericInterface{ultimate.has<semantics::GenericDetails>()}; |
| bool isExplicitIntrinsic{ultimate.attrs().test(semantics::Attr::INTRINSIC)}; |
| const Symbol *resolution{nullptr}; |
| if (isGenericInterface || isExplicitIntrinsic) { |
| ExpressionAnalyzer::AdjustActuals noAdjustment; |
| auto pair{ResolveGeneric(*symbol, arguments, noAdjustment, isSubroutine, |
| mightBeStructureConstructor)}; |
| resolution = pair.first; |
| dueToAmbiguity = pair.second; |
| if (resolution) { |
| if (context_.GetPPCBuiltinsScope() && |
| resolution->name().ToString().rfind("__ppc_", 0) == 0) { |
| semantics::CheckPPCIntrinsic( |
| *symbol, *resolution, arguments, GetFoldingContext()); |
| } |
| // re-resolve name to the specific procedure |
| name.symbol = const_cast<Symbol *>(resolution); |
| } |
| } else if (IsProcedure(ultimate) && |
| ultimate.attrs().test(semantics::Attr::ABSTRACT)) { |
| Say("Abstract procedure interface '%s' may not be referenced"_err_en_US, |
| name.source); |
| } else { |
| resolution = symbol; |
| } |
| if (!resolution || resolution->attrs().test(semantics::Attr::INTRINSIC)) { |
| auto name{resolution ? resolution->name() : ultimate.name()}; |
| if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe( |
| CallCharacteristics{name.ToString(), isSubroutine}, arguments, |
| GetFoldingContext())}) { |
| CheckBadExplicitType(*specificCall, *symbol); |
| return CalleeAndArguments{ |
| ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, |
| std::move(specificCall->arguments)}; |
| } else { |
| if (isGenericInterface) { |
| EmitGenericResolutionError(*symbol, dueToAmbiguity, isSubroutine); |
| } |
| return std::nullopt; |
| } |
| } |
| if (resolution->GetUltimate().has<semantics::DerivedTypeDetails>()) { |
| if (mightBeStructureConstructor) { |
| return CalleeAndArguments{ |
| semantics::SymbolRef{*resolution}, std::move(arguments)}; |
| } |
| } else if (IsProcedure(*resolution)) { |
| return CalleeAndArguments{ |
| ProcedureDesignator{*resolution}, std::move(arguments)}; |
| } |
| if (!context_.HasError(*resolution)) { |
| AttachDeclaration( |
| Say(name.source, "'%s' is not a callable procedure"_err_en_US, |
| name.source), |
| *resolution); |
| } |
| return std::nullopt; |
| } |
| |
| // Fortran 2018 expressly states (8.2 p3) that any declared type for a |
| // generic intrinsic function "has no effect" on the result type of a |
| // call to that intrinsic. So one can declare "character*8 cos" and |
| // still get a real result from "cos(1.)". This is a dangerous feature, |
| // especially since implementations are free to extend their sets of |
| // intrinsics, and in doing so might clash with a name in a program. |
| // So we emit a warning in this situation, and perhaps it should be an |
| // error -- any correctly working program can silence the message by |
| // simply deleting the pointless type declaration. |
| void ExpressionAnalyzer::CheckBadExplicitType( |
| const SpecificCall &call, const Symbol &intrinsic) { |
| if (intrinsic.GetUltimate().GetType()) { |
| const auto &procedure{call.specificIntrinsic.characteristics.value()}; |
| if (const auto &result{procedure.functionResult}) { |
| if (const auto *typeAndShape{result->GetTypeAndShape()}) { |
| if (auto declared{ |
| typeAndShape->Characterize(intrinsic, GetFoldingContext())}) { |
| if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) { |
| if (auto *msg{Say( |
| "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_warn_en_US, |
| typeAndShape->AsFortran(), intrinsic.name(), |
| declared->AsFortran())}) { |
| msg->Attach(intrinsic.name(), |
| "Ignored declaration of intrinsic function '%s'"_en_US, |
| intrinsic.name()); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void ExpressionAnalyzer::CheckForBadRecursion( |
| parser::CharBlock callSite, const semantics::Symbol &proc) { |
| if (const auto *scope{proc.scope()}) { |
| if (scope->sourceRange().Contains(callSite)) { |
| parser::Message *msg{nullptr}; |
| if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3) |
| msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US, |
| callSite); |
| } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) { |
| // TODO: Also catch assumed PDT type parameters |
| msg = Say( // 15.6.2.1(3) |
| "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US, |
| callSite); |
| } else if (FindCUDADeviceContext(scope)) { |
| msg = Say( |
| "Device subprogram '%s' cannot call itself"_err_en_US, callSite); |
| } |
| AttachDeclaration(msg, proc); |
| } |
| } |
| } |
| |
| template <typename A> static const Symbol *AssumedTypeDummy(const A &x) { |
| if (const auto *designator{ |
| std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { |
| if (const auto *dataRef{ |
| std::get_if<parser::DataRef>(&designator->value().u)}) { |
| if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { |
| return AssumedTypeDummy(*name); |
| } |
| } |
| } |
| return nullptr; |
| } |
| template <> |
| const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) { |
| if (const Symbol *symbol{name.symbol}) { |
| if (const auto *type{symbol->GetType()}) { |
| if (type->category() == semantics::DeclTypeSpec::TypeStar) { |
| return symbol; |
| } |
| } |
| } |
| return nullptr; |
| } |
| template <typename A> |
| static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) { |
| // It is illegal for allocatable of pointer objects to be TYPE(*), but at that |
| // point it is not guaranteed that it has been checked the object has |
| // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly |
| // returned. |
| return common::visit( |
| common::visitors{ |
| [&](const parser::StructureComponent &x) { |
| return AssumedTypeDummy(x.component); |
| }, |
| [&](const parser::Name &x) { return AssumedTypeDummy(x); }, |
| }, |
| object.u); |
| } |
| template <> |
| const Symbol *AssumedTypeDummy<parser::AllocateObject>( |
| const parser::AllocateObject &x) { |
| return AssumedTypePointerOrAllocatableDummy(x); |
| } |
| template <> |
| const Symbol *AssumedTypeDummy<parser::PointerObject>( |
| const parser::PointerObject &x) { |
| return AssumedTypePointerOrAllocatableDummy(x); |
| } |
| |
| bool ExpressionAnalyzer::CheckIsValidForwardReference( |
| const semantics::DerivedTypeSpec &dtSpec) { |
| if (dtSpec.IsForwardReferenced()) { |
| Say("Cannot construct value for derived type '%s' " |
| "before it is defined"_err_en_US, |
| dtSpec.name()); |
| return false; |
| } |
| return true; |
| } |
| |
| std::optional<Chevrons> ExpressionAnalyzer::AnalyzeChevrons( |
| const parser::CallStmt &call) { |
| Chevrons result; |
| auto checkLaunchArg{[&](const Expr<SomeType> &expr, const char *which) { |
| if (auto dyType{expr.GetType()}) { |
| if (dyType->category() == TypeCategory::Integer) { |
| return true; |
| } |
| if (dyType->category() == TypeCategory::Derived && |
| !dyType->IsPolymorphic() && |
| IsBuiltinDerivedType(&dyType->GetDerivedTypeSpec(), "dim3")) { |
| return true; |
| } |
| } |
| Say("Kernel launch %s parameter must be either integer or TYPE(dim3)"_err_en_US, |
| which); |
| return false; |
| }}; |
| if (const auto &chevrons{call.chevrons}) { |
| if (auto expr{Analyze(std::get<0>(chevrons->t))}; |
| expr && checkLaunchArg(*expr, "grid")) { |
| result.emplace_back(*expr); |
| } else { |
| return std::nullopt; |
| } |
| if (auto expr{Analyze(std::get<1>(chevrons->t))}; |
| expr && checkLaunchArg(*expr, "block")) { |
| result.emplace_back(*expr); |
| } else { |
| return std::nullopt; |
| } |
| if (const auto &maybeExpr{std::get<2>(chevrons->t)}) { |
| if (auto expr{Analyze(*maybeExpr)}) { |
| result.emplace_back(*expr); |
| } else { |
| return std::nullopt; |
| } |
| } |
| if (const auto &maybeExpr{std::get<3>(chevrons->t)}) { |
| if (auto expr{Analyze(*maybeExpr)}) { |
| result.emplace_back(*expr); |
| } else { |
| return std::nullopt; |
| } |
| } |
| } |
| return std::move(result); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef, |
| std::optional<parser::StructureConstructor> *structureConstructor) { |
| const parser::Call &call{funcRef.v}; |
| auto restorer{GetContextualMessages().SetLocation(funcRef.source)}; |
| ArgumentAnalyzer analyzer{*this, funcRef.source, true /* isProcedureCall */}; |
| for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) { |
| analyzer.Analyze(arg, false /* not subroutine call */); |
| } |
| if (analyzer.fatalErrors()) { |
| return std::nullopt; |
| } |
| bool mightBeStructureConstructor{structureConstructor != nullptr}; |
| if (std::optional<CalleeAndArguments> callee{GetCalleeAndArguments( |
| std::get<parser::ProcedureDesignator>(call.t), analyzer.GetActuals(), |
| false /* not subroutine */, mightBeStructureConstructor)}) { |
| if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) { |
| return MakeFunctionRef( |
| funcRef.source, std::move(*proc), std::move(callee->arguments)); |
| } |
| CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u)); |
| const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)}; |
| if (mightBeStructureConstructor) { |
| // Structure constructor misparsed as function reference? |
| const auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; |
| if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { |
| semantics::Scope &scope{context_.FindScope(name->source)}; |
| semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()}; |
| if (!CheckIsValidForwardReference(dtSpec)) { |
| return std::nullopt; |
| } |
| const semantics::DeclTypeSpec &type{ |
| semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))}; |
| auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)}; |
| *structureConstructor = |
| mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec()); |
| return Analyze(structureConstructor->value()); |
| } |
| } |
| if (!context_.HasError(symbol)) { |
| AttachDeclaration( |
| Say("'%s' is called like a function but is not a procedure"_err_en_US, |
| symbol.name()), |
| symbol); |
| context_.SetError(symbol); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| static bool HasAlternateReturns(const evaluate::ActualArguments &args) { |
| for (const auto &arg : args) { |
| if (arg && arg->isAlternateReturn()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) { |
| const parser::Call &call{callStmt.call}; |
| auto restorer{GetContextualMessages().SetLocation(callStmt.source)}; |
| ArgumentAnalyzer analyzer{*this, callStmt.source, true /* isProcedureCall */}; |
| const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)}; |
| for (const auto &arg : actualArgList) { |
| analyzer.Analyze(arg, true /* is subroutine call */); |
| } |
| auto chevrons{AnalyzeChevrons(callStmt)}; |
| if (!analyzer.fatalErrors() && chevrons) { |
| if (std::optional<CalleeAndArguments> callee{ |
| GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t), |
| analyzer.GetActuals(), true /* subroutine */)}) { |
| ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)}; |
| CHECK(proc); |
| bool isKernel{false}; |
| if (const Symbol * procSym{proc->GetSymbol()}) { |
| const Symbol &ultimate{procSym->GetUltimate()}; |
| if (const auto *subpDetails{ |
| ultimate.detailsIf<semantics::SubprogramDetails>()}) { |
| if (auto attrs{subpDetails->cudaSubprogramAttrs()}) { |
| isKernel = *attrs == common::CUDASubprogramAttrs::Global || |
| *attrs == common::CUDASubprogramAttrs::Grid_Global; |
| } |
| } else if (const auto *procDetails{ |
| ultimate.detailsIf<semantics::ProcEntityDetails>()}) { |
| isKernel = procDetails->isCUDAKernel(); |
| } |
| if (isKernel && chevrons->empty()) { |
| Say("'%s' is a kernel subroutine and must be called with kernel launch parameters in chevrons"_err_en_US, |
| procSym->name()); |
| } |
| } |
| if (!isKernel && !chevrons->empty()) { |
| Say("Kernel launch parameters in chevrons may not be used unless calling a kernel subroutine"_err_en_US); |
| } |
| if (CheckCall(callStmt.source, *proc, callee->arguments)) { |
| callStmt.typedCall.Reset( |
| new ProcedureRef{std::move(*proc), std::move(callee->arguments), |
| HasAlternateReturns(callee->arguments)}, |
| ProcedureRef::Deleter); |
| DEREF(callStmt.typedCall.get()).set_chevrons(std::move(*chevrons)); |
| return; |
| } |
| } |
| if (!context_.AnyFatalError()) { |
| std::string buf; |
| llvm::raw_string_ostream dump{buf}; |
| parser::DumpTree(dump, callStmt); |
| Say("Internal error: Expression analysis failed on CALL statement: %s"_err_en_US, |
| dump.str()); |
| } |
| } |
| } |
| |
| const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) { |
| if (!x.typedAssignment) { |
| ArgumentAnalyzer analyzer{*this}; |
| const auto &variable{std::get<parser::Variable>(x.t)}; |
| analyzer.Analyze(variable); |
| analyzer.Analyze(std::get<parser::Expr>(x.t)); |
| std::optional<Assignment> assignment; |
| if (!analyzer.fatalErrors()) { |
| auto restorer{GetContextualMessages().SetLocation(variable.GetSource())}; |
| std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()}; |
| if (!procRef) { |
| analyzer.CheckForNullPointer( |
| "in a non-pointer intrinsic assignment statement"); |
| const Expr<SomeType> &lhs{analyzer.GetExpr(0)}; |
| if (auto dyType{lhs.GetType()}; |
| dyType && dyType->IsPolymorphic()) { // 10.2.1.2p1(1) |
| const Symbol *lastWhole0{UnwrapWholeSymbolOrComponentDataRef(lhs)}; |
| const Symbol *lastWhole{ |
| lastWhole0 ? &lastWhole0->GetUltimate() : nullptr}; |
| if (!lastWhole || !IsAllocatable(*lastWhole)) { |
| Say("Left-hand side of assignment may not be polymorphic unless assignment is to an entire allocatable"_err_en_US); |
| } else if (evaluate::IsCoarray(*lastWhole)) { |
| Say("Left-hand side of assignment may not be polymorphic if it is a coarray"_err_en_US); |
| } |
| } |
| } |
| assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1)); |
| if (procRef) { |
| assignment->u = std::move(*procRef); |
| } |
| } |
| x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)}, |
| GenericAssignmentWrapper::Deleter); |
| } |
| return common::GetPtrFromOptional(x.typedAssignment->v); |
| } |
| |
| const Assignment *ExpressionAnalyzer::Analyze( |
| const parser::PointerAssignmentStmt &x) { |
| if (!x.typedAssignment) { |
| MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))}; |
| MaybeExpr rhs; |
| { |
| auto restorer{AllowNullPointer()}; |
| rhs = Analyze(std::get<parser::Expr>(x.t)); |
| } |
| if (!lhs || !rhs) { |
| x.typedAssignment.Reset( |
| new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter); |
| } else { |
| Assignment assignment{std::move(*lhs), std::move(*rhs)}; |
| common::visit( |
| common::visitors{ |
| [&](const std::list<parser::BoundsRemapping> &list) { |
| Assignment::BoundsRemapping bounds; |
| for (const auto &elem : list) { |
| auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))}; |
| auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))}; |
| if (lower && upper) { |
| bounds.emplace_back( |
| Fold(std::move(*lower)), Fold(std::move(*upper))); |
| } |
| } |
| assignment.u = std::move(bounds); |
| }, |
| [&](const std::list<parser::BoundsSpec> &list) { |
| Assignment::BoundsSpec bounds; |
| for (const auto &bound : list) { |
| if (auto lower{AsSubscript(Analyze(bound.v))}) { |
| bounds.emplace_back(Fold(std::move(*lower))); |
| } |
| } |
| assignment.u = std::move(bounds); |
| }, |
| }, |
| std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u); |
| x.typedAssignment.Reset( |
| new GenericAssignmentWrapper{std::move(assignment)}, |
| GenericAssignmentWrapper::Deleter); |
| } |
| } |
| return common::GetPtrFromOptional(x.typedAssignment->v); |
| } |
| |
| static bool IsExternalCalledImplicitly( |
| parser::CharBlock callSite, const Symbol *symbol) { |
| return symbol && symbol->owner().IsGlobal() && |
| symbol->has<semantics::SubprogramDetails>() && |
| (!symbol->scope() /*ENTRY*/ || |
| !symbol->scope()->sourceRange().Contains(callSite)); |
| } |
| |
| std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall( |
| parser::CharBlock callSite, const ProcedureDesignator &proc, |
| ActualArguments &arguments) { |
| bool treatExternalAsImplicit{ |
| IsExternalCalledImplicitly(callSite, proc.GetSymbol())}; |
| const Symbol *procSymbol{proc.GetSymbol()}; |
| std::optional<characteristics::Procedure> chars; |
| if (procSymbol && procSymbol->has<semantics::ProcEntityDetails>() && |
| procSymbol->owner().IsGlobal()) { |
| // Unknown global external, implicit interface; assume |
| // characteristics from the actual arguments, and check |
| // for consistency with other references. |
| chars = characteristics::Procedure::FromActuals( |
| proc, arguments, context_.foldingContext()); |
| if (chars && procSymbol) { |
| // Ensure calls over implicit interfaces are consistent |
| auto name{procSymbol->name()}; |
| if (auto iter{implicitInterfaces_.find(name)}; |
| iter != implicitInterfaces_.end()) { |
| std::string whyNot; |
| if (!chars->IsCompatibleWith(iter->second.second, |
| /*ignoreImplicitVsExplicit=*/false, &whyNot)) { |
| if (auto *msg{Say(callSite, |
| "Reference to the procedure '%s' has an implicit interface that is distinct from another reference: %s"_warn_en_US, |
| name, whyNot)}) { |
| msg->Attach( |
| iter->second.first, "previous reference to '%s'"_en_US, name); |
| } |
| } |
| } else { |
| implicitInterfaces_.insert( |
| std::make_pair(name, std::make_pair(callSite, *chars))); |
| } |
| } |
| } |
| if (!chars) { |
| chars = characteristics::Procedure::Characterize( |
| proc, context_.foldingContext()); |
| } |
| bool ok{true}; |
| if (chars) { |
| std::string whyNot; |
| if (treatExternalAsImplicit && |
| !chars->CanBeCalledViaImplicitInterface(&whyNot)) { |
| if (auto *msg{Say(callSite, |
| "References to the procedure '%s' require an explicit interface"_err_en_US, |
| DEREF(procSymbol).name())}; |
| msg && !whyNot.empty()) { |
| msg->Attach(callSite, "%s"_because_en_US, whyNot); |
| } |
| } |
| const SpecificIntrinsic *specificIntrinsic{proc.GetSpecificIntrinsic()}; |
| bool procIsDummy{procSymbol && IsDummy(*procSymbol)}; |
| if (chars->functionResult && |
| chars->functionResult->IsAssumedLengthCharacter() && |
| !specificIntrinsic && !procIsDummy) { |
| Say(callSite, |
| "Assumed-length character function must be defined with a length to be called"_err_en_US); |
| } |
| ok &= semantics::CheckArguments(*chars, arguments, context_, |
| context_.FindScope(callSite), treatExternalAsImplicit, |
| /*ignoreImplicitVsExplicit=*/false, specificIntrinsic); |
| } |
| if (procSymbol && !IsPureProcedure(*procSymbol)) { |
| if (const semantics::Scope * |
| pure{semantics::FindPureProcedureContaining( |
| context_.FindScope(callSite))}) { |
| Say(callSite, |
| "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US, |
| procSymbol->name(), DEREF(pure->symbol()).name()); |
| } |
| } |
| if (ok && !treatExternalAsImplicit && procSymbol && |
| !(chars && chars->HasExplicitInterface())) { |
| if (const Symbol *global{FindGlobal(*procSymbol)}; |
| global && global != procSymbol && IsProcedure(*global)) { |
| // Check a known global definition behind a local interface |
| if (auto globalChars{characteristics::Procedure::Characterize( |
| *global, context_.foldingContext())}) { |
| semantics::CheckArguments(*globalChars, arguments, context_, |
| context_.FindScope(callSite), /*treatExternalAsImplicit=*/true, |
| /*ignoreImplicitVsExplicit=*/false, |
| nullptr /*not specific intrinsic*/); |
| } |
| } |
| } |
| return chars; |
| } |
| |
| // Unary operations |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { |
| if (MaybeExpr operand{Analyze(x.v.value())}) { |
| if (const semantics::Symbol *symbol{GetLastSymbol(*operand)}) { |
| if (const semantics::Symbol *result{FindFunctionResult(*symbol)}) { |
| if (semantics::IsProcedurePointer(*result)) { |
| Say("A function reference that returns a procedure " |
| "pointer may not be parenthesized"_err_en_US); // C1003 |
| } |
| } |
| } |
| return Parenthesize(std::move(*operand)); |
| } |
| return std::nullopt; |
| } |
| |
| static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context, |
| NumericOperator opr, const parser::Expr::IntrinsicUnary &x) { |
| ArgumentAnalyzer analyzer{context}; |
| analyzer.Analyze(x.v); |
| if (!analyzer.fatalErrors()) { |
| if (analyzer.IsIntrinsicNumeric(opr)) { |
| analyzer.CheckForNullPointer(); |
| if (opr == NumericOperator::Add) { |
| return analyzer.MoveExpr(0); |
| } else { |
| return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0)); |
| } |
| } else { |
| return analyzer.TryDefinedOp(AsFortran(opr), |
| "Operand of unary %s must be numeric; have %s"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { |
| return NumericUnaryHelper(*this, NumericOperator::Add, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { |
| if (const auto *litConst{ |
| std::get_if<parser::LiteralConstant>(&x.v.value().u)}) { |
| if (const auto *intConst{ |
| std::get_if<parser::IntLiteralConstant>(&litConst->u)}) { |
| return Analyze(*intConst, true); |
| } |
| } |
| return NumericUnaryHelper(*this, NumericOperator::Subtract, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { |
| ArgumentAnalyzer analyzer{*this}; |
| analyzer.Analyze(x.v); |
| if (!analyzer.fatalErrors()) { |
| if (analyzer.IsIntrinsicLogical()) { |
| analyzer.CheckForNullPointer(); |
| return AsGenericExpr( |
| LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u))); |
| } else { |
| return analyzer.TryDefinedOp(LogicalOperator::Not, |
| "Operand of %s must be LOGICAL; have %s"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) { |
| // Represent %LOC() exactly as if it had been a call to the LOC() extension |
| // intrinsic function. |
| // Use the actual source for the name of the call for error reporting. |
| std::optional<ActualArgument> arg; |
| if (const Symbol *assumedTypeDummy{AssumedTypeDummy(x.v.value())}) { |
| arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}}; |
| } else if (MaybeExpr argExpr{Analyze(x.v.value())}) { |
| arg = ActualArgument{std::move(*argExpr)}; |
| } else { |
| return std::nullopt; |
| } |
| parser::CharBlock at{GetContextualMessages().at()}; |
| CHECK(at.size() >= 4); |
| parser::CharBlock loc{at.begin() + 1, 3}; |
| CHECK(loc == "loc"); |
| return MakeFunctionRef(loc, ActualArguments{std::move(*arg)}); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) { |
| const auto &name{std::get<parser::DefinedOpName>(x.t).v}; |
| ArgumentAnalyzer analyzer{*this, name.source}; |
| analyzer.Analyze(std::get<1>(x.t)); |
| return analyzer.TryDefinedOp(name.source.ToString().c_str(), |
| "No operator %s defined for %s"_err_en_US, true); |
| } |
| |
| // Binary (dyadic) operations |
| |
| template <template <typename> class OPR> |
| MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr, |
| const parser::Expr::IntrinsicBinary &x) { |
| ArgumentAnalyzer analyzer{context}; |
| analyzer.Analyze(std::get<0>(x.t)); |
| analyzer.Analyze(std::get<1>(x.t)); |
| if (!analyzer.fatalErrors()) { |
| if (analyzer.IsIntrinsicNumeric(opr)) { |
| analyzer.CheckForNullPointer(); |
| analyzer.CheckConformance(); |
| return NumericOperation<OPR>(context.GetContextualMessages(), |
| analyzer.MoveExpr(0), analyzer.MoveExpr(1), |
| context.GetDefaultKind(TypeCategory::Real)); |
| } else { |
| return analyzer.TryDefinedOp(AsFortran(opr), |
| "Operands of %s must be numeric; have %s and %s"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { |
| return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { |
| return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { |
| return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { |
| return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { |
| return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::Expr::ComplexConstructor &z) { |
| if (context_.ShouldWarn(common::LanguageFeature::ComplexConstructor)) { |
| context_.Say( |
| "nonstandard usage: generalized COMPLEX constructor"_port_en_US); |
| } |
| return AnalyzeComplex(Analyze(std::get<0>(z.t).value()), |
| Analyze(std::get<1>(z.t).value()), "complex constructor"); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { |
| ArgumentAnalyzer analyzer{*this}; |
| analyzer.Analyze(std::get<0>(x.t)); |
| analyzer.Analyze(std::get<1>(x.t)); |
| if (!analyzer.fatalErrors()) { |
| if (analyzer.IsIntrinsicConcat()) { |
| analyzer.CheckForNullPointer(); |
| return common::visit( |
| [&](auto &&x, auto &&y) -> MaybeExpr { |
| using T = ResultType<decltype(x)>; |
| if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) { |
| return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)}); |
| } else { |
| DIE("different types for intrinsic concat"); |
| } |
| }, |
| std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u), |
| std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u)); |
| } else { |
| return analyzer.TryDefinedOp("//", |
| "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // The Name represents a user-defined intrinsic operator. |
| // If the actuals match one of the specific procedures, return a function ref. |
| // Otherwise report the error in messages. |
| MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp( |
| const parser::Name &name, ActualArguments &&actuals) { |
| if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) { |
| CHECK(std::holds_alternative<ProcedureDesignator>(callee->u)); |
| return MakeFunctionRef(name.source, |
| std::move(std::get<ProcedureDesignator>(callee->u)), |
| std::move(callee->arguments)); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr, |
| const parser::Expr::IntrinsicBinary &x) { |
| ArgumentAnalyzer analyzer{context}; |
| analyzer.Analyze(std::get<0>(x.t)); |
| analyzer.Analyze(std::get<1>(x.t)); |
| if (!analyzer.fatalErrors()) { |
| std::optional<DynamicType> leftType{analyzer.GetType(0)}; |
| std::optional<DynamicType> rightType{analyzer.GetType(1)}; |
| analyzer.ConvertBOZ(leftType, 0, rightType); |
| analyzer.ConvertBOZ(rightType, 1, leftType); |
| if (leftType && rightType && |
| analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) { |
| analyzer.CheckForNullPointer("as a relational operand"); |
| return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, |
| analyzer.MoveExpr(0), analyzer.MoveExpr(1))); |
| } else { |
| return analyzer.TryDefinedOp(opr, |
| leftType && leftType->category() == TypeCategory::Logical && |
| rightType && rightType->category() == TypeCategory::Logical |
| ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US |
| : "Operands of %s must have comparable types; have %s and %s"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { |
| return RelationHelper(*this, RelationalOperator::LT, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { |
| return RelationHelper(*this, RelationalOperator::LE, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { |
| return RelationHelper(*this, RelationalOperator::EQ, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { |
| return RelationHelper(*this, RelationalOperator::NE, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { |
| return RelationHelper(*this, RelationalOperator::GE, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { |
| return RelationHelper(*this, RelationalOperator::GT, x); |
| } |
| |
| MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr, |
| const parser::Expr::IntrinsicBinary &x) { |
| ArgumentAnalyzer analyzer{context}; |
| analyzer.Analyze(std::get<0>(x.t)); |
| analyzer.Analyze(std::get<1>(x.t)); |
| if (!analyzer.fatalErrors()) { |
| if (analyzer.IsIntrinsicLogical()) { |
| analyzer.CheckForNullPointer("as a logical operand"); |
| return AsGenericExpr(BinaryLogicalOperation(opr, |
| std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u), |
| std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u))); |
| } else { |
| return analyzer.TryDefinedOp( |
| opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { |
| return LogicalBinaryHelper(*this, LogicalOperator::And, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { |
| return LogicalBinaryHelper(*this, LogicalOperator::Or, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { |
| return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { |
| return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) { |
| const auto &name{std::get<parser::DefinedOpName>(x.t).v}; |
| ArgumentAnalyzer analyzer{*this, name.source}; |
| analyzer.Analyze(std::get<1>(x.t)); |
| analyzer.Analyze(std::get<2>(x.t)); |
| return analyzer.TryDefinedOp(name.source.ToString().c_str(), |
| "No operator %s defined for %s and %s"_err_en_US, true); |
| } |
| |
| // Returns true if a parsed function reference should be converted |
| // into an array element reference. |
| static bool CheckFuncRefToArrayElement(semantics::SemanticsContext &context, |
| const parser::FunctionReference &funcRef) { |
| // Emit message if the function reference fix will end up an array element |
| // reference with no subscripts, or subscripts on a scalar, because it will |
| // not be possible to later distinguish in expressions between an empty |
| // subscript list due to bad subscripts error recovery or because the |
| // user did not put any. |
| auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; |
| const auto *name{std::get_if<parser::Name>(&proc.u)}; |
| if (!name) { |
| name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component; |
| } |
| if (!name->symbol) { |
| return false; |
| } else if (name->symbol->Rank() == 0) { |
| if (const Symbol *function{ |
| semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)}) { |
| auto &msg{context.Say(funcRef.source, |
| function->flags().test(Symbol::Flag::StmtFunction) |
| ? "Recursive call to statement function '%s' is not allowed"_err_en_US |
| : "Recursive call to '%s' requires a distinct RESULT in its declaration"_err_en_US, |
| name->source)}; |
| AttachDeclaration(&msg, *function); |
| name->symbol = const_cast<Symbol *>(function); |
| } |
| return false; |
| } else { |
| if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) { |
| auto &msg{context.Say(funcRef.source, |
| "Reference to array '%s' with empty subscript list"_err_en_US, |
| name->source)}; |
| if (name->symbol) { |
| AttachDeclaration(&msg, *name->symbol); |
| } |
| } |
| return true; |
| } |
| } |
| |
| // Converts, if appropriate, an original misparse of ambiguous syntax like |
| // A(1) as a function reference into an array reference. |
| // Misparsed structure constructors are detected elsewhere after generic |
| // function call resolution fails. |
| template <typename... A> |
| static void FixMisparsedFunctionReference( |
| semantics::SemanticsContext &context, const std::variant<A...> &constU) { |
| // The parse tree is updated in situ when resolving an ambiguous parse. |
| using uType = std::decay_t<decltype(constU)>; |
| auto &u{const_cast<uType &>(constU)}; |
| if (auto *func{ |
| std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { |
| parser::FunctionReference &funcRef{func->value()}; |
| // Ensure that there are no argument keywords |
| for (const auto &arg : |
| std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t)) { |
| if (std::get<std::optional<parser::Keyword>>(arg.t)) { |
| return; |
| } |
| } |
| auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; |
| if (Symbol *origSymbol{ |
| common::visit(common::visitors{ |
| [&](parser::Name &name) { return name.symbol; }, |
| [&](parser::ProcComponentRef &pcr) { |
| return pcr.v.thing.component.symbol; |
| }, |
| }, |
| proc.u)}) { |
| Symbol &symbol{origSymbol->GetUltimate()}; |
| if (symbol.has<semantics::ObjectEntityDetails>() || |
| symbol.has<semantics::AssocEntityDetails>()) { |
| // Note that expression in AssocEntityDetails cannot be a procedure |
| // pointer as per C1105 so this cannot be a function reference. |
| if constexpr (common::HasMember<common::Indirection<parser::Designator>, |
| uType>) { |
| if (CheckFuncRefToArrayElement(context, funcRef)) { |
| u = common::Indirection{funcRef.ConvertToArrayElementRef()}; |
| } |
| } else { |
| DIE("can't fix misparsed function as array reference"); |
| } |
| } |
| } |
| } |
| } |
| |
| // Common handling of parse tree node types that retain the |
| // representation of the analyzed expression. |
| template <typename PARSED> |
| MaybeExpr ExpressionAnalyzer::ExprOrVariable( |
| const PARSED &x, parser::CharBlock source) { |
| auto restorer{GetContextualMessages().SetLocation(source)}; |
| if constexpr (std::is_same_v<PARSED, parser::Expr> || |
| std::is_same_v<PARSED, parser::Variable>) { |
| FixMisparsedFunctionReference(context_, x.u); |
| } |
| if (AssumedTypeDummy(x)) { // C710 |
| Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); |
| ResetExpr(x); |
| return std::nullopt; |
| } |
| MaybeExpr result; |
| if constexpr (common::HasMember<parser::StructureConstructor, |
| std::decay_t<decltype(x.u)>> && |
| common::HasMember<common::Indirection<parser::FunctionReference>, |
| std::decay_t<decltype(x.u)>>) { |
| if (const auto *funcRef{ |
| std::get_if<common::Indirection<parser::FunctionReference>>( |
| &x.u)}) { |
| // Function references in Exprs might turn out to be misparsed structure |
| // constructors; we have to try generic procedure resolution |
| // first to be sure. |
| std::optional<parser::StructureConstructor> ctor; |
| result = Analyze(funcRef->value(), &ctor); |
| if (result && ctor) { |
| // A misparsed function reference is really a structure |
| // constructor. Repair the parse tree in situ. |
| const_cast<PARSED &>(x).u = std::move(*ctor); |
| } |
| } else { |
| result = Analyze(x.u); |
| } |
| } else { |
| result = Analyze(x.u); |
| } |
| if (result) { |
| if constexpr (std::is_same_v<PARSED, parser::Expr>) { |
| if (!isNullPointerOk_ && IsNullPointer(*result)) { |
| Say(source, |
| "NULL() may not be used as an expression in this context"_err_en_US); |
| } |
| } |
| SetExpr(x, Fold(std::move(*result))); |
| return x.typedExpr->v; |
| } else { |
| ResetExpr(x); |
| if (!context_.AnyFatalError()) { |
| std::string buf; |
| llvm::raw_string_ostream dump{buf}; |
| parser::DumpTree(dump, x); |
| Say("Internal error: Expression analysis failed on: %s"_err_en_US, |
| dump.str()); |
| } |
| return std::nullopt; |
| } |
| } |
| |
| // This is an optional preliminary pass over parser::Expr subtrees. |
| // Given an expression tree, iteratively traverse it in a bottom-up order |
| // to analyze all of its subexpressions. A later normal top-down analysis |
| // will then be able to use the results that will have been saved in the |
| // parse tree without having to recurse deeply. This technique keeps |
| // absurdly deep expression parse trees from causing the analyzer to overflow |
| // its stack. |
| MaybeExpr ExpressionAnalyzer::IterativelyAnalyzeSubexpressions( |
| const parser::Expr &top) { |
| std::vector<const parser::Expr *> queue, finish; |
| queue.push_back(&top); |
| do { |
| const parser::Expr &expr{*queue.back()}; |
| queue.pop_back(); |
| if (!expr.typedExpr) { |
| const parser::Expr::IntrinsicUnary *unary{nullptr}; |
| const parser::Expr::IntrinsicBinary *binary{nullptr}; |
| common::visit( |
| [&unary, &binary](auto &y) { |
| if constexpr (std::is_convertible_v<decltype(&y), |
| decltype(unary)>) { |
| // Don't evaluate a constant operand to Negate |
| if (!std::holds_alternative<parser::LiteralConstant>( |
| y.v.value().u)) { |
| unary = &y; |
| } |
| } else if constexpr (std::is_convertible_v<decltype(&y), |
| decltype(binary)>) { |
| binary = &y; |
| } |
| }, |
| expr.u); |
| if (unary) { |
| queue.push_back(&unary->v.value()); |
| } else if (binary) { |
| queue.push_back(&std::get<0>(binary->t).value()); |
| queue.push_back(&std::get<1>(binary->t).value()); |
| } |
| finish.push_back(&expr); |
| } |
| } while (!queue.empty()); |
| // Analyze the collected subexpressions in bottom-up order. |
| // On an error, bail out and leave partial results in place. |
| MaybeExpr result; |
| for (auto riter{finish.rbegin()}; riter != finish.rend(); ++riter) { |
| const parser::Expr &expr{**riter}; |
| result = ExprOrVariable(expr, expr.source); |
| if (!result) { |
| return result; |
| } |
| } |
| return result; // last value was from analysis of "top" |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { |
| bool wasIterativelyAnalyzing{iterativelyAnalyzingSubexpressions_}; |
| MaybeExpr result; |
| if (useSavedTypedExprs_) { |
| if (expr.typedExpr) { |
| return expr.typedExpr->v; |
| } |
| if (!wasIterativelyAnalyzing) { |
| iterativelyAnalyzingSubexpressions_ = true; |
| result = IterativelyAnalyzeSubexpressions(expr); |
| } |
| } |
| if (!result) { |
| result = ExprOrVariable(expr, expr.source); |
| } |
| iterativelyAnalyzingSubexpressions_ = wasIterativelyAnalyzing; |
| return result; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { |
| if (useSavedTypedExprs_ && variable.typedExpr) { |
| return variable.typedExpr->v; |
| } |
| return ExprOrVariable(variable, variable.GetSource()); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) { |
| if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) { |
| if (!useSavedTypedExprs_ || !var->typedExpr) { |
| parser::CharBlock source{var->GetSource()}; |
| auto restorer{GetContextualMessages().SetLocation(source)}; |
| FixMisparsedFunctionReference(context_, var->u); |
| if (const auto *funcRef{ |
| std::get_if<common::Indirection<parser::FunctionReference>>( |
| &var->u)}) { |
| // A Selector that parsed as a Variable might turn out during analysis |
| // to actually be a structure constructor. In that case, repair the |
| // Variable parse tree node into an Expr |
| std::optional<parser::StructureConstructor> ctor; |
| if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) { |
| if (ctor) { |
| auto &writable{const_cast<parser::Selector &>(selector)}; |
| writable.u = parser::Expr{std::move(*ctor)}; |
| auto &expr{std::get<parser::Expr>(writable.u)}; |
| expr.source = source; |
| SetExpr(expr, Fold(std::move(*result))); |
| return expr.typedExpr->v; |
| } else { |
| SetExpr(*var, Fold(std::move(*result))); |
| return var->typedExpr->v; |
| } |
| } else { |
| ResetExpr(*var); |
| if (context_.AnyFatalError()) { |
| return std::nullopt; |
| } |
| } |
| } |
| } |
| // Not a Variable -> FunctionReference |
| auto restorer{AllowWholeAssumedSizeArray()}; |
| return Analyze(selector.u); |
| } else { // Expr |
| return Analyze(selector.u); |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) { |
| auto restorer{common::ScopedSet(inDataStmtConstant_, true)}; |
| return ExprOrVariable(x, x.source); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) { |
| return ExprOrVariable(x, parser::FindSourceLocation(x)); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) { |
| return ExprOrVariable(x, parser::FindSourceLocation(x)); |
| } |
| |
| Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( |
| TypeCategory category, |
| const std::optional<parser::KindSelector> &selector) { |
| int defaultKind{GetDefaultKind(category)}; |
| if (!selector) { |
| return Expr<SubscriptInteger>{defaultKind}; |
| } |
| return common::visit( |
| common::visitors{ |
| [&](const parser::ScalarIntConstantExpr &x) { |
| if (MaybeExpr kind{Analyze(x)}) { |
| if (std::optional<std::int64_t> code{ToInt64(*kind)}) { |
| if (CheckIntrinsicKind(category, *code)) { |
| return Expr<SubscriptInteger>{*code}; |
| } |
| } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) { |
| return ConvertToType<SubscriptInteger>(std::move(*intExpr)); |
| } |
| } |
| return Expr<SubscriptInteger>{defaultKind}; |
| }, |
| [&](const parser::KindSelector::StarSize &x) { |
| std::intmax_t size = x.v; |
| if (!CheckIntrinsicSize(category, size)) { |
| size = defaultKind; |
| } else if (category == TypeCategory::Complex) { |
| size /= 2; |
| } |
| return Expr<SubscriptInteger>{size}; |
| }, |
| }, |
| selector->u); |
| } |
| |
| int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { |
| return context_.GetDefaultKind(category); |
| } |
| |
| DynamicType ExpressionAnalyzer::GetDefaultKindOfType( |
| common::TypeCategory category) { |
| return {category, GetDefaultKind(category)}; |
| } |
| |
| bool ExpressionAnalyzer::CheckIntrinsicKind( |
| TypeCategory category, std::int64_t kind) { |
| if (foldingContext_.targetCharacteristics().IsTypeEnabled( |
| category, kind)) { // C712, C714, C715, C727 |
| return true; |
| } else if (foldingContext_.targetCharacteristics().CanSupportType( |
| category, kind)) { |
| Say("%s(KIND=%jd) is not an enabled type for this target"_warn_en_US, |
| ToUpperCase(EnumToString(category)), kind); |
| return true; |
| } else { |
| Say("%s(KIND=%jd) is not a supported type"_err_en_US, |
| ToUpperCase(EnumToString(category)), kind); |
| return false; |
| } |
| } |
| |
| bool ExpressionAnalyzer::CheckIntrinsicSize( |
| TypeCategory category, std::int64_t size) { |
| std::int64_t kind{size}; |
| if (category == TypeCategory::Complex) { |
| // COMPLEX*16 == COMPLEX(KIND=8) |
| if (size % 2 == 0) { |
| kind = size / 2; |
| } else { |
| Say("COMPLEX*%jd is not a supported type"_err_en_US, size); |
| return false; |
| } |
| } |
| if (foldingContext_.targetCharacteristics().IsTypeEnabled( |
| category, kind)) { // C712, C714, C715, C727 |
| return true; |
| } else if (foldingContext_.targetCharacteristics().CanSupportType( |
| category, kind)) { |
| Say("%s*%jd is not an enabled type for this target"_warn_en_US, |
| ToUpperCase(EnumToString(category)), size); |
| return true; |
| } else { |
| Say("%s*%jd is not a supported type"_err_en_US, |
| ToUpperCase(EnumToString(category)), size); |
| return false; |
| } |
| } |
| |
| bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) { |
| return impliedDos_.insert(std::make_pair(name, kind)).second; |
| } |
| |
| void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) { |
| auto iter{impliedDos_.find(name)}; |
| if (iter != impliedDos_.end()) { |
| impliedDos_.erase(iter); |
| } |
| } |
| |
| std::optional<int> ExpressionAnalyzer::IsImpliedDo( |
| parser::CharBlock name) const { |
| auto iter{impliedDos_.find(name)}; |
| if (iter != impliedDos_.cend()) { |
| return {iter->second}; |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, |
| const MaybeExpr &result, TypeCategory category, bool defaultKind) { |
| if (result) { |
| if (auto type{result->GetType()}) { |
| if (type->category() != category) { // C885 |
| Say(at, "Must have %s type, but is %s"_err_en_US, |
| ToUpperCase(EnumToString(category)), |
| ToUpperCase(type->AsFortran())); |
| return false; |
| } else if (defaultKind) { |
| int kind{context_.GetDefaultKind(category)}; |
| if (type->kind() != kind) { |
| Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, |
| kind, ToUpperCase(EnumToString(category)), |
| ToUpperCase(type->AsFortran())); |
| return false; |
| } |
| } |
| } else { |
| Say(at, "Must have %s type, but is typeless"_err_en_US, |
| ToUpperCase(EnumToString(category))); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite, |
| ProcedureDesignator &&proc, ActualArguments &&arguments) { |
| if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { |
| if (intrinsic->characteristics.value().attrs.test( |
| characteristics::Procedure::Attr::NullPointer) && |
| arguments.empty()) { |
| return Expr<SomeType>{NullPointer{}}; |
| } |
| } |
| if (const Symbol *symbol{proc.GetSymbol()}) { |
| if (!ResolveForward(*symbol)) { |
| return std::nullopt; |
| } |
| } |
| if (auto chars{CheckCall(callSite, proc, arguments)}) { |
| if (chars->functionResult) { |
| const auto &result{*chars->functionResult}; |
| ProcedureRef procRef{std::move(proc), std::move(arguments)}; |
| if (result.IsProcedurePointer()) { |
| return Expr<SomeType>{std::move(procRef)}; |
| } else { |
| // Not a procedure pointer, so type and shape are known. |
| return TypedWrapper<FunctionRef, ProcedureRef>( |
| DEREF(result.GetTypeAndShape()).type(), std::move(procRef)); |
| } |
| } else { |
| Say("Function result characteristics are not known"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::MakeFunctionRef( |
| parser::CharBlock intrinsic, ActualArguments &&arguments) { |
| if (std::optional<SpecificCall> specificCall{ |
| context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()}, |
| arguments, GetFoldingContext())}) { |
| return MakeFunctionRef(intrinsic, |
| ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, |
| std::move(specificCall->arguments)); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::AnalyzeComplex( |
| MaybeExpr &&re, MaybeExpr &&im, const char *what) { |
| if (context().ShouldWarn(common::LanguageFeature::ComplexConstructor)) { |
| if (re && re->Rank() > 0) { |
| Say("Real part of %s is not scalar"_port_en_US, what); |
| } |
| if (im && im->Rank() > 0) { |
| Say("Imaginary part of %s is not scalar"_port_en_US, what); |
| } |
| } |
| if (re && im) { |
| ConformabilityCheck(GetContextualMessages(), *re, *im); |
| } |
| return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), |
| std::move(im), GetDefaultKind(TypeCategory::Real))); |
| } |
| |
| std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeVariable( |
| const parser::Variable &x) { |
| source_.ExtendToCover(x.GetSource()); |
| if (MaybeExpr expr{context_.Analyze(x)}) { |
| if (!IsConstantExpr(*expr)) { |
| ActualArgument actual{std::move(*expr)}; |
| SetArgSourceLocation(actual, x.GetSource()); |
| return actual; |
| } |
| const Symbol *symbol{GetLastSymbol(*expr)}; |
| if (!symbol) { |
| context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US, |
| x.GetSource()); |
| } else if (IsProcedure(*symbol)) { |
| if (auto *msg{context_.SayAt(x, |
| "Assignment to procedure '%s' is not allowed"_err_en_US, |
| symbol->name())}) { |
| if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) { |
| if (subp->isFunction()) { |
| const auto &result{subp->result().name()}; |
| msg->Attach(result, "Function result is '%s'"_en_US, result); |
| } |
| } |
| } |
| } else { |
| context_.SayAt( |
| x, "Assignment to '%s' is not allowed"_err_en_US, symbol->name()); |
| } |
| } |
| fatalErrors_ = true; |
| return std::nullopt; |
| } |
| |
| void ArgumentAnalyzer::Analyze(const parser::Variable &x) { |
| if (auto actual = AnalyzeVariable(x)) { |
| actuals_.emplace_back(std::move(actual)); |
| } |
| } |
| |
| void ArgumentAnalyzer::Analyze( |
| const parser::ActualArgSpec &arg, bool isSubroutine) { |
| // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. |
| std::optional<ActualArgument> actual; |
| auto restorer{context_.AllowWholeAssumedSizeArray()}; |
| common::visit( |
| common::visitors{ |
| [&](const common::Indirection<parser::Expr> &x) { |
| actual = AnalyzeExpr(x.value()); |
| }, |
| [&](const parser::AltReturnSpec &label) { |
| if (!isSubroutine) { |
| context_.Say("alternate return specification may not appear on" |
| " function reference"_err_en_US); |
| } |
| actual = ActualArgument(label.v); |
| }, |
| [&](const parser::ActualArg::PercentRef &percentRef) { |
| actual = AnalyzeVariable(percentRef.v); |
| if (actual.has_value()) { |
| actual->set_isPercentRef(); |
| } |
| }, |
| [&](const parser::ActualArg::PercentVal &percentVal) { |
| actual = AnalyzeExpr(percentVal.v); |
| if (actual.has_value()) { |
| actual->set_isPercentVal(); |
| std::optional<DynamicType> type{actual->GetType()}; |
| if (!type || !type->IsLengthlessIntrinsicType() || |
| actual->Rank() != 0) { |
| context_.SayAt(percentVal.v, |
| "%VAL argument must be a scalar numerical or logical expression"_err_en_US); |
| } |
| } |
| }, |
| }, |
| std::get<parser::ActualArg>(arg.t).u); |
| if (actual) { |
| if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { |
| actual->set_keyword(argKW->v.source); |
| } |
| actuals_.emplace_back(std::move(*actual)); |
| } else { |
| fatalErrors_ = true; |
| } |
| } |
| |
| bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr, |
| const DynamicType &leftType, const DynamicType &rightType) const { |
| CHECK(actuals_.size() == 2); |
| return semantics::IsIntrinsicRelational( |
| opr, leftType, GetRank(0), rightType, GetRank(1)); |
| } |
| |
| bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const { |
| std::optional<DynamicType> leftType{GetType(0)}; |
| if (actuals_.size() == 1) { |
| if (IsBOZLiteral(0)) { |
| return opr == NumericOperator::Add; // unary '+' |
| } else { |
| return leftType && semantics::IsIntrinsicNumeric(*leftType); |
| } |
| } else { |
| std::optional<DynamicType> rightType{GetType(1)}; |
| if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real |
| auto cat1{rightType->category()}; |
| return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real; |
| } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ |
| auto cat0{leftType->category()}; |
| return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real; |
| } else { |
| return leftType && rightType && |
| semantics::IsIntrinsicNumeric( |
| *leftType, GetRank(0), *rightType, GetRank(1)); |
| } |
| } |
| } |
| |
| bool ArgumentAnalyzer::IsIntrinsicLogical() const { |
| if (std::optional<DynamicType> leftType{GetType(0)}) { |
| if (actuals_.size() == 1) { |
| return semantics::IsIntrinsicLogical(*leftType); |
| } else if (std::optional<DynamicType> rightType{GetType(1)}) { |
| return semantics::IsIntrinsicLogical( |
| *leftType, GetRank(0), *rightType, GetRank(1)); |
| } |
| } |
| return false; |
| } |
| |
| bool ArgumentAnalyzer::IsIntrinsicConcat() const { |
| if (std::optional<DynamicType> leftType{GetType(0)}) { |
| if (std::optional<DynamicType> rightType{GetType(1)}) { |
| return semantics::IsIntrinsicConcat( |
| *leftType, GetRank(0), *rightType, GetRank(1)); |
| } |
| } |
| return false; |
| } |
| |
| bool ArgumentAnalyzer::CheckConformance() { |
| if (actuals_.size() == 2) { |
| const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; |
| const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; |
| if (lhs && rhs) { |
| auto &foldingContext{context_.GetFoldingContext()}; |
| auto lhShape{GetShape(foldingContext, *lhs)}; |
| auto rhShape{GetShape(foldingContext, *rhs)}; |
| if (lhShape && rhShape) { |
| if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, |
| *rhShape, CheckConformanceFlags::EitherScalarExpandable, |
| "left operand", "right operand") |
| .value_or(false /*fail when conformance is not known now*/)) { |
| fatalErrors_ = true; |
| return false; |
| } |
| } |
| } |
| } |
| return true; // no proven problem |
| } |
| |
| bool ArgumentAnalyzer::CheckAssignmentConformance() { |
| if (actuals_.size() == 2) { |
| const auto *lhs{actuals_.at(0).value().UnwrapExpr()}; |
| const auto *rhs{actuals_.at(1).value().UnwrapExpr()}; |
| if (lhs && rhs) { |
| auto &foldingContext{context_.GetFoldingContext()}; |
| auto lhShape{GetShape(foldingContext, *lhs)}; |
| auto rhShape{GetShape(foldingContext, *rhs)}; |
| if (lhShape && rhShape) { |
| if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape, |
| *rhShape, CheckConformanceFlags::RightScalarExpandable, |
| "left-hand side", "right-hand side") |
| .value_or(true /*ok when conformance is not known now*/)) { |
| fatalErrors_ = true; |
| return false; |
| } |
| } |
| } |
| } |
| return true; // no proven problem |
| } |
| |
| bool ArgumentAnalyzer::CheckForNullPointer(const char *where) { |
| for (const std::optional<ActualArgument> &arg : actuals_) { |
| if (arg) { |
| if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) { |
| if (IsNullPointer(*expr)) { |
| context_.Say( |
| source_, "A NULL() pointer is not allowed %s"_err_en_US, where); |
| fatalErrors_ = true; |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| MaybeExpr ArgumentAnalyzer::TryDefinedOp( |
| const char *opr, parser::MessageFixedText error, bool isUserOp) { |
| if (AnyUntypedOrMissingOperand()) { |
| context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); |
| return std::nullopt; |
| } |
| MaybeExpr result; |
| bool anyPossibilities{false}; |
| std::optional<parser::MessageFormattedText> inaccessible; |
| std::vector<const Symbol *> hit; |
| std::string oprNameString{ |
| isUserOp ? std::string{opr} : "operator("s + opr + ')'}; |
| parser::CharBlock oprName{oprNameString}; |
| parser::Messages hitBuffer; |
| { |
| parser::Messages buffer; |
| auto restorer{context_.GetContextualMessages().SetMessages(buffer)}; |
| const auto &scope{context_.context().FindScope(source_)}; |
| if (Symbol *symbol{scope.FindSymbol(oprName)}) { |
| anyPossibilities = true; |
| parser::Name name{symbol->name(), symbol}; |
| result = context_.AnalyzeDefinedOp(name, GetActuals()); |
| if (result) { |
| inaccessible = CheckAccessibleSymbol(scope, *symbol); |
| if (inaccessible) { |
| result.reset(); |
| } else { |
| hit.push_back(symbol); |
| hitBuffer = std::move(buffer); |
| } |
| } |
| } |
| for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) { |
| buffer.clear(); |
| const Symbol *generic{nullptr}; |
| if (const Symbol *binding{ |
| FindBoundOp(oprName, passIndex, generic, false)}) { |
| anyPossibilities = true; |
| if (MaybeExpr thisResult{TryBoundOp(*binding, passIndex)}) { |
| if (auto thisInaccessible{ |
| CheckAccessibleSymbol(scope, DEREF(generic))}) { |
| inaccessible = thisInaccessible; |
| } else { |
| result = std::move(thisResult); |
| hit.push_back(binding); |
| hitBuffer = std::move(buffer); |
| } |
| } |
| } |
| } |
| } |
| if (result) { |
| if (hit.size() > 1) { |
| if (auto *msg{context_.Say( |
| "%zd matching accessible generic interfaces for %s were found"_err_en_US, |
| hit.size(), ToUpperCase(opr))}) { |
| for (const Symbol *symbol : hit) { |
| AttachDeclaration(*msg, *symbol); |
| } |
| } |
| } |
| if (auto *msgs{context_.GetContextualMessages().messages()}) { |
| msgs->Annex(std::move(hitBuffer)); |
| } |
| } else if (inaccessible) { |
| context_.Say(source_, std::move(*inaccessible)); |
| } else if (anyPossibilities) { |
| SayNoMatch(ToUpperCase(oprNameString), false); |
| } else if (actuals_.size() == 2 && !AreConformable()) { |
| context_.Say( |
| "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US, |
| ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank()); |
| } else if (CheckForNullPointer()) { |
| context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1)); |
| } |
| return result; |
| } |
| |
| MaybeExpr ArgumentAnalyzer::TryDefinedOp( |
| std::vector<const char *> oprs, parser::MessageFixedText error) { |
| if (oprs.size() == 1) { |
| return TryDefinedOp(oprs[0], error); |
| } |
| MaybeExpr result; |
| std::vector<const char *> hit; |
| parser::Messages hitBuffer; |
| { |
| for (std::size_t i{0}; i < oprs.size(); ++i) { |
| parser::Messages buffer; |
| auto restorer{context_.GetContextualMessages().SetMessages(buffer)}; |
| if (MaybeExpr thisResult{TryDefinedOp(oprs[i], error)}) { |
| result = std::move(thisResult); |
| hit.push_back(oprs[i]); |
| hitBuffer = std::move(buffer); |
| } |
| } |
| } |
| if (hit.empty()) { // for the error |
| result = TryDefinedOp(oprs[0], error); |
| } else if (hit.size() > 1) { |
| context_.Say( |
| "Matching accessible definitions were found with %zd variant spellings of the generic operator ('%s', '%s')"_err_en_US, |
| hit.size(), ToUpperCase(hit[0]), ToUpperCase(hit[1])); |
| } else { // one hit; preserve errors |
| context_.context().messages().Annex(std::move(hitBuffer)); |
| } |
| return result; |
| } |
| |
| MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) { |
| ActualArguments localActuals{actuals_}; |
| const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)}; |
| if (!proc) { |
| proc = &symbol; |
| localActuals.at(passIndex).value().set_isPassedObject(); |
| } |
| CheckConformance(); |
| return context_.MakeFunctionRef( |
| source_, ProcedureDesignator{*proc}, std::move(localActuals)); |
| } |
| |
| std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() { |
| using semantics::Tristate; |
| const Expr<SomeType> &lhs{GetExpr(0)}; |
| const Expr<SomeType> &rhs{GetExpr(1)}; |
| std::optional<DynamicType> lhsType{lhs.GetType()}; |
| std::optional<DynamicType> rhsType{rhs.GetType()}; |
| int lhsRank{lhs.Rank()}; |
| int rhsRank{rhs.Rank()}; |
| Tristate isDefined{ |
| semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)}; |
| if (isDefined == Tristate::No) { |
| // Make implicit conversion explicit, unless it is an assignment to a whole |
| // allocatable (the explicit conversion would prevent the propagation of the |
| // right hand side if it is a variable). Lowering will deal with the |
| // conversion in this case. |
| if (lhsType && rhsType && |
| (!IsAllocatableDesignator(lhs) || context_.inWhereBody())) { |
| AddAssignmentConversion(*lhsType, *rhsType); |
| } |
| if (!fatalErrors_) { |
| CheckAssignmentConformance(); |
| } |
| return std::nullopt; // user-defined assignment not allowed for these args |
| } |
| auto restorer{context_.GetContextualMessages().SetLocation(source_)}; |
| if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) { |
| if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032 |
| context_.Say( |
| "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US, |
| DEREF(procRef->proc().GetSymbol()).name()); |
| } |
| context_.CheckCall(source_, procRef->proc(), procRef->arguments()); |
| return std::move(*procRef); |
| } |
| if (isDefined == Tristate::Yes) { |
| if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) || |
| !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) { |
| SayNoMatch("ASSIGNMENT(=)", true); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| bool ArgumentAnalyzer::OkLogicalIntegerAssignment( |
| TypeCategory lhs, TypeCategory rhs) { |
| if (!context_.context().languageFeatures().IsEnabled( |
| common::LanguageFeature::LogicalIntegerAssignment)) { |
| return false; |
| } |
| std::optional<parser::MessageFixedText> msg; |
| if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) { |
| // allow assignment to LOGICAL from INTEGER as a legacy extension |
| msg = "assignment of LOGICAL to INTEGER"_port_en_US; |
| } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) { |
| // ... and assignment to LOGICAL from INTEGER |
| msg = "assignment of INTEGER to LOGICAL"_port_en_US; |
| } else { |
| return false; |
| } |
| if (context_.context().ShouldWarn( |
| common::LanguageFeature::LogicalIntegerAssignment)) { |
| context_.Say(std::move(*msg)); |
| } |
| return true; |
| } |
| |
| std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() { |
| const Symbol *proc{nullptr}; |
| std::optional<int> passedObjectIndex; |
| std::string oprNameString{"assignment(=)"}; |
| parser::CharBlock oprName{oprNameString}; |
| const auto &scope{context_.context().FindScope(source_)}; |
| // If multiple resolutions were possible, they will have been already |
| // diagnosed. |
| { |
| auto restorer{context_.GetContextualMessages().DiscardMessages()}; |
| if (const Symbol *symbol{scope.FindSymbol(oprName)}) { |
| ExpressionAnalyzer::AdjustActuals noAdjustment; |
| proc = |
| context_.ResolveGeneric(*symbol, actuals_, noAdjustment, true).first; |
| } |
| for (std::size_t i{0}; !proc && i < actuals_.size(); ++i) { |
| const Symbol *generic{nullptr}; |
| if (const Symbol *binding{FindBoundOp(oprName, i, generic, true)}) { |
| if (CheckAccessibleSymbol(scope, DEREF(generic))) { |
| // ignore inaccessible type-bound ASSIGNMENT(=) generic |
| } else if (const Symbol * |
| resolution{GetBindingResolution(GetType(i), *binding)}) { |
| proc = resolution; |
| } else { |
| proc = binding; |
| passedObjectIndex = i; |
| } |
| } |
| } |
| } |
| if (!proc) { |
| return std::nullopt; |
| } |
| ActualArguments actualsCopy{actuals_}; |
| // Ensure that the RHS argument is not passed as a variable unless |
| // the dummy argument has the VALUE attribute. |
| if (evaluate::IsVariable(actualsCopy.at(1).value().UnwrapExpr())) { |
| auto chars{evaluate::characteristics::Procedure::Characterize( |
| *proc, context_.GetFoldingContext())}; |
| const auto *rhsDummy{chars && chars->dummyArguments.size() == 2 |
| ? std::get_if<evaluate::characteristics::DummyDataObject>( |
| &chars->dummyArguments.at(1).u) |
| : nullptr}; |
| if (!rhsDummy || |
| !rhsDummy->attrs.test( |
| evaluate::characteristics::DummyDataObject::Attr::Value)) { |
| actualsCopy.at(1).value().Parenthesize(); |
| } |
| } |
| if (passedObjectIndex) { |
| actualsCopy[*passedObjectIndex]->set_isPassedObject(); |
| } |
| return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)}; |
| } |
| |
| void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) { |
| os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_ |
| << '\n'; |
| for (const auto &actual : actuals_) { |
| if (!actual.has_value()) { |
| os << "- error\n"; |
| } else if (const Symbol *symbol{actual->GetAssumedTypeDummy()}) { |
| os << "- assumed type: " << symbol->name().ToString() << '\n'; |
| } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) { |
| expr->AsFortran(os << "- expr: ") << '\n'; |
| } else { |
| DIE("bad ActualArgument"); |
| } |
| } |
| } |
| |
| std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr( |
| const parser::Expr &expr) { |
| source_.ExtendToCover(expr.source); |
| if (const Symbol *assumedTypeDummy{AssumedTypeDummy(expr)}) { |
| ResetExpr(expr); |
| if (isProcedureCall_) { |
| ActualArgument arg{ActualArgument::AssumedType{*assumedTypeDummy}}; |
| SetArgSourceLocation(arg, expr.source); |
| return std::move(arg); |
| } |
| context_.SayAt(expr.source, |
| "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US); |
| } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) { |
| if (isProcedureCall_ || !IsProcedure(*argExpr)) { |
| ActualArgument arg{std::move(*argExpr)}; |
| SetArgSourceLocation(arg, expr.source); |
| return std::move(arg); |
| } |
| context_.SayAt(expr.source, |
| IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US |
| : "Subroutine name is not allowed here"_err_en_US); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray( |
| const parser::Expr &expr) { |
| // If an expression's parse tree is a whole assumed-size array: |
| // Expr -> Designator -> DataRef -> Name |
| // treat it as a special case for argument passing and bypass |
| // the C1002/C1014 constraint checking in expression semantics. |
| if (const auto *name{parser::Unwrap<parser::Name>(expr)}) { |
| if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) { |
| auto restorer{context_.AllowWholeAssumedSizeArray()}; |
| return context_.Analyze(expr); |
| } |
| } |
| auto restorer{context_.AllowNullPointer()}; |
| return context_.Analyze(expr); |
| } |
| |
| bool ArgumentAnalyzer::AreConformable() const { |
| CHECK(actuals_.size() == 2); |
| return actuals_[0] && actuals_[1] && |
| evaluate::AreConformable(*actuals_[0], *actuals_[1]); |
| } |
| |
| // Look for a type-bound operator in the type of arg number passIndex. |
| const Symbol *ArgumentAnalyzer::FindBoundOp(parser::CharBlock oprName, |
| int passIndex, const Symbol *&generic, bool isSubroutine) { |
| const auto *type{GetDerivedTypeSpec(GetType(passIndex))}; |
| const semantics::Scope *scope{type ? type->scope() : nullptr}; |
| if (scope) { |
| // Use the original type definition's scope, since PDT |
| // instantiations don't have redundant copies of bindings or |
| // generics. |
| scope = DEREF(scope->derivedTypeSpec()).typeSymbol().scope(); |
| } |
| generic = scope ? scope->FindComponent(oprName) : nullptr; |
| if (generic) { |
| ExpressionAnalyzer::AdjustActuals adjustment{ |
| [&](const Symbol &proc, ActualArguments &) { |
| return passIndex == GetPassIndex(proc).value_or(-1); |
| }}; |
| auto pair{ |
| context_.ResolveGeneric(*generic, actuals_, adjustment, isSubroutine)}; |
| if (const Symbol *binding{pair.first}) { |
| CHECK(binding->has<semantics::ProcBindingDetails>()); |
| // Use the most recent override of the binding, if any |
| return scope->FindComponent(binding->name()); |
| } else { |
| context_.EmitGenericResolutionError(*generic, pair.second, isSubroutine); |
| } |
| } |
| return nullptr; |
| } |
| |
| // If there is an implicit conversion between intrinsic types, make it explicit |
| void ArgumentAnalyzer::AddAssignmentConversion( |
| const DynamicType &lhsType, const DynamicType &rhsType) { |
| if (lhsType.category() == rhsType.category() && |
| (lhsType.category() == TypeCategory::Derived || |
| lhsType.kind() == rhsType.kind())) { |
| // no conversion necessary |
| } else if (auto rhsExpr{evaluate::Fold(context_.GetFoldingContext(), |
| evaluate::ConvertToType(lhsType, MoveExpr(1)))}) { |
| std::optional<parser::CharBlock> source; |
| if (actuals_[1]) { |
| source = actuals_[1]->sourceLocation(); |
| } |
| actuals_[1] = ActualArgument{*rhsExpr}; |
| SetArgSourceLocation(actuals_[1], source); |
| } else { |
| actuals_[1] = std::nullopt; |
| } |
| } |
| |
| std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const { |
| return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt; |
| } |
| int ArgumentAnalyzer::GetRank(std::size_t i) const { |
| return i < actuals_.size() ? actuals_[i].value().Rank() : 0; |
| } |
| |
| // If the argument at index i is a BOZ literal, convert its type to match the |
| // otherType. If it's REAL convert to REAL, otherwise convert to INTEGER. |
| // Note that IBM supports comparing BOZ literals to CHARACTER operands. That |
| // is not currently supported. |
| void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType, |
| std::size_t i, std::optional<DynamicType> otherType) { |
| if (IsBOZLiteral(i)) { |
| Expr<SomeType> &&argExpr{MoveExpr(i)}; |
| auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)}; |
| if (otherType && otherType->category() == TypeCategory::Real) { |
| int kind{context_.context().GetDefaultKind(TypeCategory::Real)}; |
| MaybeExpr realExpr{ |
| ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))}; |
| actuals_[i] = std::move(*realExpr); |
| thisType.emplace(TypeCategory::Real, kind); |
| } else { |
| int kind{context_.context().GetDefaultKind(TypeCategory::Integer)}; |
| MaybeExpr intExpr{ |
| ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))}; |
| actuals_[i] = std::move(*intExpr); |
| thisType.emplace(TypeCategory::Integer, kind); |
| } |
| } |
| } |
| |
| // Report error resolving opr when there is a user-defined one available |
| void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) { |
| std::string type0{TypeAsFortran(0)}; |
| auto rank0{actuals_[0]->Rank()}; |
| if (actuals_.size() == 1) { |
| if (rank0 > 0) { |
| context_.Say("No intrinsic or user-defined %s matches " |
| "rank %d array of %s"_err_en_US, |
| opr, rank0, type0); |
| } else { |
| context_.Say("No intrinsic or user-defined %s matches " |
| "operand type %s"_err_en_US, |
| opr, type0); |
| } |
| } else { |
| std::string type1{TypeAsFortran(1)}; |
| auto rank1{actuals_[1]->Rank()}; |
| if (rank0 > 0 && rank1 > 0 && rank0 != rank1) { |
| context_.Say("No intrinsic or user-defined %s matches " |
| "rank %d array of %s and rank %d array of %s"_err_en_US, |
| opr, rank0, type0, rank1, type1); |
| } else if (isAssignment && rank0 != rank1) { |
| if (rank0 == 0) { |
| context_.Say("No intrinsic or user-defined %s matches " |
| "scalar %s and rank %d array of %s"_err_en_US, |
| opr, type0, rank1, type1); |
| } else { |
| context_.Say("No intrinsic or user-defined %s matches " |
| "rank %d array of %s and scalar %s"_err_en_US, |
| opr, rank0, type0, type1); |
| } |
| } else { |
| context_.Say("No intrinsic or user-defined %s matches " |
| "operand types %s and %s"_err_en_US, |
| opr, type0, type1); |
| } |
| } |
| } |
| |
| std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) { |
| if (i >= actuals_.size() || !actuals_[i]) { |
| return "missing argument"; |
| } else if (std::optional<DynamicType> type{GetType(i)}) { |
| return type->IsAssumedType() ? "TYPE(*)"s |
| : type->IsUnlimitedPolymorphic() ? "CLASS(*)"s |
| : type->IsPolymorphic() ? type->AsFortran() |
| : type->category() == TypeCategory::Derived |
| ? "TYPE("s + type->AsFortran() + ')' |
| : type->category() == TypeCategory::Character |
| ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')' |
| : ToUpperCase(type->AsFortran()); |
| } else { |
| return "untyped"; |
| } |
| } |
| |
| bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() { |
| for (const auto &actual : actuals_) { |
| if (!actual || |
| (!actual->GetType() && !IsBareNullPointer(actual->UnwrapExpr()))) { |
| return true; |
| } |
| } |
| return false; |
| } |
| } // namespace Fortran::evaluate |
| |
| namespace Fortran::semantics { |
| evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( |
| SemanticsContext &context, common::TypeCategory category, |
| const std::optional<parser::KindSelector> &selector) { |
| evaluate::ExpressionAnalyzer analyzer{context}; |
| CHECK(context.location().has_value()); |
| auto restorer{ |
| analyzer.GetContextualMessages().SetLocation(*context.location())}; |
| return analyzer.AnalyzeKindSelector(category, selector); |
| } |
| |
| ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {} |
| |
| bool ExprChecker::Pre(const parser::DataStmtObject &obj) { |
| exprAnalyzer_.set_inDataStmtObject(true); |
| return true; |
| } |
| |
| void ExprChecker::Post(const parser::DataStmtObject &obj) { |
| exprAnalyzer_.set_inDataStmtObject(false); |
| } |
| |
| bool ExprChecker::Pre(const parser::DataImpliedDo &ido) { |
| parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this); |
| const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)}; |
| auto name{bounds.name.thing.thing}; |
| int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind}; |
| if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) { |
| if (dynamicType->category() == TypeCategory::Integer) { |
| kind = dynamicType->kind(); |
| } |
| } |
| exprAnalyzer_.AddImpliedDo(name.source, kind); |
| parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this); |
| exprAnalyzer_.RemoveImpliedDo(name.source); |
| return false; |
| } |
| |
| bool ExprChecker::Walk(const parser::Program &program) { |
| parser::Walk(program, *this); |
| return !context_.AnyFatalError(); |
| } |
| } // namespace Fortran::semantics |