| //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "bolt/Rewrite/RewriteInstance.h" |
| #include "bolt/Core/BinaryContext.h" |
| #include "bolt/Core/BinaryEmitter.h" |
| #include "bolt/Core/BinaryFunction.h" |
| #include "bolt/Core/DebugData.h" |
| #include "bolt/Core/Exceptions.h" |
| #include "bolt/Core/MCPlusBuilder.h" |
| #include "bolt/Core/ParallelUtilities.h" |
| #include "bolt/Core/Relocation.h" |
| #include "bolt/Passes/CacheMetrics.h" |
| #include "bolt/Passes/ReorderFunctions.h" |
| #include "bolt/Profile/BoltAddressTranslation.h" |
| #include "bolt/Profile/DataAggregator.h" |
| #include "bolt/Profile/DataReader.h" |
| #include "bolt/Profile/YAMLProfileReader.h" |
| #include "bolt/Profile/YAMLProfileWriter.h" |
| #include "bolt/Rewrite/BinaryPassManager.h" |
| #include "bolt/Rewrite/DWARFRewriter.h" |
| #include "bolt/Rewrite/ExecutableFileMemoryManager.h" |
| #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" |
| #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" |
| #include "bolt/Utils/CommandLineOpts.h" |
| #include "bolt/Utils/Utils.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/DebugInfo/DWARF/DWARFContext.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" |
| #include "llvm/ExecutionEngine/RuntimeDyld.h" |
| #include "llvm/MC/MCAsmBackend.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCAsmLayout.h" |
| #include "llvm/MC/MCDisassembler/MCDisassembler.h" |
| #include "llvm/MC/MCObjectStreamer.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Object/ObjectFile.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/DataExtractor.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/ToolOutputFile.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <fstream> |
| #include <memory> |
| #include <system_error> |
| |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "bolt" |
| |
| using namespace llvm; |
| using namespace object; |
| using namespace bolt; |
| |
| extern cl::opt<uint32_t> X86AlignBranchBoundary; |
| extern cl::opt<bool> X86AlignBranchWithin32BBoundaries; |
| |
| namespace opts { |
| |
| extern cl::opt<MacroFusionType> AlignMacroOpFusion; |
| extern cl::list<std::string> HotTextMoveSections; |
| extern cl::opt<bool> Hugify; |
| extern cl::opt<bool> Instrument; |
| extern cl::opt<JumpTableSupportLevel> JumpTables; |
| extern cl::list<std::string> ReorderData; |
| extern cl::opt<bolt::ReorderFunctions::ReorderType> ReorderFunctions; |
| extern cl::opt<bool> TimeBuild; |
| |
| static cl::opt<bool> ForceToDataRelocations( |
| "force-data-relocations", |
| cl::desc("force relocations to data sections to always be processed"), |
| |
| cl::Hidden, cl::cat(BoltCategory)); |
| |
| cl::opt<std::string> |
| BoltID("bolt-id", |
| cl::desc("add any string to tag this execution in the " |
| "output binary via bolt info section"), |
| cl::cat(BoltCategory)); |
| |
| cl::opt<bool> |
| AllowStripped("allow-stripped", |
| cl::desc("allow processing of stripped binaries"), |
| cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| cl::opt<bool> DumpDotAll( |
| "dump-dot-all", |
| cl::desc("dump function CFGs to graphviz format after each stage;" |
| "enable '-print-loops' for color-coded blocks"), |
| cl::Hidden, cl::cat(BoltCategory)); |
| |
| static cl::list<std::string> |
| ForceFunctionNames("funcs", |
| cl::CommaSeparated, |
| cl::desc("limit optimizations to functions from the list"), |
| cl::value_desc("func1,func2,func3,..."), |
| cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| static cl::opt<std::string> |
| FunctionNamesFile("funcs-file", |
| cl::desc("file with list of functions to optimize"), |
| cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| static cl::list<std::string> ForceFunctionNamesNR( |
| "funcs-no-regex", cl::CommaSeparated, |
| cl::desc("limit optimizations to functions from the list (non-regex)"), |
| cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); |
| |
| static cl::opt<std::string> FunctionNamesFileNR( |
| "funcs-file-no-regex", |
| cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| cl::opt<bool> |
| KeepTmp("keep-tmp", |
| cl::desc("preserve intermediate .o file"), |
| cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| cl::opt<bool> Lite("lite", cl::desc("skip processing of cold functions"), |
| cl::cat(BoltCategory)); |
| |
| static cl::opt<unsigned> |
| LiteThresholdPct("lite-threshold-pct", |
| cl::desc("threshold (in percent) for selecting functions to process in lite " |
| "mode. Higher threshold means fewer functions to process. E.g " |
| "threshold of 90 means only top 10 percent of functions with " |
| "profile will be processed."), |
| cl::init(0), |
| cl::ZeroOrMore, |
| cl::Hidden, |
| cl::cat(BoltOptCategory)); |
| |
| static cl::opt<unsigned> LiteThresholdCount( |
| "lite-threshold-count", |
| cl::desc("similar to '-lite-threshold-pct' but specify threshold using " |
| "absolute function call count. I.e. limit processing to functions " |
| "executed at least the specified number of times."), |
| cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); |
| |
| static cl::opt<unsigned> |
| MaxFunctions("max-funcs", |
| cl::desc("maximum number of functions to process"), cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| static cl::opt<unsigned> MaxDataRelocations( |
| "max-data-relocations", |
| cl::desc("maximum number of data relocations to process"), cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| cl::opt<bool> PrintAll("print-all", |
| cl::desc("print functions after each stage"), cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| cl::opt<bool> PrintCFG("print-cfg", |
| cl::desc("print functions after CFG construction"), |
| cl::Hidden, cl::cat(BoltCategory)); |
| |
| cl::opt<bool> PrintDisasm("print-disasm", |
| cl::desc("print function after disassembly"), |
| cl::Hidden, cl::cat(BoltCategory)); |
| |
| static cl::opt<bool> |
| PrintGlobals("print-globals", |
| cl::desc("print global symbols after disassembly"), cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| extern cl::opt<bool> PrintSections; |
| |
| static cl::opt<bool> PrintLoopInfo("print-loops", |
| cl::desc("print loop related information"), |
| cl::Hidden, cl::cat(BoltCategory)); |
| |
| static cl::opt<bool> PrintSDTMarkers("print-sdt", |
| cl::desc("print all SDT markers"), |
| cl::Hidden, cl::cat(BoltCategory)); |
| |
| enum PrintPseudoProbesOptions { |
| PPP_None = 0, |
| PPP_Probes_Section_Decode = 0x1, |
| PPP_Probes_Address_Conversion = 0x2, |
| PPP_Encoded_Probes = 0x3, |
| PPP_All = 0xf |
| }; |
| |
| cl::opt<PrintPseudoProbesOptions> PrintPseudoProbes( |
| "print-pseudo-probes", cl::desc("print pseudo probe info"), |
| cl::init(PPP_None), |
| cl::values(clEnumValN(PPP_Probes_Section_Decode, "decode", |
| "decode probes section from binary"), |
| clEnumValN(PPP_Probes_Address_Conversion, "address_conversion", |
| "update address2ProbesMap with output block address"), |
| clEnumValN(PPP_Encoded_Probes, "encoded_probes", |
| "display the encoded probes in binary section"), |
| clEnumValN(PPP_All, "all", "enable all debugging printout")), |
| cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); |
| |
| static cl::opt<cl::boolOrDefault> RelocationMode( |
| "relocs", cl::desc("use relocations in the binary (default=autodetect)"), |
| cl::cat(BoltCategory)); |
| |
| static cl::opt<std::string> |
| SaveProfile("w", |
| cl::desc("save recorded profile to a file"), |
| cl::cat(BoltOutputCategory)); |
| |
| static cl::list<std::string> |
| SkipFunctionNames("skip-funcs", |
| cl::CommaSeparated, |
| cl::desc("list of functions to skip"), |
| cl::value_desc("func1,func2,func3,..."), |
| cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| static cl::opt<std::string> |
| SkipFunctionNamesFile("skip-funcs-file", |
| cl::desc("file with list of functions to skip"), |
| cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| cl::opt<bool> |
| TrapOldCode("trap-old-code", |
| cl::desc("insert traps in old function bodies (relocation mode)"), |
| cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| static cl::opt<std::string> DWPPathName("dwp", |
| cl::desc("Path and name to DWP file."), |
| cl::Hidden, cl::init(""), |
| cl::cat(BoltCategory)); |
| |
| static cl::opt<bool> |
| UseGnuStack("use-gnu-stack", |
| cl::desc("use GNU_STACK program header for new segment (workaround for " |
| "issues with strip/objcopy)"), |
| cl::ZeroOrMore, |
| cl::cat(BoltCategory)); |
| |
| static cl::opt<bool> |
| TimeRewrite("time-rewrite", |
| cl::desc("print time spent in rewriting passes"), cl::Hidden, |
| cl::cat(BoltCategory)); |
| |
| static cl::opt<bool> |
| SequentialDisassembly("sequential-disassembly", |
| cl::desc("performs disassembly sequentially"), |
| cl::init(false), |
| cl::cat(BoltOptCategory)); |
| |
| static cl::opt<bool> WriteBoltInfoSection( |
| "bolt-info", cl::desc("write bolt info section in the output binary"), |
| cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory)); |
| |
| } // namespace opts |
| |
| constexpr const char *RewriteInstance::SectionsToOverwrite[]; |
| std::vector<std::string> RewriteInstance::DebugSectionsToOverwrite = { |
| ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str", |
| ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists", |
| ".gdb_index", ".debug_addr"}; |
| |
| const char RewriteInstance::TimerGroupName[] = "rewrite"; |
| const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; |
| |
| namespace llvm { |
| namespace bolt { |
| |
| extern const char *BoltRevision; |
| |
| MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, |
| const MCInstrAnalysis *Analysis, |
| const MCInstrInfo *Info, |
| const MCRegisterInfo *RegInfo) { |
| #ifdef X86_AVAILABLE |
| if (Arch == Triple::x86_64) |
| return createX86MCPlusBuilder(Analysis, Info, RegInfo); |
| #endif |
| |
| #ifdef AARCH64_AVAILABLE |
| if (Arch == Triple::aarch64) |
| return createAArch64MCPlusBuilder(Analysis, Info, RegInfo); |
| #endif |
| |
| llvm_unreachable("architecture unsupported by MCPlusBuilder"); |
| } |
| |
| } // namespace bolt |
| } // namespace llvm |
| |
| namespace { |
| |
| bool refersToReorderedSection(ErrorOr<BinarySection &> Section) { |
| auto Itr = |
| llvm::find_if(opts::ReorderData, [&](const std::string &SectionName) { |
| return (Section && Section->getName() == SectionName); |
| }); |
| return Itr != opts::ReorderData.end(); |
| } |
| |
| } // anonymous namespace |
| |
| Expected<std::unique_ptr<RewriteInstance>> |
| RewriteInstance::createRewriteInstance(ELFObjectFileBase *File, const int Argc, |
| const char *const *Argv, |
| StringRef ToolPath) { |
| Error Err = Error::success(); |
| auto RI = std::make_unique<RewriteInstance>(File, Argc, Argv, ToolPath, Err); |
| if (Err) |
| return std::move(Err); |
| return std::move(RI); |
| } |
| |
| RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, |
| const char *const *Argv, StringRef ToolPath, |
| Error &Err) |
| : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), |
| SHStrTab(StringTableBuilder::ELF) { |
| ErrorAsOutParameter EAO(&Err); |
| auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); |
| if (!ELF64LEFile) { |
| Err = createStringError(errc::not_supported, |
| "Only 64-bit LE ELF binaries are supported"); |
| return; |
| } |
| |
| bool IsPIC = false; |
| const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); |
| if (Obj.getHeader().e_type != ELF::ET_EXEC) { |
| outs() << "BOLT-INFO: shared object or position-independent executable " |
| "detected\n"; |
| IsPIC = true; |
| } |
| |
| auto BCOrErr = BinaryContext::createBinaryContext( |
| File, IsPIC, |
| DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, |
| nullptr, opts::DWPPathName, |
| WithColor::defaultErrorHandler, |
| WithColor::defaultWarningHandler)); |
| if (Error E = BCOrErr.takeError()) { |
| Err = std::move(E); |
| return; |
| } |
| BC = std::move(BCOrErr.get()); |
| BC->initializeTarget(std::unique_ptr<MCPlusBuilder>(createMCPlusBuilder( |
| BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get()))); |
| |
| BAT = std::make_unique<BoltAddressTranslation>(*BC); |
| |
| if (opts::UpdateDebugSections) |
| DebugInfoRewriter = std::make_unique<DWARFRewriter>(*BC); |
| |
| if (opts::Instrument) |
| BC->setRuntimeLibrary(std::make_unique<InstrumentationRuntimeLibrary>()); |
| else if (opts::Hugify) |
| BC->setRuntimeLibrary(std::make_unique<HugifyRuntimeLibrary>()); |
| } |
| |
| RewriteInstance::~RewriteInstance() {} |
| |
| Error RewriteInstance::setProfile(StringRef Filename) { |
| if (!sys::fs::exists(Filename)) |
| return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); |
| |
| if (ProfileReader) { |
| // Already exists |
| return make_error<StringError>(Twine("multiple profiles specified: ") + |
| ProfileReader->getFilename() + " and " + |
| Filename, |
| inconvertibleErrorCode()); |
| } |
| |
| // Spawn a profile reader based on file contents. |
| if (DataAggregator::checkPerfDataMagic(Filename)) |
| ProfileReader = std::make_unique<DataAggregator>(Filename); |
| else if (YAMLProfileReader::isYAML(Filename)) |
| ProfileReader = std::make_unique<YAMLProfileReader>(Filename); |
| else |
| ProfileReader = std::make_unique<DataReader>(Filename); |
| |
| return Error::success(); |
| } |
| |
| /// Return true if the function \p BF should be disassembled. |
| static bool shouldDisassemble(const BinaryFunction &BF) { |
| if (BF.isPseudo()) |
| return false; |
| |
| if (opts::processAllFunctions()) |
| return true; |
| |
| return !BF.isIgnored(); |
| } |
| |
| Error RewriteInstance::discoverStorage() { |
| NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, |
| TimerGroupDesc, opts::TimeRewrite); |
| |
| // Stubs are harmful because RuntimeDyld may try to increase the size of |
| // sections accounting for stubs when we need those sections to match the |
| // same size seen in the input binary, in case this section is a copy |
| // of the original one seen in the binary. |
| BC->EFMM.reset(new ExecutableFileMemoryManager(*BC, /*AllowStubs*/ false)); |
| |
| auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); |
| const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); |
| |
| BC->StartFunctionAddress = Obj.getHeader().e_entry; |
| |
| NextAvailableAddress = 0; |
| uint64_t NextAvailableOffset = 0; |
| Expected<ELF64LE::PhdrRange> PHsOrErr = Obj.program_headers(); |
| if (Error E = PHsOrErr.takeError()) |
| return E; |
| |
| ELF64LE::PhdrRange PHs = PHsOrErr.get(); |
| for (const ELF64LE::Phdr &Phdr : PHs) { |
| switch (Phdr.p_type) { |
| case ELF::PT_LOAD: |
| BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, |
| static_cast<uint64_t>(Phdr.p_vaddr)); |
| NextAvailableAddress = std::max(NextAvailableAddress, |
| Phdr.p_vaddr + Phdr.p_memsz); |
| NextAvailableOffset = std::max(NextAvailableOffset, |
| Phdr.p_offset + Phdr.p_filesz); |
| |
| BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr, |
| Phdr.p_memsz, |
| Phdr.p_offset, |
| Phdr.p_filesz, |
| Phdr.p_align}; |
| break; |
| case ELF::PT_INTERP: |
| BC->HasInterpHeader = true; |
| break; |
| } |
| } |
| |
| for (const SectionRef &Section : InputFile->sections()) { |
| Expected<StringRef> SectionNameOrErr = Section.getName(); |
| if (Error E = SectionNameOrErr.takeError()) |
| return E; |
| StringRef SectionName = SectionNameOrErr.get(); |
| if (SectionName == ".text") { |
| BC->OldTextSectionAddress = Section.getAddress(); |
| BC->OldTextSectionSize = Section.getSize(); |
| |
| Expected<StringRef> SectionContentsOrErr = Section.getContents(); |
| if (Error E = SectionContentsOrErr.takeError()) |
| return E; |
| StringRef SectionContents = SectionContentsOrErr.get(); |
| BC->OldTextSectionOffset = |
| SectionContents.data() - InputFile->getData().data(); |
| } |
| |
| if (!opts::HeatmapMode && |
| !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && |
| (SectionName.startswith(getOrgSecPrefix()) || |
| SectionName == getBOLTTextSectionName())) |
| return createStringError( |
| errc::function_not_supported, |
| "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); |
| } |
| |
| if (!NextAvailableAddress || !NextAvailableOffset) |
| return createStringError(errc::executable_format_error, |
| "no PT_LOAD pheader seen"); |
| |
| outs() << "BOLT-INFO: first alloc address is 0x" |
| << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; |
| |
| FirstNonAllocatableOffset = NextAvailableOffset; |
| |
| NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); |
| NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); |
| |
| if (!opts::UseGnuStack) { |
| // This is where the black magic happens. Creating PHDR table in a segment |
| // other than that containing ELF header is tricky. Some loaders and/or |
| // parts of loaders will apply e_phoff from ELF header assuming both are in |
| // the same segment, while others will do the proper calculation. |
| // We create the new PHDR table in such a way that both of the methods |
| // of loading and locating the table work. There's a slight file size |
| // overhead because of that. |
| // |
| // NB: bfd's strip command cannot do the above and will corrupt the |
| // binary during the process of stripping non-allocatable sections. |
| if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) |
| NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; |
| else |
| NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; |
| |
| assert(NextAvailableOffset == |
| NextAvailableAddress - BC->FirstAllocAddress && |
| "PHDR table address calculation error"); |
| |
| outs() << "BOLT-INFO: creating new program header table at address 0x" |
| << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" |
| << Twine::utohexstr(NextAvailableOffset) << '\n'; |
| |
| PHDRTableAddress = NextAvailableAddress; |
| PHDRTableOffset = NextAvailableOffset; |
| |
| // Reserve space for 3 extra pheaders. |
| unsigned Phnum = Obj.getHeader().e_phnum; |
| Phnum += 3; |
| |
| NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); |
| NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); |
| } |
| |
| // Align at cache line. |
| NextAvailableAddress = alignTo(NextAvailableAddress, 64); |
| NextAvailableOffset = alignTo(NextAvailableOffset, 64); |
| |
| NewTextSegmentAddress = NextAvailableAddress; |
| NewTextSegmentOffset = NextAvailableOffset; |
| BC->LayoutStartAddress = NextAvailableAddress; |
| |
| // Tools such as objcopy can strip section contents but leave header |
| // entries. Check that at least .text is mapped in the file. |
| if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) |
| return createStringError(errc::executable_format_error, |
| "BOLT-ERROR: input binary is not a valid ELF " |
| "executable as its text section is not " |
| "mapped to a valid segment"); |
| return Error::success(); |
| } |
| |
| void RewriteInstance::parseSDTNotes() { |
| if (!SDTSection) |
| return; |
| |
| StringRef Buf = SDTSection->getContents(); |
| DataExtractor DE = DataExtractor(Buf, BC->AsmInfo->isLittleEndian(), |
| BC->AsmInfo->getCodePointerSize()); |
| uint64_t Offset = 0; |
| |
| while (DE.isValidOffset(Offset)) { |
| uint32_t NameSz = DE.getU32(&Offset); |
| DE.getU32(&Offset); // skip over DescSz |
| uint32_t Type = DE.getU32(&Offset); |
| Offset = alignTo(Offset, 4); |
| |
| if (Type != 3) |
| errs() << "BOLT-WARNING: SDT note type \"" << Type |
| << "\" is not expected\n"; |
| |
| if (NameSz == 0) |
| errs() << "BOLT-WARNING: SDT note has empty name\n"; |
| |
| StringRef Name = DE.getCStr(&Offset); |
| |
| if (!Name.equals("stapsdt")) |
| errs() << "BOLT-WARNING: SDT note name \"" << Name |
| << "\" is not expected\n"; |
| |
| // Parse description |
| SDTMarkerInfo Marker; |
| Marker.PCOffset = Offset; |
| Marker.PC = DE.getU64(&Offset); |
| Marker.Base = DE.getU64(&Offset); |
| Marker.Semaphore = DE.getU64(&Offset); |
| Marker.Provider = DE.getCStr(&Offset); |
| Marker.Name = DE.getCStr(&Offset); |
| Marker.Args = DE.getCStr(&Offset); |
| Offset = alignTo(Offset, 4); |
| BC->SDTMarkers[Marker.PC] = Marker; |
| } |
| |
| if (opts::PrintSDTMarkers) |
| printSDTMarkers(); |
| } |
| |
| void RewriteInstance::parsePseudoProbe() { |
| if (!PseudoProbeDescSection && !PseudoProbeSection) { |
| // pesudo probe is not added to binary. It is normal and no warning needed. |
| return; |
| } |
| |
| // If only one section is found, it might mean the ELF is corrupted. |
| if (!PseudoProbeDescSection) { |
| errs() << "BOLT-WARNING: fail in reading .pseudo_probe_desc binary\n"; |
| return; |
| } else if (!PseudoProbeSection) { |
| errs() << "BOLT-WARNING: fail in reading .pseudo_probe binary\n"; |
| return; |
| } |
| |
| StringRef Contents = PseudoProbeDescSection->getContents(); |
| if (!BC->ProbeDecoder.buildGUID2FuncDescMap( |
| reinterpret_cast<const uint8_t *>(Contents.data()), |
| Contents.size())) { |
| errs() << "BOLT-WARNING: fail in building GUID2FuncDescMap\n"; |
| return; |
| } |
| Contents = PseudoProbeSection->getContents(); |
| if (!BC->ProbeDecoder.buildAddress2ProbeMap( |
| reinterpret_cast<const uint8_t *>(Contents.data()), |
| Contents.size())) { |
| BC->ProbeDecoder.getAddress2ProbesMap().clear(); |
| errs() << "BOLT-WARNING: fail in building Address2ProbeMap\n"; |
| return; |
| } |
| |
| if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || |
| opts::PrintPseudoProbes == |
| opts::PrintPseudoProbesOptions::PPP_Probes_Section_Decode) { |
| outs() << "Report of decoding input pseudo probe binaries \n"; |
| BC->ProbeDecoder.printGUID2FuncDescMap(outs()); |
| BC->ProbeDecoder.printProbesForAllAddresses(outs()); |
| } |
| } |
| |
| void RewriteInstance::printSDTMarkers() { |
| outs() << "BOLT-INFO: Number of SDT markers is " << BC->SDTMarkers.size() |
| << "\n"; |
| for (auto It : BC->SDTMarkers) { |
| SDTMarkerInfo &Marker = It.second; |
| outs() << "BOLT-INFO: PC: " << utohexstr(Marker.PC) |
| << ", Base: " << utohexstr(Marker.Base) |
| << ", Semaphore: " << utohexstr(Marker.Semaphore) |
| << ", Provider: " << Marker.Provider << ", Name: " << Marker.Name |
| << ", Args: " << Marker.Args << "\n"; |
| } |
| } |
| |
| void RewriteInstance::parseBuildID() { |
| if (!BuildIDSection) |
| return; |
| |
| StringRef Buf = BuildIDSection->getContents(); |
| |
| // Reading notes section (see Portable Formats Specification, Version 1.1, |
| // pg 2-5, section "Note Section"). |
| DataExtractor DE = DataExtractor(Buf, true, 8); |
| uint64_t Offset = 0; |
| if (!DE.isValidOffset(Offset)) |
| return; |
| uint32_t NameSz = DE.getU32(&Offset); |
| if (!DE.isValidOffset(Offset)) |
| return; |
| uint32_t DescSz = DE.getU32(&Offset); |
| if (!DE.isValidOffset(Offset)) |
| return; |
| uint32_t Type = DE.getU32(&Offset); |
| |
| LLVM_DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz |
| << "; Type = " << Type << "\n"); |
| |
| // Type 3 is a GNU build-id note section |
| if (Type != 3) |
| return; |
| |
| StringRef Name = Buf.slice(Offset, Offset + NameSz); |
| Offset = alignTo(Offset + NameSz, 4); |
| if (Name.substr(0, 3) != "GNU") |
| return; |
| |
| BuildID = Buf.slice(Offset, Offset + DescSz); |
| } |
| |
| Optional<std::string> RewriteInstance::getPrintableBuildID() const { |
| if (BuildID.empty()) |
| return NoneType(); |
| |
| std::string Str; |
| raw_string_ostream OS(Str); |
| const unsigned char *CharIter = BuildID.bytes_begin(); |
| while (CharIter != BuildID.bytes_end()) { |
| if (*CharIter < 0x10) |
| OS << "0"; |
| OS << Twine::utohexstr(*CharIter); |
| ++CharIter; |
| } |
| return OS.str(); |
| } |
| |
| void RewriteInstance::patchBuildID() { |
| raw_fd_ostream &OS = Out->os(); |
| |
| if (BuildID.empty()) |
| return; |
| |
| size_t IDOffset = BuildIDSection->getContents().rfind(BuildID); |
| assert(IDOffset != StringRef::npos && "failed to patch build-id"); |
| |
| uint64_t FileOffset = getFileOffsetForAddress(BuildIDSection->getAddress()); |
| if (!FileOffset) { |
| errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n"; |
| return; |
| } |
| |
| char LastIDByte = BuildID[BuildID.size() - 1]; |
| LastIDByte ^= 1; |
| OS.pwrite(&LastIDByte, 1, FileOffset + IDOffset + BuildID.size() - 1); |
| |
| outs() << "BOLT-INFO: patched build-id (flipped last bit)\n"; |
| } |
| |
| Error RewriteInstance::run() { |
| assert(BC && "failed to create a binary context"); |
| |
| outs() << "BOLT-INFO: Target architecture: " |
| << Triple::getArchTypeName( |
| (llvm::Triple::ArchType)InputFile->getArch()) |
| << "\n"; |
| outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; |
| |
| if (Error E = discoverStorage()) |
| return E; |
| if (Error E = readSpecialSections()) |
| return E; |
| adjustCommandLineOptions(); |
| discoverFileObjects(); |
| |
| preprocessProfileData(); |
| |
| // Skip disassembling if we have a translation table and we are running an |
| // aggregation job. |
| if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { |
| processProfileData(); |
| return Error::success(); |
| } |
| |
| selectFunctionsToProcess(); |
| |
| readDebugInfo(); |
| |
| disassembleFunctions(); |
| |
| processProfileDataPreCFG(); |
| |
| buildFunctionsCFG(); |
| |
| processProfileData(); |
| |
| postProcessFunctions(); |
| |
| if (opts::DiffOnly) |
| return Error::success(); |
| |
| runOptimizationPasses(); |
| |
| emitAndLink(); |
| |
| updateMetadata(); |
| |
| if (opts::LinuxKernelMode) { |
| errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n"; |
| return Error::success(); |
| } else if (opts::OutputFilename == "/dev/null") { |
| outs() << "BOLT-INFO: skipping writing final binary to disk\n"; |
| return Error::success(); |
| } |
| |
| // Rewrite allocatable contents and copy non-allocatable parts with mods. |
| rewriteFile(); |
| return Error::success(); |
| } |
| |
| void RewriteInstance::discoverFileObjects() { |
| NamedRegionTimer T("discoverFileObjects", "discover file objects", |
| TimerGroupName, TimerGroupDesc, opts::TimeRewrite); |
| FileSymRefs.clear(); |
| BC->getBinaryFunctions().clear(); |
| BC->clearBinaryData(); |
| |
| // For local symbols we want to keep track of associated FILE symbol name for |
| // disambiguation by combined name. |
| StringRef FileSymbolName; |
| bool SeenFileName = false; |
| struct SymbolRefHash { |
| size_t operator()(SymbolRef const &S) const { |
| return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p); |
| } |
| }; |
| std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName; |
| for (const ELFSymbolRef &Symbol : InputFile->symbols()) { |
| Expected<StringRef> NameOrError = Symbol.getName(); |
| if (NameOrError && NameOrError->startswith("__asan_init")) { |
| errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer " |
| "support. Cannot optimize.\n"; |
| exit(1); |
| } |
| if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) { |
| errs() << "BOLT-ERROR: input file was compiled or linked with coverage " |
| "support. Cannot optimize.\n"; |
| exit(1); |
| } |
| |
| if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) |
| continue; |
| |
| if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { |
| StringRef Name = |
| cantFail(std::move(NameOrError), "cannot get symbol name for file"); |
| // Ignore Clang LTO artificial FILE symbol as it is not always generated, |
| // and this uncertainty is causing havoc in function name matching. |
| if (Name == "ld-temp.o") |
| continue; |
| FileSymbolName = Name; |
| SeenFileName = true; |
| continue; |
| } |
| if (!FileSymbolName.empty() && |
| !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) |
| SymbolToFileName[Symbol] = FileSymbolName; |
| } |
| |
| // Sort symbols in the file by value. Ignore symbols from non-allocatable |
| // sections. |
| auto isSymbolInMemory = [this](const SymbolRef &Sym) { |
| if (cantFail(Sym.getType()) == SymbolRef::ST_File) |
| return false; |
| if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) |
| return true; |
| if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) |
| return false; |
| BinarySection Section(*BC, *cantFail(Sym.getSection())); |
| return Section.isAllocatable(); |
| }; |
| std::vector<SymbolRef> SortedFileSymbols; |
| llvm::copy_if(InputFile->symbols(), std::back_inserter(SortedFileSymbols), |
| isSymbolInMemory); |
| auto CompareSymbols = [this](const SymbolRef &A, const SymbolRef &B) { |
| // Marker symbols have the highest precedence, while |
| // SECTIONs have the lowest. |
| auto AddressA = cantFail(A.getAddress()); |
| auto AddressB = cantFail(B.getAddress()); |
| if (AddressA != AddressB) |
| return AddressA < AddressB; |
| |
| bool AMarker = BC->isMarker(A); |
| bool BMarker = BC->isMarker(B); |
| if (AMarker || BMarker) { |
| return AMarker && !BMarker; |
| } |
| |
| auto AType = cantFail(A.getType()); |
| auto BType = cantFail(B.getType()); |
| if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) |
| return true; |
| if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) |
| return true; |
| |
| return false; |
| }; |
| |
| llvm::stable_sort(SortedFileSymbols, CompareSymbols); |
| |
| auto LastSymbol = SortedFileSymbols.end() - 1; |
| |
| // For aarch64, the ABI defines mapping symbols so we identify data in the |
| // code section (see IHI0056B). $d identifies data contents. |
| // Compilers usually merge multiple data objects in a single $d-$x interval, |
| // but we need every data object to be marked with $d. Because of that we |
| // create a vector of MarkerSyms with all locations of data objects. |
| |
| struct MarkerSym { |
| uint64_t Address; |
| MarkerSymType Type; |
| }; |
| |
| std::vector<MarkerSym> SortedMarkerSymbols; |
| auto addExtraDataMarkerPerSymbol = |
| [this](const std::vector<SymbolRef> &SortedFileSymbols, |
| std::vector<MarkerSym> &SortedMarkerSymbols) { |
| bool IsData = false; |
| uint64_t LastAddr = 0; |
| for (auto Sym = SortedFileSymbols.begin(); |
| Sym < SortedFileSymbols.end(); ++Sym) { |
| uint64_t Address = cantFail(Sym->getAddress()); |
| if (LastAddr == Address) // don't repeat markers |
| continue; |
| |
| MarkerSymType MarkerType = BC->getMarkerType(*Sym); |
| if (MarkerType != MarkerSymType::NONE) { |
| SortedMarkerSymbols.push_back(MarkerSym{Address, MarkerType}); |
| LastAddr = Address; |
| IsData = MarkerType == MarkerSymType::DATA; |
| continue; |
| } |
| |
| if (IsData) { |
| SortedMarkerSymbols.push_back( |
| MarkerSym{cantFail(Sym->getAddress()), MarkerSymType::DATA}); |
| LastAddr = Address; |
| } |
| } |
| }; |
| |
| if (BC->isAArch64()) { |
| addExtraDataMarkerPerSymbol(SortedFileSymbols, SortedMarkerSymbols); |
| LastSymbol = std::stable_partition( |
| SortedFileSymbols.begin(), SortedFileSymbols.end(), |
| [this](const SymbolRef &Symbol) { return !BC->isMarker(Symbol); }); |
| --LastSymbol; |
| } |
| |
| BinaryFunction *PreviousFunction = nullptr; |
| unsigned AnonymousId = 0; |
| |
| const auto SortedSymbolsEnd = std::next(LastSymbol); |
| for (auto ISym = SortedFileSymbols.begin(); ISym != SortedSymbolsEnd; |
| ++ISym) { |
| const SymbolRef &Symbol = *ISym; |
| // Keep undefined symbols for pretty printing? |
| if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) |
| continue; |
| |
| const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); |
| |
| if (SymbolType == SymbolRef::ST_File) |
| continue; |
| |
| StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); |
| uint64_t Address = |
| cantFail(Symbol.getAddress(), "cannot get symbol address"); |
| if (Address == 0) { |
| if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) |
| errs() << "BOLT-WARNING: function with 0 address seen\n"; |
| continue; |
| } |
| |
| // Ignore input hot markers |
| if (SymName == "__hot_start" || SymName == "__hot_end") |
| continue; |
| |
| FileSymRefs[Address] = Symbol; |
| |
| // Skip section symbols that will be registered by disassemblePLT(). |
| if ((cantFail(Symbol.getType()) == SymbolRef::ST_Debug)) { |
| ErrorOr<BinarySection &> BSection = BC->getSectionForAddress(Address); |
| if (BSection && getPLTSectionInfo(BSection->getName())) |
| continue; |
| } |
| |
| /// It is possible we are seeing a globalized local. LLVM might treat it as |
| /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to |
| /// change the prefix to enforce global scope of the symbol. |
| std::string Name = SymName.startswith(BC->AsmInfo->getPrivateGlobalPrefix()) |
| ? "PG" + std::string(SymName) |
| : std::string(SymName); |
| |
| // Disambiguate all local symbols before adding to symbol table. |
| // Since we don't know if we will see a global with the same name, |
| // always modify the local name. |
| // |
| // NOTE: the naming convention for local symbols should match |
| // the one we use for profile data. |
| std::string UniqueName; |
| std::string AlternativeName; |
| if (Name.empty()) { |
| UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); |
| } else if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) { |
| assert(!BC->getBinaryDataByName(Name) && "global name not unique"); |
| UniqueName = Name; |
| } else { |
| // If we have a local file name, we should create 2 variants for the |
| // function name. The reason is that perf profile might have been |
| // collected on a binary that did not have the local file name (e.g. as |
| // a side effect of stripping debug info from the binary): |
| // |
| // primary: <function>/<id> |
| // alternative: <function>/<file>/<id2> |
| // |
| // The <id> field is used for disambiguation of local symbols since there |
| // could be identical function names coming from identical file names |
| // (e.g. from different directories). |
| std::string AltPrefix; |
| auto SFI = SymbolToFileName.find(Symbol); |
| if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) |
| AltPrefix = Name + "/" + std::string(SFI->second); |
| |
| UniqueName = NR.uniquify(Name); |
| if (!AltPrefix.empty()) |
| AlternativeName = NR.uniquify(AltPrefix); |
| } |
| |
| uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); |
| uint64_t SymbolAlignment = Symbol.getAlignment(); |
| unsigned SymbolFlags = cantFail(Symbol.getFlags()); |
| |
| auto registerName = [&](uint64_t FinalSize) { |
| // Register names even if it's not a function, e.g. for an entry point. |
| BC->registerNameAtAddress(UniqueName, Address, FinalSize, SymbolAlignment, |
| SymbolFlags); |
| if (!AlternativeName.empty()) |
| BC->registerNameAtAddress(AlternativeName, Address, FinalSize, |
| SymbolAlignment, SymbolFlags); |
| }; |
| |
| section_iterator Section = |
| cantFail(Symbol.getSection(), "cannot get symbol section"); |
| if (Section == InputFile->section_end()) { |
| // Could be an absolute symbol. Could record for pretty printing. |
| LLVM_DEBUG(if (opts::Verbosity > 1) { |
| dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; |
| }); |
| registerName(SymbolSize); |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName |
| << " for function\n"); |
| |
| if (!Section->isText()) { |
| assert(SymbolType != SymbolRef::ST_Function && |
| "unexpected function inside non-code section"); |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); |
| registerName(SymbolSize); |
| continue; |
| } |
| |
| // Assembly functions could be ST_NONE with 0 size. Check that the |
| // corresponding section is a code section and they are not inside any |
| // other known function to consider them. |
| // |
| // Sometimes assembly functions are not marked as functions and neither are |
| // their local labels. The only way to tell them apart is to look at |
| // symbol scope - global vs local. |
| if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { |
| if (PreviousFunction->containsAddress(Address)) { |
| if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { |
| LLVM_DEBUG(dbgs() |
| << "BOLT-DEBUG: symbol is a function local symbol\n"); |
| } else if (Address == PreviousFunction->getAddress() && !SymbolSize) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); |
| } else if (opts::Verbosity > 1) { |
| errs() << "BOLT-WARNING: symbol " << UniqueName |
| << " seen in the middle of function " << *PreviousFunction |
| << ". Could be a new entry.\n"; |
| } |
| registerName(SymbolSize); |
| continue; |
| } else if (PreviousFunction->getSize() == 0 && |
| PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); |
| registerName(SymbolSize); |
| continue; |
| } |
| } |
| |
| if (PreviousFunction && PreviousFunction->containsAddress(Address) && |
| PreviousFunction->getAddress() != Address) { |
| if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { |
| if (opts::Verbosity >= 1) |
| outs() << "BOLT-INFO: skipping possibly another entry for function " |
| << *PreviousFunction << " : " << UniqueName << '\n'; |
| } else { |
| outs() << "BOLT-INFO: using " << UniqueName << " as another entry to " |
| << "function " << *PreviousFunction << '\n'; |
| |
| registerName(0); |
| |
| PreviousFunction->addEntryPointAtOffset(Address - |
| PreviousFunction->getAddress()); |
| |
| // Remove the symbol from FileSymRefs so that we can skip it from |
| // in the future. |
| auto SI = FileSymRefs.find(Address); |
| assert(SI != FileSymRefs.end() && "symbol expected to be present"); |
| assert(SI->second == Symbol && "wrong symbol found"); |
| FileSymRefs.erase(SI); |
| } |
| registerName(SymbolSize); |
| continue; |
| } |
| |
| // Checkout for conflicts with function data from FDEs. |
| bool IsSimple = true; |
| auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address); |
| if (FDEI != CFIRdWrt->getFDEs().end()) { |
| const dwarf::FDE &FDE = *FDEI->second; |
| if (FDEI->first != Address) { |
| // There's no matching starting address in FDE. Make sure the previous |
| // FDE does not contain this address. |
| if (FDEI != CFIRdWrt->getFDEs().begin()) { |
| --FDEI; |
| const dwarf::FDE &PrevFDE = *FDEI->second; |
| uint64_t PrevStart = PrevFDE.getInitialLocation(); |
| uint64_t PrevLength = PrevFDE.getAddressRange(); |
| if (Address > PrevStart && Address < PrevStart + PrevLength) { |
| errs() << "BOLT-ERROR: function " << UniqueName |
| << " is in conflict with FDE [" |
| << Twine::utohexstr(PrevStart) << ", " |
| << Twine::utohexstr(PrevStart + PrevLength) |
| << "). Skipping.\n"; |
| IsSimple = false; |
| } |
| } |
| } else if (FDE.getAddressRange() != SymbolSize) { |
| if (SymbolSize) { |
| // Function addresses match but sizes differ. |
| errs() << "BOLT-WARNING: sizes differ for function " << UniqueName |
| << ". FDE : " << FDE.getAddressRange() |
| << "; symbol table : " << SymbolSize << ". Using max size.\n"; |
| } |
| SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); |
| if (BC->getBinaryDataAtAddress(Address)) { |
| BC->setBinaryDataSize(Address, SymbolSize); |
| } else { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" |
| << Twine::utohexstr(Address) << "\n"); |
| } |
| } |
| } |
| |
| BinaryFunction *BF = nullptr; |
| // Since function may not have yet obtained its real size, do a search |
| // using the list of registered functions instead of calling |
| // getBinaryFunctionAtAddress(). |
| auto BFI = BC->getBinaryFunctions().find(Address); |
| if (BFI != BC->getBinaryFunctions().end()) { |
| BF = &BFI->second; |
| // Duplicate the function name. Make sure everything matches before we add |
| // an alternative name. |
| if (SymbolSize != BF->getSize()) { |
| if (opts::Verbosity >= 1) { |
| if (SymbolSize && BF->getSize()) |
| errs() << "BOLT-WARNING: size mismatch for duplicate entries " |
| << *BF << " and " << UniqueName << '\n'; |
| outs() << "BOLT-INFO: adjusting size of function " << *BF << " old " |
| << BF->getSize() << " new " << SymbolSize << "\n"; |
| } |
| BF->setSize(std::max(SymbolSize, BF->getSize())); |
| BC->setBinaryDataSize(Address, BF->getSize()); |
| } |
| BF->addAlternativeName(UniqueName); |
| } else { |
| ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); |
| // Skip symbols from invalid sections |
| if (!Section) { |
| errs() << "BOLT-WARNING: " << UniqueName << " (0x" |
| << Twine::utohexstr(Address) << ") does not have any section\n"; |
| continue; |
| } |
| assert(Section && "section for functions must be registered"); |
| |
| // Skip symbols from zero-sized sections. |
| if (!Section->getSize()) |
| continue; |
| |
| BF = BC->createBinaryFunction(UniqueName, *Section, Address, SymbolSize); |
| if (!IsSimple) |
| BF->setSimple(false); |
| } |
| if (!AlternativeName.empty()) |
| BF->addAlternativeName(AlternativeName); |
| |
| registerName(SymbolSize); |
| PreviousFunction = BF; |
| } |
| |
| // Read dynamic relocation first as their presence affects the way we process |
| // static relocations. E.g. we will ignore a static relocation at an address |
| // that is a subject to dynamic relocation processing. |
| processDynamicRelocations(); |
| |
| // Process PLT section. |
| disassemblePLT(); |
| |
| // See if we missed any functions marked by FDE. |
| for (const auto &FDEI : CFIRdWrt->getFDEs()) { |
| const uint64_t Address = FDEI.first; |
| const dwarf::FDE *FDE = FDEI.second; |
| const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); |
| if (BF) |
| continue; |
| |
| BF = BC->getBinaryFunctionContainingAddress(Address); |
| if (BF) { |
| errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" |
| << Twine::utohexstr(Address + FDE->getAddressRange()) |
| << ") conflicts with function " << *BF << '\n'; |
| continue; |
| } |
| |
| if (opts::Verbosity >= 1) |
| errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" |
| << Twine::utohexstr(Address + FDE->getAddressRange()) |
| << ") has no corresponding symbol table entry\n"; |
| |
| ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); |
| assert(Section && "cannot get section for address from FDE"); |
| std::string FunctionName = |
| "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); |
| BC->createBinaryFunction(FunctionName, *Section, Address, |
| FDE->getAddressRange()); |
| } |
| |
| BC->setHasSymbolsWithFileName(SeenFileName); |
| |
| // Now that all the functions were created - adjust their boundaries. |
| adjustFunctionBoundaries(); |
| |
| // Annotate functions with code/data markers in AArch64 |
| for (auto ISym = SortedMarkerSymbols.begin(); |
| ISym != SortedMarkerSymbols.end(); ++ISym) { |
| |
| auto *BF = |
| BC->getBinaryFunctionContainingAddress(ISym->Address, true, true); |
| |
| if (!BF) { |
| // Stray marker |
| continue; |
| } |
| const auto EntryOffset = ISym->Address - BF->getAddress(); |
| if (ISym->Type == MarkerSymType::CODE) { |
| BF->markCodeAtOffset(EntryOffset); |
| continue; |
| } |
| if (ISym->Type == MarkerSymType::DATA) { |
| BF->markDataAtOffset(EntryOffset); |
| BC->AddressToConstantIslandMap[ISym->Address] = BF; |
| continue; |
| } |
| llvm_unreachable("Unknown marker"); |
| } |
| |
| if (opts::LinuxKernelMode) { |
| // Read all special linux kernel sections and their relocations |
| processLKSections(); |
| } else { |
| // Read all relocations now that we have binary functions mapped. |
| processRelocations(); |
| } |
| } |
| |
| void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, |
| uint64_t EntryAddress, |
| uint64_t EntrySize) { |
| if (!TargetAddress) |
| return; |
| |
| auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { |
| const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); |
| MCSymbol *TargetSymbol = BC->registerNameAtAddress( |
| Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); |
| BF->setPLTSymbol(TargetSymbol); |
| }; |
| |
| BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); |
| if (BF && BC->isAArch64()) { |
| // Handle IFUNC trampoline |
| setPLTSymbol(BF, BF->getOneName()); |
| return; |
| } |
| |
| const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); |
| if (!Rel || !Rel->Symbol) |
| return; |
| |
| ErrorOr<BinarySection &> Section = BC->getSectionForAddress(EntryAddress); |
| assert(Section && "cannot get section for address"); |
| BF = BC->createBinaryFunction(Rel->Symbol->getName().str() + "@PLT", *Section, |
| EntryAddress, 0, EntrySize, |
| Section->getAlignment()); |
| setPLTSymbol(BF, Rel->Symbol->getName()); |
| } |
| |
| void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { |
| const uint64_t SectionAddress = Section.getAddress(); |
| const uint64_t SectionSize = Section.getSize(); |
| StringRef PLTContents = Section.getContents(); |
| ArrayRef<uint8_t> PLTData( |
| reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); |
| |
| auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, |
| uint64_t &InstrSize) { |
| const uint64_t InstrAddr = SectionAddress + InstrOffset; |
| if (!BC->DisAsm->getInstruction(Instruction, InstrSize, |
| PLTData.slice(InstrOffset), InstrAddr, |
| nulls())) { |
| errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " |
| << Section.getName() << " at offset 0x" |
| << Twine::utohexstr(InstrOffset) << '\n'; |
| exit(1); |
| } |
| }; |
| |
| uint64_t InstrOffset = 0; |
| // Locate new plt entry |
| while (InstrOffset < SectionSize) { |
| InstructionListType Instructions; |
| MCInst Instruction; |
| uint64_t EntryOffset = InstrOffset; |
| uint64_t EntrySize = 0; |
| uint64_t InstrSize; |
| // Loop through entry instructions |
| while (InstrOffset < SectionSize) { |
| disassembleInstruction(InstrOffset, Instruction, InstrSize); |
| EntrySize += InstrSize; |
| if (!BC->MIB->isIndirectBranch(Instruction)) { |
| Instructions.emplace_back(Instruction); |
| InstrOffset += InstrSize; |
| continue; |
| } |
| |
| const uint64_t EntryAddress = SectionAddress + EntryOffset; |
| const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( |
| Instruction, Instructions.begin(), Instructions.end(), EntryAddress); |
| |
| createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); |
| break; |
| } |
| |
| // Branch instruction |
| InstrOffset += InstrSize; |
| |
| // Skip nops if any |
| while (InstrOffset < SectionSize) { |
| disassembleInstruction(InstrOffset, Instruction, InstrSize); |
| if (!BC->MIB->isNoop(Instruction)) |
| break; |
| |
| InstrOffset += InstrSize; |
| } |
| } |
| } |
| |
| void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, |
| uint64_t EntrySize) { |
| const uint64_t SectionAddress = Section.getAddress(); |
| const uint64_t SectionSize = Section.getSize(); |
| StringRef PLTContents = Section.getContents(); |
| ArrayRef<uint8_t> PLTData( |
| reinterpret_cast<const uint8_t *>(PLTContents.data()), SectionSize); |
| |
| auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, |
| uint64_t &InstrSize) { |
| const uint64_t InstrAddr = SectionAddress + InstrOffset; |
| if (!BC->DisAsm->getInstruction(Instruction, InstrSize, |
| PLTData.slice(InstrOffset), InstrAddr, |
| nulls())) { |
| errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " |
| << Section.getName() << " at offset 0x" |
| << Twine::utohexstr(InstrOffset) << '\n'; |
| exit(1); |
| } |
| }; |
| |
| for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; |
| EntryOffset += EntrySize) { |
| MCInst Instruction; |
| uint64_t InstrSize, InstrOffset = EntryOffset; |
| while (InstrOffset < EntryOffset + EntrySize) { |
| disassembleInstruction(InstrOffset, Instruction, InstrSize); |
| // Check if the entry size needs adjustment. |
| if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && |
| EntrySize == 8) |
| EntrySize = 16; |
| |
| if (BC->MIB->isIndirectBranch(Instruction)) |
| break; |
| |
| InstrOffset += InstrSize; |
| } |
| |
| if (InstrOffset + InstrSize > EntryOffset + EntrySize) |
| continue; |
| |
| uint64_t TargetAddress; |
| if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, |
| SectionAddress + InstrOffset, |
| InstrSize)) { |
| errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" |
| << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; |
| exit(1); |
| } |
| |
| createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, |
| EntrySize); |
| } |
| } |
| |
| void RewriteInstance::disassemblePLT() { |
| auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { |
| if (BC->isAArch64()) |
| return disassemblePLTSectionAArch64(Section); |
| return disassemblePLTSectionX86(Section, EntrySize); |
| }; |
| |
| for (BinarySection &Section : BC->allocatableSections()) { |
| const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); |
| if (!PLTSI) |
| continue; |
| |
| analyzeOnePLTSection(Section, PLTSI->EntrySize); |
| // If we did not register any function at the start of the section, |
| // then it must be a general PLT entry. Add a function at the location. |
| if (BC->getBinaryFunctions().find(Section.getAddress()) == |
| BC->getBinaryFunctions().end()) { |
| BinaryFunction *BF = BC->createBinaryFunction( |
| "__BOLT_PSEUDO_" + Section.getName().str(), Section, |
| Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); |
| BF->setPseudo(true); |
| } |
| } |
| } |
| |
| void RewriteInstance::adjustFunctionBoundaries() { |
| for (auto BFI = BC->getBinaryFunctions().begin(), |
| BFE = BC->getBinaryFunctions().end(); |
| BFI != BFE; ++BFI) { |
| BinaryFunction &Function = BFI->second; |
| const BinaryFunction *NextFunction = nullptr; |
| if (std::next(BFI) != BFE) |
| NextFunction = &std::next(BFI)->second; |
| |
| // Check if it's a fragment of a function. |
| Optional<StringRef> FragName = |
| Function.hasRestoredNameRegex(".*\\.cold(\\.[0-9]+)?"); |
| if (FragName) { |
| static bool PrintedWarning = false; |
| if (BC->HasRelocations && !PrintedWarning) { |
| errs() << "BOLT-WARNING: split function detected on input : " |
| << *FragName << ". The support is limited in relocation mode.\n"; |
| PrintedWarning = true; |
| } |
| Function.IsFragment = true; |
| } |
| |
| // Check if there's a symbol or a function with a larger address in the |
| // same section. If there is - it determines the maximum size for the |
| // current function. Otherwise, it is the size of a containing section |
| // the defines it. |
| // |
| // NOTE: ignore some symbols that could be tolerated inside the body |
| // of a function. |
| auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); |
| while (NextSymRefI != FileSymRefs.end()) { |
| SymbolRef &Symbol = NextSymRefI->second; |
| const uint64_t SymbolAddress = NextSymRefI->first; |
| const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); |
| |
| if (NextFunction && SymbolAddress >= NextFunction->getAddress()) |
| break; |
| |
| if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) |
| break; |
| |
| // This is potentially another entry point into the function. |
| uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " |
| << Function << " at offset 0x" |
| << Twine::utohexstr(EntryOffset) << '\n'); |
| Function.addEntryPointAtOffset(EntryOffset); |
| |
| ++NextSymRefI; |
| } |
| |
| // Function runs at most till the end of the containing section. |
| uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); |
| // Or till the next object marked by a symbol. |
| if (NextSymRefI != FileSymRefs.end()) |
| NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); |
| |
| // Or till the next function not marked by a symbol. |
| if (NextFunction) |
| NextObjectAddress = |
| std::min(NextFunction->getAddress(), NextObjectAddress); |
| |
| const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); |
| if (MaxSize < Function.getSize()) { |
| errs() << "BOLT-ERROR: symbol seen in the middle of the function " |
| << Function << ". Skipping.\n"; |
| Function.setSimple(false); |
| Function.setMaxSize(Function.getSize()); |
| continue; |
| } |
| Function.setMaxSize(MaxSize); |
| if (!Function.getSize() && Function.isSimple()) { |
| // Some assembly functions have their size set to 0, use the max |
| // size as their real size. |
| if (opts::Verbosity >= 1) |
| outs() << "BOLT-INFO: setting size of function " << Function << " to " |
| << Function.getMaxSize() << " (was 0)\n"; |
| Function.setSize(Function.getMaxSize()); |
| } |
| } |
| } |
| |
| void RewriteInstance::relocateEHFrameSection() { |
| assert(EHFrameSection && "non-empty .eh_frame section expected"); |
| |
| DWARFDataExtractor DE(EHFrameSection->getContents(), |
| BC->AsmInfo->isLittleEndian(), |
| BC->AsmInfo->getCodePointerSize()); |
| auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { |
| if (DwarfType == dwarf::DW_EH_PE_omit) |
| return; |
| |
| // Only fix references that are relative to other locations. |
| if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && |
| !(DwarfType & dwarf::DW_EH_PE_textrel) && |
| !(DwarfType & dwarf::DW_EH_PE_funcrel) && |
| !(DwarfType & dwarf::DW_EH_PE_datarel)) |
| return; |
| |
| if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) |
| return; |
| |
| uint64_t RelType; |
| switch (DwarfType & 0x0f) { |
| default: |
| llvm_unreachable("unsupported DWARF encoding type"); |
| case dwarf::DW_EH_PE_sdata4: |
| case dwarf::DW_EH_PE_udata4: |
| RelType = Relocation::getPC32(); |
| Offset -= 4; |
| break; |
| case dwarf::DW_EH_PE_sdata8: |
| case dwarf::DW_EH_PE_udata8: |
| RelType = Relocation::getPC64(); |
| Offset -= 8; |
| break; |
| } |
| |
| // Create a relocation against an absolute value since the goal is to |
| // preserve the contents of the section independent of the new values |
| // of referenced symbols. |
| EHFrameSection->addRelocation(Offset, nullptr, RelType, Value); |
| }; |
| |
| Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); |
| check_error(std::move(E), "failed to patch EH frame"); |
| } |
| |
| ArrayRef<uint8_t> RewriteInstance::getLSDAData() { |
| return ArrayRef<uint8_t>(LSDASection->getData(), |
| LSDASection->getContents().size()); |
| } |
| |
| uint64_t RewriteInstance::getLSDAAddress() { return LSDASection->getAddress(); } |
| |
| Error RewriteInstance::readSpecialSections() { |
| NamedRegionTimer T("readSpecialSections", "read special sections", |
| TimerGroupName, TimerGroupDesc, opts::TimeRewrite); |
| |
| bool HasTextRelocations = false; |
| bool HasDebugInfo = false; |
| |
| // Process special sections. |
| for (const SectionRef &Section : InputFile->sections()) { |
| Expected<StringRef> SectionNameOrErr = Section.getName(); |
| check_error(SectionNameOrErr.takeError(), "cannot get section name"); |
| StringRef SectionName = *SectionNameOrErr; |
| |
| // Only register sections with names. |
| if (!SectionName.empty()) { |
| if (Error E = Section.getContents().takeError()) |
| return E; |
| BC->registerSection(Section); |
| LLVM_DEBUG( |
| dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" |
| << Twine::utohexstr(Section.getAddress()) << ":0x" |
| << Twine::utohexstr(Section.getAddress() + Section.getSize()) |
| << "\n"); |
| if (isDebugSection(SectionName)) |
| HasDebugInfo = true; |
| if (isKSymtabSection(SectionName)) |
| opts::LinuxKernelMode = true; |
| } |
| } |
| |
| if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { |
| errs() << "BOLT-WARNING: debug info will be stripped from the binary. " |
| "Use -update-debug-sections to keep it.\n"; |
| } |
| |
| HasTextRelocations = (bool)BC->getUniqueSectionByName(".rela.text"); |
| LSDASection = BC->getUniqueSectionByName(".gcc_except_table"); |
| EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); |
| GOTPLTSection = BC->getUniqueSectionByName(".got.plt"); |
| RelaPLTSection = BC->getUniqueSectionByName(".rela.plt"); |
| RelaDynSection = BC->getUniqueSectionByName(".rela.dyn"); |
| BuildIDSection = BC->getUniqueSectionByName(".note.gnu.build-id"); |
| SDTSection = BC->getUniqueSectionByName(".note.stapsdt"); |
| PseudoProbeDescSection = BC->getUniqueSectionByName(".pseudo_probe_desc"); |
| PseudoProbeSection = BC->getUniqueSectionByName(".pseudo_probe"); |
| |
| if (ErrorOr<BinarySection &> BATSec = |
| BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { |
| // Do not read BAT when plotting a heatmap |
| if (!opts::HeatmapMode) { |
| if (std::error_code EC = BAT->parse(BATSec->getContents())) { |
| errs() << "BOLT-ERROR: failed to parse BOLT address translation " |
| "table.\n"; |
| exit(1); |
| } |
| } |
| } |
| |
| if (opts::PrintSections) { |
| outs() << "BOLT-INFO: Sections from original binary:\n"; |
| BC->printSections(outs()); |
| } |
| |
| if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { |
| errs() << "BOLT-ERROR: relocations against code are missing from the input " |
| "file. Cannot proceed in relocations mode (-relocs).\n"; |
| exit(1); |
| } |
| |
| BC->HasRelocations = |
| HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); |
| |
| // Force non-relocation mode for heatmap generation |
| if (opts::HeatmapMode) |
| BC->HasRelocations = false; |
| |
| if (BC->HasRelocations) |
| outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") |
| << "relocation mode\n"; |
| |
| // Read EH frame for function boundaries info. |
| Expected<const DWARFDebugFrame *> EHFrameOrError = BC->DwCtx->getEHFrame(); |
| if (!EHFrameOrError) |
| report_error("expected valid eh_frame section", EHFrameOrError.takeError()); |
| CFIRdWrt.reset(new CFIReaderWriter(*EHFrameOrError.get())); |
| |
| // Parse build-id |
| parseBuildID(); |
| if (Optional<std::string> FileBuildID = getPrintableBuildID()) |
| BC->setFileBuildID(*FileBuildID); |
| |
| parseSDTNotes(); |
| |
| // Read .dynamic/PT_DYNAMIC. |
| return readELFDynamic(); |
| } |
| |
| void RewriteInstance::adjustCommandLineOptions() { |
| if (BC->isAArch64() && !BC->HasRelocations) |
| errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " |
| "supported\n"; |
| |
| if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) |
| RtLibrary->adjustCommandLineOptions(*BC); |
| |
| if (opts::AlignMacroOpFusion != MFT_NONE && !BC->isX86()) { |
| outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n"; |
| opts::AlignMacroOpFusion = MFT_NONE; |
| } |
| |
| if (BC->isX86() && BC->MAB->allowAutoPadding()) { |
| if (!BC->HasRelocations) { |
| errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " |
| "non-relocation mode\n"; |
| exit(1); |
| } |
| outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " |
| "may take several minutes\n"; |
| opts::AlignMacroOpFusion = MFT_NONE; |
| } |
| |
| if (opts::AlignMacroOpFusion != MFT_NONE && !BC->HasRelocations) { |
| outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation " |
| "mode\n"; |
| opts::AlignMacroOpFusion = MFT_NONE; |
| } |
| |
| if (opts::SplitEH && !BC->HasRelocations) { |
| errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; |
| opts::SplitEH = false; |
| } |
| |
| if (opts::StrictMode && !BC->HasRelocations) { |
| errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " |
| "mode\n"; |
| opts::StrictMode = false; |
| } |
| |
| if (BC->HasRelocations && opts::AggregateOnly && |
| !opts::StrictMode.getNumOccurrences()) { |
| outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " |
| "purposes\n"; |
| opts::StrictMode = true; |
| } |
| |
| if (BC->isX86() && BC->HasRelocations && |
| opts::AlignMacroOpFusion == MFT_HOT && !ProfileReader) { |
| outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile " |
| "was specified\n"; |
| opts::AlignMacroOpFusion = MFT_ALL; |
| } |
| |
| if (!BC->HasRelocations && |
| opts::ReorderFunctions != ReorderFunctions::RT_NONE) { |
| errs() << "BOLT-ERROR: function reordering only works when " |
| << "relocations are enabled\n"; |
| exit(1); |
| } |
| |
| if (opts::ReorderFunctions != ReorderFunctions::RT_NONE && |
| !opts::HotText.getNumOccurrences()) { |
| opts::HotText = true; |
| } else if (opts::HotText && !BC->HasRelocations) { |
| errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; |
| opts::HotText = false; |
| } |
| |
| if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { |
| opts::HotTextMoveSections.addValue(".stub"); |
| opts::HotTextMoveSections.addValue(".mover"); |
| opts::HotTextMoveSections.addValue(".never_hugify"); |
| } |
| |
| if (opts::UseOldText && !BC->OldTextSectionAddress) { |
| errs() << "BOLT-WARNING: cannot use old .text as the section was not found" |
| "\n"; |
| opts::UseOldText = false; |
| } |
| if (opts::UseOldText && !BC->HasRelocations) { |
| errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; |
| opts::UseOldText = false; |
| } |
| |
| if (!opts::AlignText.getNumOccurrences()) |
| opts::AlignText = BC->PageAlign; |
| |
| if (opts::AlignText < opts::AlignFunctions) |
| opts::AlignText = (unsigned)opts::AlignFunctions; |
| |
| if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && |
| !opts::UseOldText) |
| opts::Lite = true; |
| |
| if (opts::Lite && opts::UseOldText) { |
| errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " |
| "Disabling -use-old-text.\n"; |
| opts::UseOldText = false; |
| } |
| |
| if (opts::Lite && opts::StrictMode) { |
| errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; |
| exit(1); |
| } |
| |
| if (opts::Lite) |
| outs() << "BOLT-INFO: enabling lite mode\n"; |
| |
| if (!opts::SaveProfile.empty() && BAT->enabledFor(InputFile)) { |
| errs() << "BOLT-ERROR: unable to save profile in YAML format for input " |
| "file processed by BOLT. Please remove -w option and use branch " |
| "profile.\n"; |
| exit(1); |
| } |
| } |
| |
| namespace { |
| template <typename ELFT> |
| int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj, |
| const RelocationRef &RelRef) { |
| using ELFShdrTy = typename ELFT::Shdr; |
| using Elf_Rela = typename ELFT::Rela; |
| int64_t Addend = 0; |
| const ELFFile<ELFT> &EF = Obj->getELFFile(); |
| DataRefImpl Rel = RelRef.getRawDataRefImpl(); |
| const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); |
| switch (RelocationSection->sh_type) { |
| default: |
| llvm_unreachable("unexpected relocation section type"); |
| case ELF::SHT_REL: |
| break; |
| case ELF::SHT_RELA: { |
| const Elf_Rela *RelA = Obj->getRela(Rel); |
| Addend = RelA->r_addend; |
| break; |
| } |
| } |
| |
| return Addend; |
| } |
| |
| int64_t getRelocationAddend(const ELFObjectFileBase *Obj, |
| const RelocationRef &Rel) { |
| if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) |
| return getRelocationAddend(ELF32LE, Rel); |
| if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) |
| return getRelocationAddend(ELF64LE, Rel); |
| if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) |
| return getRelocationAddend(ELF32BE, Rel); |
| auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); |
| return getRelocationAddend(ELF64BE, Rel); |
| } |
| |
| template <typename ELFT> |
| uint32_t getRelocationSymbol(const ELFObjectFile<ELFT> *Obj, |
| const RelocationRef &RelRef) { |
| using ELFShdrTy = typename ELFT::Shdr; |
| uint32_t Symbol = 0; |
| const ELFFile<ELFT> &EF = Obj->getELFFile(); |
| DataRefImpl Rel = RelRef.getRawDataRefImpl(); |
| const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); |
| switch (RelocationSection->sh_type) { |
| default: |
| llvm_unreachable("unexpected relocation section type"); |
| case ELF::SHT_REL: |
| Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); |
| break; |
| case ELF::SHT_RELA: |
| Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); |
| break; |
| } |
| |
| return Symbol; |
| } |
| |
| uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, |
| const RelocationRef &Rel) { |
| if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) |
| return getRelocationSymbol(ELF32LE, Rel); |
| if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) |
| return getRelocationSymbol(ELF64LE, Rel); |
| if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) |
| return getRelocationSymbol(ELF32BE, Rel); |
| auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); |
| return getRelocationSymbol(ELF64BE, Rel); |
| } |
| } // anonymous namespace |
| |
| bool RewriteInstance::analyzeRelocation( |
| const RelocationRef &Rel, uint64_t RType, std::string &SymbolName, |
| bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, |
| uint64_t &ExtractedValue, bool &Skip) const { |
| Skip = false; |
| if (!Relocation::isSupported(RType)) |
| return false; |
| |
| const bool IsAArch64 = BC->isAArch64(); |
| |
| const size_t RelSize = Relocation::getSizeForType(RType); |
| |
| ErrorOr<uint64_t> Value = |
| BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); |
| assert(Value && "failed to extract relocated value"); |
| if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) |
| return true; |
| |
| ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); |
| Addend = getRelocationAddend(InputFile, Rel); |
| |
| const bool IsPCRelative = Relocation::isPCRelative(RType); |
| const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; |
| bool SkipVerification = false; |
| auto SymbolIter = Rel.getSymbol(); |
| if (SymbolIter == InputFile->symbol_end()) { |
| SymbolAddress = ExtractedValue - Addend + PCRelOffset; |
| MCSymbol *RelSymbol = |
| BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); |
| SymbolName = std::string(RelSymbol->getName()); |
| IsSectionRelocation = false; |
| } else { |
| const SymbolRef &Symbol = *SymbolIter; |
| SymbolName = std::string(cantFail(Symbol.getName())); |
| SymbolAddress = cantFail(Symbol.getAddress()); |
| SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); |
| // Section symbols are marked as ST_Debug. |
| IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); |
| // Check for PLT entry registered with symbol name |
| if (!SymbolAddress && IsAArch64) { |
| const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName); |
| SymbolAddress = BD ? BD->getAddress() : 0; |
| } |
| } |
| // For PIE or dynamic libs, the linker may choose not to put the relocation |
| // result at the address if it is a X86_64_64 one because it will emit a |
| // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to |
| // resolve it at run time. The static relocation result goes as the addend |
| // of the dynamic relocation in this case. We can't verify these cases. |
| // FIXME: perhaps we can try to find if it really emitted a corresponding |
| // RELATIVE relocation at this offset with the correct value as the addend. |
| if (!BC->HasFixedLoadAddress && RelSize == 8) |
| SkipVerification = true; |
| |
| if (IsSectionRelocation && !IsAArch64) { |
| ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); |
| assert(Section && "section expected for section relocation"); |
| SymbolName = "section " + std::string(Section->getName()); |
| // Convert section symbol relocations to regular relocations inside |
| // non-section symbols. |
| if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { |
| SymbolAddress = ExtractedValue; |
| Addend = 0; |
| } else { |
| Addend = ExtractedValue - (SymbolAddress - PCRelOffset); |
| } |
| } |
| |
| // If no symbol has been found or if it is a relocation requiring the |
| // creation of a GOT entry, do not link against the symbol but against |
| // whatever address was extracted from the instruction itself. We are |
| // not creating a GOT entry as this was already processed by the linker. |
| // For GOT relocs, do not subtract addend as the addend does not refer |
| // to this instruction's target, but it refers to the target in the GOT |
| // entry. |
| if (Relocation::isGOT(RType)) { |
| Addend = 0; |
| SymbolAddress = ExtractedValue + PCRelOffset; |
| } else if (Relocation::isTLS(RType)) { |
| SkipVerification = true; |
| } else if (!SymbolAddress) { |
| assert(!IsSectionRelocation); |
| if (ExtractedValue || Addend == 0 || IsPCRelative) { |
| SymbolAddress = |
| truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); |
| } else { |
| // This is weird case. The extracted value is zero but the addend is |
| // non-zero and the relocation is not pc-rel. Using the previous logic, |
| // the SymbolAddress would end up as a huge number. Seen in |
| // exceptions_pic.test. |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" |
| << Twine::utohexstr(Rel.getOffset()) |
| << " value does not match addend for " |
| << "relocation to undefined symbol.\n"); |
| return true; |
| } |
| } |
| |
| auto verifyExtractedValue = [&]() { |
| if (SkipVerification) |
| return true; |
| |
| if (IsAArch64) |
| return true; |
| |
| if (SymbolName == "__hot_start" || SymbolName == "__hot_end") |
| return true; |
| |
| if (RType == ELF::R_X86_64_PLT32) |
| return true; |
| |
| return truncateToSize(ExtractedValue, RelSize) == |
| truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); |
| }; |
| |
| (void)verifyExtractedValue; |
| assert(verifyExtractedValue() && "mismatched extracted relocation value"); |
| |
| return true; |
| } |
| |
| void RewriteInstance::processDynamicRelocations() { |
| // Read relocations for PLT - DT_JMPREL. |
| if (PLTRelocationsSize > 0) { |
| ErrorOr<BinarySection &> PLTRelSectionOrErr = |
| BC->getSectionForAddress(*PLTRelocationsAddress); |
| if (!PLTRelSectionOrErr) |
| report_error("unable to find section corresponding to DT_JMPREL", |
| PLTRelSectionOrErr.getError()); |
| if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) |
| report_error("section size mismatch for DT_PLTRELSZ", |
| errc::executable_format_error); |
| readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), |
| /*IsJmpRel*/ true); |
| } |
| |
| // The rest of dynamic relocations - DT_RELA. |
| if (DynamicRelocationsSize > 0) { |
| ErrorOr<BinarySection &> DynamicRelSectionOrErr = |
| BC->getSectionForAddress(*DynamicRelocationsAddress); |
| if (!DynamicRelSectionOrErr) |
| report_error("unable to find section corresponding to DT_RELA", |
| DynamicRelSectionOrErr.getError()); |
| if (DynamicRelSectionOrErr->getSize() != DynamicRelocationsSize) |
| report_error("section size mismatch for DT_RELASZ", |
| errc::executable_format_error); |
| readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), |
| /*IsJmpRel*/ false); |
| } |
| } |
| |
| void RewriteInstance::processRelocations() { |
| if (!BC->HasRelocations) |
| return; |
| |
| for (const SectionRef &Section : InputFile->sections()) { |
| if (cantFail(Section.getRelocatedSection()) != InputFile->section_end() && |
| !BinarySection(*BC, Section).isAllocatable()) |
| readRelocations(Section); |
| } |
| |
| if (NumFailedRelocations) |
| errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations |
| << " relocations\n"; |
| } |
| |
| void RewriteInstance::insertLKMarker(uint64_t PC, uint64_t SectionOffset, |
| int32_t PCRelativeOffset, |
| bool IsPCRelative, StringRef SectionName) { |
| BC->LKMarkers[PC].emplace_back(LKInstructionMarkerInfo{ |
| SectionOffset, PCRelativeOffset, IsPCRelative, SectionName}); |
| } |
| |
| void RewriteInstance::processLKSections() { |
| assert(opts::LinuxKernelMode && |
| "process Linux Kernel special sections and their relocations only in " |
| "linux kernel mode.\n"); |
| |
| processLKExTable(); |
| processLKPCIFixup(); |
| processLKKSymtab(); |
| processLKKSymtab(true); |
| processLKBugTable(); |
| processLKSMPLocks(); |
| } |
| |
| /// Process __ex_table section of Linux Kernel. |
| /// This section contains information regarding kernel level exception |
| /// handling (https://www.kernel.org/doc/html/latest/x86/exception-tables.html). |
| /// More documentation is in arch/x86/include/asm/extable.h. |
| /// |
| /// The section is the list of the following structures: |
| /// |
| /// struct exception_table_entry { |
| /// int insn; |
| /// int fixup; |
| /// int handler; |
| /// }; |
| /// |
| void RewriteInstance::processLKExTable() { |
| ErrorOr<BinarySection &> SectionOrError = |
| BC->getUniqueSectionByName("__ex_table"); |
| if (!SectionOrError) |
| return; |
| |
| const uint64_t SectionSize = SectionOrError->getSize(); |
| const uint64_t SectionAddress = SectionOrError->getAddress(); |
| assert((SectionSize % 12) == 0 && |
| "The size of the __ex_table section should be a multiple of 12"); |
| for (uint64_t I = 0; I < SectionSize; I += 4) { |
| const uint64_t EntryAddress = SectionAddress + I; |
| ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); |
| assert(Offset && "failed reading PC-relative offset for __ex_table"); |
| int32_t SignedOffset = *Offset; |
| const uint64_t RefAddress = EntryAddress + SignedOffset; |
| |
| BinaryFunction *ContainingBF = |
| BC->getBinaryFunctionContainingAddress(RefAddress); |
| if (!ContainingBF) |
| continue; |
| |
| MCSymbol *ReferencedSymbol = ContainingBF->getSymbol(); |
| const uint64_t FunctionOffset = RefAddress - ContainingBF->getAddress(); |
| switch (I % 12) { |
| default: |
| llvm_unreachable("bad alignment of __ex_table"); |
| break; |
| case 0: |
| // insn |
| insertLKMarker(RefAddress, I, SignedOffset, true, "__ex_table"); |
| break; |
| case 4: |
| // fixup |
| if (FunctionOffset) |
| ReferencedSymbol = ContainingBF->addEntryPointAtOffset(FunctionOffset); |
| BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), |
| 0, *Offset); |
| break; |
| case 8: |
| // handler |
| assert(!FunctionOffset && |
| "__ex_table handler entry should point to function start"); |
| BC->addRelocation(EntryAddress, ReferencedSymbol, Relocation::getPC32(), |
| 0, *Offset); |
| break; |
| } |
| } |
| } |
| |
| /// Process .pci_fixup section of Linux Kernel. |
| /// This section contains a list of entries for different PCI devices and their |
| /// corresponding hook handler (code pointer where the fixup |
| /// code resides, usually on x86_64 it is an entry PC relative 32 bit offset). |
| /// Documentation is in include/linux/pci.h. |
| void RewriteInstance::processLKPCIFixup() { |
| ErrorOr<BinarySection &> SectionOrError = |
| BC->getUniqueSectionByName(".pci_fixup"); |
| assert(SectionOrError && |
| ".pci_fixup section not found in Linux Kernel binary"); |
| const uint64_t SectionSize = SectionOrError->getSize(); |
| const uint64_t SectionAddress = SectionOrError->getAddress(); |
| assert((SectionSize % 16) == 0 && ".pci_fixup size is not a multiple of 16"); |
| |
| for (uint64_t I = 12; I + 4 <= SectionSize; I += 16) { |
| const uint64_t PC = SectionAddress + I; |
| ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(PC, 4); |
| assert(Offset && "cannot read value from .pci_fixup"); |
| const int32_t SignedOffset = *Offset; |
| const uint64_t HookupAddress = PC + SignedOffset; |
| BinaryFunction *HookupFunction = |
| BC->getBinaryFunctionAtAddress(HookupAddress); |
| assert(HookupFunction && "expected function for entry in .pci_fixup"); |
| BC->addRelocation(PC, HookupFunction->getSymbol(), Relocation::getPC32(), 0, |
| *Offset); |
| } |
| } |
| |
| /// Process __ksymtab[_gpl] sections of Linux Kernel. |
| /// This section lists all the vmlinux symbols that kernel modules can access. |
| /// |
| /// All the entries are 4 bytes each and hence we can read them by one by one |
| /// and ignore the ones that are not pointing to the .text section. All pointers |
| /// are PC relative offsets. Always, points to the beginning of the function. |
| void RewriteInstance::processLKKSymtab(bool IsGPL) { |
| StringRef SectionName = "__ksymtab"; |
| if (IsGPL) |
| SectionName = "__ksymtab_gpl"; |
| ErrorOr<BinarySection &> SectionOrError = |
| BC->getUniqueSectionByName(SectionName); |
| assert(SectionOrError && |
| "__ksymtab[_gpl] section not found in Linux Kernel binary"); |
| const uint64_t SectionSize = SectionOrError->getSize(); |
| const uint64_t SectionAddress = SectionOrError->getAddress(); |
| assert((SectionSize % 4) == 0 && |
| "The size of the __ksymtab[_gpl] section should be a multiple of 4"); |
| |
| for (uint64_t I = 0; I < SectionSize; I += 4) { |
| const uint64_t EntryAddress = SectionAddress + I; |
| ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); |
| assert(Offset && "Reading valid PC-relative offset for a ksymtab entry"); |
| const int32_t SignedOffset = *Offset; |
| const uint64_t RefAddress = EntryAddress + SignedOffset; |
| BinaryFunction *BF = BC->getBinaryFunctionAtAddress(RefAddress); |
| if (!BF) |
| continue; |
| |
| BC->addRelocation(EntryAddress, BF->getSymbol(), Relocation::getPC32(), 0, |
| *Offset); |
| } |
| } |
| |
| /// Process __bug_table section. |
| /// This section contains information useful for kernel debugging. |
| /// Each entry in the section is a struct bug_entry that contains a pointer to |
| /// the ud2 instruction corresponding to the bug, corresponding file name (both |
| /// pointers use PC relative offset addressing), line number, and flags. |
| /// The definition of the struct bug_entry can be found in |
| /// `include/asm-generic/bug.h` |
| void RewriteInstance::processLKBugTable() { |
| ErrorOr<BinarySection &> SectionOrError = |
| BC->getUniqueSectionByName("__bug_table"); |
| if (!SectionOrError) |
| return; |
| |
| const uint64_t SectionSize = SectionOrError->getSize(); |
| const uint64_t SectionAddress = SectionOrError->getAddress(); |
| assert((SectionSize % 12) == 0 && |
| "The size of the __bug_table section should be a multiple of 12"); |
| for (uint64_t I = 0; I < SectionSize; I += 12) { |
| const uint64_t EntryAddress = SectionAddress + I; |
| ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); |
| assert(Offset && |
| "Reading valid PC-relative offset for a __bug_table entry"); |
| const int32_t SignedOffset = *Offset; |
| const uint64_t RefAddress = EntryAddress + SignedOffset; |
| assert(BC->getBinaryFunctionContainingAddress(RefAddress) && |
| "__bug_table entries should point to a function"); |
| |
| insertLKMarker(RefAddress, I, SignedOffset, true, "__bug_table"); |
| } |
| } |
| |
| /// .smp_locks section contains PC-relative references to instructions with LOCK |
| /// prefix. The prefix can be converted to NOP at boot time on non-SMP systems. |
| void RewriteInstance::processLKSMPLocks() { |
| ErrorOr<BinarySection &> SectionOrError = |
| BC->getUniqueSectionByName(".smp_locks"); |
| if (!SectionOrError) |
| return; |
| |
| uint64_t SectionSize = SectionOrError->getSize(); |
| const uint64_t SectionAddress = SectionOrError->getAddress(); |
| assert((SectionSize % 4) == 0 && |
| "The size of the .smp_locks section should be a multiple of 4"); |
| |
| for (uint64_t I = 0; I < SectionSize; I += 4) { |
| const uint64_t EntryAddress = SectionAddress + I; |
| ErrorOr<uint64_t> Offset = BC->getSignedValueAtAddress(EntryAddress, 4); |
| assert(Offset && "Reading valid PC-relative offset for a .smp_locks entry"); |
| int32_t SignedOffset = *Offset; |
| uint64_t RefAddress = EntryAddress + SignedOffset; |
| |
| BinaryFunction *ContainingBF = |
| BC->getBinaryFunctionContainingAddress(RefAddress); |
| if (!ContainingBF) |
| continue; |
| |
| insertLKMarker(RefAddress, I, SignedOffset, true, ".smp_locks"); |
| } |
| } |
| |
| void RewriteInstance::readDynamicRelocations(const SectionRef &Section, |
| bool IsJmpRel) { |
| assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); |
| |
| LLVM_DEBUG({ |
| StringRef SectionName = cantFail(Section.getName()); |
| dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName |
| << ":\n"; |
| }); |
| |
| for (const RelocationRef &Rel : Section.relocations()) { |
| const uint64_t RType = Rel.getType(); |
| if (Relocation::isNone(RType)) |
| continue; |
| |
| StringRef SymbolName = "<none>"; |
| MCSymbol *Symbol = nullptr; |
| uint64_t SymbolAddress = 0; |
| const uint64_t Addend = getRelocationAddend(InputFile, Rel); |
| |
| symbol_iterator SymbolIter = Rel.getSymbol(); |
| if (SymbolIter != InputFile->symbol_end()) { |
| SymbolName = cantFail(SymbolIter->getName()); |
| BinaryData *BD = BC->getBinaryDataByName(SymbolName); |
| Symbol = BD ? BD->getSymbol() |
| : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); |
| SymbolAddress = cantFail(SymbolIter->getAddress()); |
| (void)SymbolAddress; |
| } |
| |
| LLVM_DEBUG( |
| SmallString<16> TypeName; |
| Rel.getTypeName(TypeName); |
| dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" |
| << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName |
| << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) |
| << " : + 0x" << Twine::utohexstr(Addend) << '\n' |
| ); |
| |
| if (IsJmpRel) |
| IsJmpRelocation[RType] = true; |
| |
| if (Symbol) |
| SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); |
| |
| BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); |
| } |
| } |
| |
| void RewriteInstance::readRelocations(const SectionRef &Section) { |
| LLVM_DEBUG({ |
| StringRef SectionName = cantFail(Section.getName()); |
| dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName |
| << ":\n"; |
| }); |
| if (BinarySection(*BC, Section).isAllocatable()) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); |
| return; |
| } |
| section_iterator SecIter = cantFail(Section.getRelocatedSection()); |
| assert(SecIter != InputFile->section_end() && "relocated section expected"); |
| SectionRef RelocatedSection = *SecIter; |
| |
| StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " |
| << RelocatedSectionName << '\n'); |
| |
| if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " |
| << "non-allocatable section\n"); |
| return; |
| } |
| const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName) |
| .Cases(".plt", ".rela.plt", ".got.plt", |
| ".eh_frame", ".gcc_except_table", true) |
| .Default(false); |
| if (SkipRelocs) { |
| LLVM_DEBUG( |
| dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); |
| return; |
| } |
| |
| const bool IsAArch64 = BC->isAArch64(); |
| const bool IsFromCode = RelocatedSection.isText(); |
| |
| auto printRelocationInfo = [&](const RelocationRef &Rel, |
| StringRef SymbolName, |
| uint64_t SymbolAddress, |
| uint64_t Addend, |
| uint64_t ExtractedValue) { |
| SmallString<16> TypeName; |
| Rel.getTypeName(TypeName); |
| const uint64_t Address = SymbolAddress + Addend; |
| ErrorOr<BinarySection &> Section = BC->getSectionForAddress(SymbolAddress); |
| dbgs() << "Relocation: offset = 0x" |
| << Twine::utohexstr(Rel.getOffset()) |
| << "; type = " << TypeName |
| << "; value = 0x" << Twine::utohexstr(ExtractedValue) |
| << "; symbol = " << SymbolName |
| << " (" << (Section ? Section->getName() : "") << ")" |
| << "; symbol address = 0x" << Twine::utohexstr(SymbolAddress) |
| << "; addend = 0x" << Twine::utohexstr(Addend) |
| << "; address = 0x" << Twine::utohexstr(Address) |
| << "; in = "; |
| if (BinaryFunction *Func = BC->getBinaryFunctionContainingAddress( |
| Rel.getOffset(), false, IsAArch64)) |
| dbgs() << Func->getPrintName() << "\n"; |
| else |
| dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName() << "\n"; |
| }; |
| |
| for (const RelocationRef &Rel : Section.relocations()) { |
| SmallString<16> TypeName; |
| Rel.getTypeName(TypeName); |
| uint64_t RType = Rel.getType(); |
| if (Relocation::skipRelocationType(RType)) |
| continue; |
| |
| // Adjust the relocation type as the linker might have skewed it. |
| if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { |
| if (opts::Verbosity >= 1) |
| dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; |
| RType &= ~ELF::R_X86_64_converted_reloc_bit; |
| } |
| |
| if (Relocation::isTLS(RType)) { |
| // No special handling required for TLS relocations on X86. |
| if (BC->isX86()) |
| continue; |
| |
| // The non-got related TLS relocations on AArch64 also could be skipped. |
| if (!Relocation::isGOT(RType)) |
| continue; |
| } |
| |
| if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) { |
| LLVM_DEBUG( |
| dbgs() << "BOLT-DEBUG: address 0x" |
| << Twine::utohexstr(Rel.getOffset()) |
| << " has a dynamic relocation against it. Ignoring static " |
| "relocation.\n"); |
| continue; |
| } |
| |
| std::string SymbolName; |
| uint64_t SymbolAddress; |
| int64_t Addend; |
| uint64_t ExtractedValue; |
| bool IsSectionRelocation; |
| bool Skip; |
| if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, |
| SymbolAddress, Addend, ExtractedValue, Skip)) { |
| LLVM_DEBUG(dbgs() << "BOLT-WARNING: failed to analyze relocation @ " |
| << "offset = 0x" << Twine::utohexstr(Rel.getOffset()) |
| << "; type name = " << TypeName << '\n'); |
| ++NumFailedRelocations; |
| continue; |
| } |
| |
| if (Skip) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: skipping relocation @ offset = 0x" |
| << Twine::utohexstr(Rel.getOffset()) |
| << "; type name = " << TypeName << '\n'); |
| continue; |
| } |
| |
| const uint64_t Address = SymbolAddress + Addend; |
| |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: "; printRelocationInfo( |
| Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); |
| |
| BinaryFunction *ContainingBF = nullptr; |
| if (IsFromCode) { |
| ContainingBF = |
| BC->getBinaryFunctionContainingAddress(Rel.getOffset(), |
| /*CheckPastEnd*/ false, |
| /*UseMaxSize*/ true); |
| assert(ContainingBF && "cannot find function for address in code"); |
| if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { |
| if (opts::Verbosity >= 1) |
| outs() << "BOLT-INFO: " << *ContainingBF |
| << " has relocations in padding area\n"; |
| ContainingBF->setSize(ContainingBF->getMaxSize()); |
| ContainingBF->setSimple(false); |
| continue; |
| } |
| } |
| |
| MCSymbol *ReferencedSymbol = nullptr; |
| if (!IsSectionRelocation) |
| if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) |
| ReferencedSymbol = BD->getSymbol(); |
| |
| ErrorOr<BinarySection &> ReferencedSection = |
| BC->getSectionForAddress(SymbolAddress); |
| |
| const bool IsToCode = ReferencedSection && ReferencedSection->isText(); |
| |
| // Special handling of PC-relative relocations. |
| if (!IsAArch64 && Relocation::isPCRelative(RType)) { |
| if (!IsFromCode && IsToCode) { |
| // PC-relative relocations from data to code are tricky since the |
| // original information is typically lost after linking, even with |
| // '--emit-relocs'. Such relocations are normally used by PIC-style |
| // jump tables and they reference both the jump table and jump |
| // targets by computing the difference between the two. If we blindly |
| // apply the relocation, it will appear that it references an arbitrary |
| // location in the code, possibly in a different function from the one |
| // containing the jump table. |
| // |
| // For that reason, we only register the fact that there is a |
| // PC-relative relocation at a given address against the code. |
| // The actual referenced label/address will be determined during jump |
| // table analysis. |
| BC->addPCRelativeDataRelocation(Rel.getOffset()); |
| } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) { |
| // If we know the referenced symbol, register the relocation from |
| // the code. It's required to properly handle cases where |
| // "symbol + addend" references an object different from "symbol". |
| ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, |
| Addend, ExtractedValue); |
| } else { |
| LLVM_DEBUG( |
| dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at 0x" |
| << Twine::utohexstr(Rel.getOffset()) << " for " << SymbolName |
| << "\n"); |
| } |
| |
| continue; |
| } |
| |
| bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); |
| if (BC->isAArch64() && Relocation::isGOT(RType)) |
| ForceRelocation = true; |
| |
| if (!ReferencedSection && !ForceRelocation) { |
| LLVM_DEBUG( |
| dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); |
| continue; |
| } |
| |
| // Occasionally we may see a reference past the last byte of the function |
| // typically as a result of __builtin_unreachable(). Check it here. |
| BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( |
| Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); |
| |
| if (!IsSectionRelocation) { |
| if (BinaryFunction *BF = |
| BC->getBinaryFunctionContainingAddress(SymbolAddress)) { |
| if (BF != ReferencedBF) { |
| // It's possible we are referencing a function without referencing any |
| // code, e.g. when taking a bitmask action on a function address. |
| errs() << "BOLT-WARNING: non-standard function reference (e.g. " |
| "bitmask) detected against function " |
| << *BF; |
| if (IsFromCode) |
| errs() << " from function " << *ContainingBF << '\n'; |
| else |
| errs() << " from data section at 0x" |
| << Twine::utohexstr(Rel.getOffset()) << '\n'; |
| LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, |
| ExtractedValue)); |
| ReferencedBF = BF; |
| } |
| } |
| } else if (ReferencedBF) { |
| assert(ReferencedSection && "section expected for section relocation"); |
| if (*ReferencedBF->getOriginSection() != *ReferencedSection) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); |
| ReferencedBF = nullptr; |
| } |
| } |
| |
| // Workaround for a member function pointer de-virtualization bug. We check |
| // if a non-pc-relative relocation in the code is pointing to (fptr - 1). |
| if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && |
| (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { |
| if (const BinaryFunction *RogueBF = |
| BC->getBinaryFunctionAtAddress(Address + 1)) { |
| // Do an extra check that the function was referenced previously. |
| // It's a linear search, but it should rarely happen. |
| bool Found = false; |
| for (const auto &RelKV : ContainingBF->Relocations) { |
| const Relocation &Rel = RelKV.second; |
| if (Rel.Symbol == RogueBF->getSymbol() && |
| !Relocation::isPCRelative(Rel.Type)) { |
| Found = true; |
| break; |
| } |
| } |
| |
| if (Found) { |
| errs() << "BOLT-WARNING: detected possible compiler " |
| "de-virtualization bug: -1 addend used with " |
| "non-pc-relative relocation against function " |
| << *RogueBF << " in function " << *ContainingBF << '\n'; |
| continue; |
| } |
| } |
| } |
| |
| if (ForceRelocation) { |
| std::string Name = Relocation::isGOT(RType) ? "Zero" : SymbolName; |
| ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); |
| SymbolAddress = 0; |
| if (Relocation::isGOT(RType)) |
| Addend = Address; |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " |
| << SymbolName << " with addend " << Addend << '\n'); |
| } else if (ReferencedBF) { |
| ReferencedSymbol = ReferencedBF->getSymbol(); |
| uint64_t RefFunctionOffset = 0; |
| |
| // Adjust the point of reference to a code location inside a function. |
| if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */true)) { |
| RefFunctionOffset = Address - ReferencedBF->getAddress(); |
| if (RefFunctionOffset) { |
| if (ContainingBF && ContainingBF != ReferencedBF) { |
| ReferencedSymbol = |
| ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); |
| } else { |
| ReferencedSymbol = |
| ReferencedBF->getOrCreateLocalLabel(Address, |
| /*CreatePastEnd =*/true); |
| ReferencedBF->registerReferencedOffset(RefFunctionOffset); |
| } |
| if (opts::Verbosity > 1 && |
| !BinarySection(*BC, RelocatedSection).isReadOnly()) |
| errs() << "BOLT-WARNING: writable reference into the middle of " |
| << "the function " << *ReferencedBF |
| << " detected at address 0x" |
| << Twine::utohexstr(Rel.getOffset()) << '\n'; |
| } |
| SymbolAddress = Address; |
| Addend = 0; |
| } |
| LLVM_DEBUG( |
| dbgs() << " referenced function " << *ReferencedBF; |
| if (Address != ReferencedBF->getAddress()) |
| dbgs() << " at offset 0x" << Twine::utohexstr(RefFunctionOffset); |
| dbgs() << '\n' |
| ); |
| } else { |
| if (IsToCode && SymbolAddress) { |
| // This can happen e.g. with PIC-style jump tables. |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " |
| "relocation against code\n"); |
| } |
| |
| // In AArch64 there are zero reasons to keep a reference to the |
| // "original" symbol plus addend. The original symbol is probably just a |
| // section symbol. If we are here, this means we are probably accessing |
| // data, so it is imperative to keep the original address. |
| if (IsAArch64) { |
| SymbolName = ("SYMBOLat0x" + Twine::utohexstr(Address)).str(); |
| SymbolAddress = Address; |
| Addend = 0; |
| } |
| |
| if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { |
| // Note: this assertion is trying to check sanity of BinaryData objects |
| // but AArch64 has inferred and incomplete object locations coming from |
| // GOT/TLS or any other non-trivial relocation (that requires creation |
| // of sections and whose symbol address is not really what should be |
| // encoded in the instruction). So we essentially disabled this check |
| // for AArch64 and live with bogus names for objects. |
| assert((IsAArch64 || IsSectionRelocation || |
| BD->nameStartsWith(SymbolName) || |
| BD->nameStartsWith("PG" + SymbolName) || |
| (BD->nameStartsWith("ANONYMOUS") && |
| (BD->getSectionName().startswith(".plt") || |
| BD->getSectionName().endswith(".plt")))) && |
| "BOLT symbol names of all non-section relocations must match " |
| "up with symbol names referenced in the relocation"); |
| |
| if (IsSectionRelocation) |
| BC->markAmbiguousRelocations(*BD, Address); |
| |
| ReferencedSymbol = BD->getSymbol(); |
| Addend += (SymbolAddress - BD->getAddress()); |
| SymbolAddress = BD->getAddress(); |
| assert(Address == SymbolAddress + Addend); |
| } else { |
| // These are mostly local data symbols but undefined symbols |
| // in relocation sections can get through here too, from .plt. |
| assert( |
| (IsAArch64 || IsSectionRelocation || |
| BC->getSectionNameForAddress(SymbolAddress)->startswith(".plt")) && |
| "known symbols should not resolve to anonymous locals"); |
| |
| if (IsSectionRelocation) { |
| ReferencedSymbol = |
| BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); |
| } else { |
| SymbolRef Symbol = *Rel.getSymbol(); |
| const uint64_t SymbolSize = |
| IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); |
| const uint64_t SymbolAlignment = |
| IsAArch64 ? 1 : Symbol.getAlignment(); |
| const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); |
| std::string Name; |
| if (SymbolFlags & SymbolRef::SF_Global) { |
| Name = SymbolName; |
| } else { |
| if (StringRef(SymbolName) |
| .startswith(BC->AsmInfo->getPrivateGlobalPrefix())) |
| Name = NR.uniquify("PG" + SymbolName); |
| else |
| Name = NR.uniquify(SymbolName); |
| } |
| ReferencedSymbol = BC->registerNameAtAddress( |
| Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); |
| } |
| |
| if (IsSectionRelocation) { |
| BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); |
| BC->markAmbiguousRelocations(*BD, Address); |
| } |
| } |
| } |
| |
| auto checkMaxDataRelocations = [&]() { |
| ++NumDataRelocations; |
| if (opts::MaxDataRelocations && |
| NumDataRelocations + 1 == opts::MaxDataRelocations) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: processing ending on data relocation " |
| << NumDataRelocations << ": "); |
| printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, |
| Addend, ExtractedValue); |
| } |
| |
| return (!opts::MaxDataRelocations || |
| NumDataRelocations < opts::MaxDataRelocations); |
| }; |
| |
| if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) || |
| (opts::ForceToDataRelocations && checkMaxDataRelocations())) |
| ForceRelocation = true; |
| |
| if (IsFromCode) { |
| ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, |
| Addend, ExtractedValue); |
| } else if (IsToCode || ForceRelocation) { |
| BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, |
| ExtractedValue); |
| } else { |
| LLVM_DEBUG( |
| dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); |
| } |
| } |
| } |
| |
| void RewriteInstance::selectFunctionsToProcess() { |
| // Extend the list of functions to process or skip from a file. |
| auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile, |
| cl::list<std::string> &FunctionNames) { |
| if (FunctionNamesFile.empty()) |
| return; |
| std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); |
| std::string FuncName; |
| while (std::getline(FuncsFile, FuncName)) |
| FunctionNames.push_back(FuncName); |
| }; |
| populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); |
| populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); |
| populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); |
| |
| // Make a set of functions to process to speed up lookups. |
| std::unordered_set<std::string> ForceFunctionsNR( |
| opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); |
| |
| if ((!opts::ForceFunctionNames.empty() || |
| !opts::ForceFunctionNamesNR.empty()) && |
| !opts::SkipFunctionNames.empty()) { |
| errs() << "BOLT-ERROR: cannot select functions to process and skip at the " |
| "same time. Please use only one type of selection.\n"; |
| exit(1); |
| } |
| |
| uint64_t LiteThresholdExecCount = 0; |
| if (opts::LiteThresholdPct) { |
| if (opts::LiteThresholdPct > 100) |
| opts::LiteThresholdPct = 100; |
| |
| std::vector<const BinaryFunction *> TopFunctions; |
| for (auto &BFI : BC->getBinaryFunctions()) { |
| const BinaryFunction &Function = BFI.second; |
| if (ProfileReader->mayHaveProfileData(Function)) |
| TopFunctions.push_back(&Function); |
| } |
| llvm::sort( |
| TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) { |
| return A->getKnownExecutionCount() < B->getKnownExecutionCount(); |
| }); |
| |
| size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; |
| if (Index) |
| --Index; |
| LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); |
| outs() << "BOLT-INFO: limiting processing to functions with at least " |
| << LiteThresholdExecCount << " invocations\n"; |
| } |
| LiteThresholdExecCount = std::max( |
| LiteThresholdExecCount, static_cast<uint64_t>(opts::LiteThresholdCount)); |
| |
| uint64_t NumFunctionsToProcess = 0; |
| auto shouldProcess = [&](const BinaryFunction &Function) { |
| if (opts::MaxFunctions && NumFunctionsToProcess > opts::MaxFunctions) |
| return false; |
| |
| // If the list is not empty, only process functions from the list. |
| if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { |
| // Regex check (-funcs and -funcs-file options). |
| for (std::string &Name : opts::ForceFunctionNames) |
| if (Function.hasNameRegex(Name)) |
| return true; |
| |
| // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). |
| Optional<StringRef> Match = |
| Function.forEachName([&ForceFunctionsNR](StringRef Name) { |
| return ForceFunctionsNR.count(Name.str()); |
| }); |
| return Match.hasValue(); |
| } |
| |
| for (std::string &Name : opts::SkipFunctionNames) |
| if (Function.hasNameRegex(Name)) |
| return false; |
| |
| if (opts::Lite) { |
| if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) |
| return false; |
| |
| if (Function.getKnownExecutionCount() < LiteThresholdExecCount) |
| return false; |
| } |
| |
| return true; |
| }; |
| |
| for (auto &BFI : BC->getBinaryFunctions()) { |
| BinaryFunction &Function = BFI.second; |
| |
| // Pseudo functions are explicitly marked by us not to be processed. |
| if (Function.isPseudo()) { |
| Function.IsIgnored = true; |
| Function.HasExternalRefRelocations = true; |
| continue; |
| } |
| |
| if (!shouldProcess(Function)) { |
| LLVM_DEBUG(dbgs() << "BOLT-INFO: skipping processing of function " |
| << Function << " per user request\n"); |
| Function.setIgnored(); |
| } else { |
| ++NumFunctionsToProcess; |
| if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) |
| outs() << "BOLT-INFO: processing ending on " << Function << '\n'; |
| } |
| } |
| } |
| |
| void RewriteInstance::readDebugInfo() { |
| NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, |
| TimerGroupDesc, opts::TimeRewrite); |
| if (!opts::UpdateDebugSections) |
| return; |
| |
| BC->preprocessDebugInfo(); |
| } |
| |
| void RewriteInstance::preprocessProfileData() { |
| if (!ProfileReader) |
| return; |
| |
| NamedRegionTimer T("preprocessprofile", "pre-process profile data", |
| TimerGroupName, TimerGroupDesc, opts::TimeRewrite); |
| |
| outs() << "BOLT-INFO: pre-processing profile using " |
| << ProfileReader->getReaderName() << '\n'; |
| |
| if (BAT->enabledFor(InputFile)) { |
| outs() << "BOLT-INFO: profile collection done on a binary already " |
| "processed by BOLT\n"; |
| ProfileReader->setBAT(&*BAT); |
| } |
| |
| if (Error E = ProfileReader->preprocessProfile(*BC.get())) |
| report_error("cannot pre-process profile", std::move(E)); |
| |
| if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && |
| !opts::AllowStripped) { |
| errs() << "BOLT-ERROR: input binary does not have local file symbols " |
| "but profile data includes function names with embedded file " |
| "names. It appears that the input binary was stripped while a " |
| "profiled binary was not. If you know what you are doing and " |
| "wish to proceed, use -allow-stripped option.\n"; |
| exit(1); |
| } |
| } |
| |
| void RewriteInstance::processProfileDataPreCFG() { |
| if (!ProfileReader) |
| return; |
| |
| NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", |
| TimerGroupName, TimerGroupDesc, opts::TimeRewrite); |
| |
| if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) |
| report_error("cannot read profile pre-CFG", std::move(E)); |
| } |
| |
| void RewriteInstance::processProfileData() { |
| if (!ProfileReader) |
| return; |
| |
| NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, |
| TimerGroupDesc, opts::TimeRewrite); |
| |
| if (Error E = ProfileReader->readProfile(*BC.get())) |
| report_error("cannot read profile", std::move(E)); |
| |
| if (!opts::SaveProfile.empty()) { |
| YAMLProfileWriter PW(opts::SaveProfile); |
| PW.writeProfile(*this); |
| } |
| |
| // Release memory used by profile reader. |
| ProfileReader.reset(); |
| |
| if (opts::AggregateOnly) |
| exit(0); |
| } |
| |
| void RewriteInstance::disassembleFunctions() { |
| NamedRegionTimer T("disassembleFunctions", "disassemble functions", |
| TimerGroupName, TimerGroupDesc, opts::TimeRewrite); |
| for (auto &BFI : BC->getBinaryFunctions()) { |
| BinaryFunction &Function = BFI.second; |
| |
| ErrorOr<ArrayRef<uint8_t>> FunctionData = Function.getData(); |
| if (!FunctionData) { |
| errs() << "BOLT-ERROR: corresponding section is non-executable or " |
| << "empty for function " << Function << '\n'; |
| exit(1); |
| } |
| |
| // Treat zero-sized functions as non-simple ones. |
| if (Function.getSize() == 0) { |
| Function.setSimple(false); |
| continue; |
| } |
| |
| // Offset of the function in the file. |
| const auto *FileBegin = |
| reinterpret_cast<const uint8_t *>(InputFile->getData().data()); |
| Function.setFileOffset(FunctionData->begin() - FileBegin); |
| |
| if (!shouldDisassemble(Function)) { |
| NamedRegionTimer T("scan", "scan functions", "buildfuncs", |
| "Scan Binary Functions", opts::TimeBuild); |
| Function.scanExternalRefs(); |
| Function.setSimple(false); |
| continue; |
| } |
| |
| if (!Function.disassemble()) { |
| if (opts::processAllFunctions()) |
| BC->exitWithBugReport("function cannot be properly disassembled. " |
| "Unable to continue in relocation mode.", |
| Function); |
| if (opts::Verbosity >= 1) |
| outs() << "BOLT-INFO: could not disassemble function " << Function |
| << ". Will ignore.\n"; |
| // Forcefully ignore the function. |
| Function.setIgnored(); |
| continue; |
| } |
| |
| if (opts::PrintAll || opts::PrintDisasm) |
| Function.print(outs(), "after disassembly", true); |
| |
| BC->processInterproceduralReferences(Function); |
| } |
| |
| BC->clearJumpTableOffsets(); |
| BC->populateJumpTables(); |
| BC->skipMarkedFragments(); |
| |
| for (auto &BFI : BC->getBinaryFunctions()) { |
| BinaryFunction &Function = BFI.second; |
| |
| if (!shouldDisassemble(Function)) |
| continue; |
| |
| Function.postProcessEntryPoints(); |
| Function.postProcessJumpTables(); |
| } |
| |
| BC->adjustCodePadding(); |
| |
| for (auto &BFI : BC->getBinaryFunctions()) { |
| BinaryFunction &Function = BFI.second; |
| |
| if (!shouldDisassemble(Function)) |
| continue; |
| |
| if (!Function.isSimple()) { |
| assert((!BC->HasRelocations || Function.getSize() == 0 || |
| Function.hasSplitJumpTable()) && |
| "unexpected non-simple function in relocation mode"); |
| continue; |
| } |
| |
| // Fill in CFI information for this function |
| if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { |
| if (BC->HasRelocations) { |
| BC->exitWithBugReport("unable to fill CFI.", Function); |
| } else { |
| errs() << "BOLT-WARNING: unable to fill CFI for function " << Function |
| << ". Skipping.\n"; |
| Function.setSimple(false); |
| continue; |
| } |
| } |
| |
| // Parse LSDA. |
| if (Function.getLSDAAddress() != 0) |
| Function.parseLSDA(getLSDAData(), getLSDAAddress()); |
| } |
| } |
| |
| void RewriteInstance::buildFunctionsCFG() { |
| NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", |
| "Build Binary Functions", opts::TimeBuild); |
| |
| // Create annotation indices to allow lock-free execution |
| BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); |
| BC->MIB->getOrCreateAnnotationIndex("NOP"); |
| BC->MIB->getOrCreateAnnotationIndex("Size"); |
| |
| ParallelUtilities::WorkFuncWithAllocTy WorkFun = |
| [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { |
| if (!BF.buildCFG(AllocId)) |
| return; |
| |
| if (opts::PrintAll) { |
| auto L = BC->scopeLock(); |
| BF.print(outs(), "while building cfg", true); |
| } |
| }; |
| |
| ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { |
| return !shouldDisassemble(BF) || !BF.isSimple(); |
| }; |
| |
| ParallelUtilities::runOnEachFunctionWithUniqueAllocId( |
| *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, |
| SkipPredicate, "disassembleFunctions-buildCFG", |
| /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); |
| |
| BC->postProcessSymbolTable(); |
| } |
| |
| void RewriteInstance::postProcessFunctions() { |
| BC->TotalScore = 0; |
| BC->SumExecutionCount = 0; |
| for (auto &BFI : BC->getBinaryFunctions()) { |
| BinaryFunction &Function = BFI.second; |
| |
| if (Function.empty()) |
| continue; |
| |
| Function.postProcessCFG(); |
| |
| if (opts::PrintAll || opts::PrintCFG) |
| Function.print(outs(), "after building cfg", true); |
| |
| if (opts::DumpDotAll) |
| Function.dumpGraphForPass("00_build-cfg"); |
| |
| if (opts::PrintLoopInfo) { |
| Function.calculateLoopInfo(); |
| Function.printLoopInfo(outs()); |
| } |
| |
| BC->TotalScore += Function.getFunctionScore(); |
| BC->SumExecutionCount += Function.getKnownExecutionCount(); |
| } |
| |
| if (opts::PrintGlobals) { |
| outs() << "BOLT-INFO: Global symbols:\n"; |
| BC->printGlobalSymbols(outs()); |
| } |
| } |
| |
| void RewriteInstance::runOptimizationPasses() { |
| NamedRegionTimer T("runOptimizationPasses", "run optimization passes", |
| TimerGroupName, TimerGroupDesc, opts::TimeRewrite); |
| BinaryFunctionPassManager::runAllPasses(*BC); |
| } |
| |
| namespace { |
| |
| class BOLTSymbolResolver : public JITSymbolResolver { |
| BinaryContext &BC; |
| |
| public: |
| BOLTSymbolResolver(BinaryContext &BC) : BC(BC) {} |
| |
| // We are responsible for all symbols |
| Expected<LookupSet> getResponsibilitySet(const LookupSet &Symbols) override { |
| return Symbols; |
| } |
| |
| // Some of our symbols may resolve to zero and this should not be an error |
| bool allowsZeroSymbols() override { return true; } |
| |
| /// Resolves the address of each symbol requested |
| void lookup(const LookupSet &Symbols, |
| OnResolvedFunction OnResolved) override { |
| JITSymbolResolver::LookupResult AllResults; |
| |
| if (BC.EFMM->ObjectsLoaded) { |
| for (const StringRef &Symbol : Symbols) { |
| std::string SymName = Symbol.str(); |
| LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); |
| // Resolve to a PLT entry if possible |
| if (const BinaryData *I = BC.getPLTBinaryDataByName(SymName)) { |
| AllResults[Symbol] = |
| JITEvaluatedSymbol(I->getAddress(), JITSymbolFlags()); |
| continue; |
| } |
| OnResolved(make_error<StringError>( |
| "Symbol not found required by runtime: " + Symbol, |
| inconvertibleErrorCode())); |
| return; |
| } |
| OnResolved(std::move(AllResults)); |
| return; |
| } |
| |
| for (const StringRef &Symbol : Symbols) { |
| std::string SymName = Symbol.str(); |
| LLVM_DEBUG(dbgs() << "BOLT: looking for " << SymName << "\n"); |
| |
| if (BinaryData *I = BC.getBinaryDataByName(SymName)) { |
| uint64_t Address = I->isMoved() && !I->isJumpTable() |
| ? I->getOutputAddress() |
| : I->getAddress(); |
| LLVM_DEBUG(dbgs() << "Resolved to address 0x" |
| << Twine::utohexstr(Address) << "\n"); |
| AllResults[Symbol] = JITEvaluatedSymbol(Address, JITSymbolFlags()); |
| continue; |
| } |
| LLVM_DEBUG(dbgs() << "Resolved to address 0x0\n"); |
| AllResults[Symbol] = JITEvaluatedSymbol(0, JITSymbolFlags()); |
| } |
| |
| OnResolved(std::move(AllResults)); |
| } |
| }; |
| |
| } // anonymous namespace |
| |
| void RewriteInstance::emitAndLink() { |
| NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, |
| TimerGroupDesc, opts::TimeRewrite); |
| std::error_code EC; |
| |
| // This is an object file, which we keep for debugging purposes. |
| // Once we decide it's useless, we should create it in memory. |
| SmallString<128> OutObjectPath; |
| sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); |
| std::unique_ptr<ToolOutputFile> TempOut = |
| std::make_unique<ToolOutputFile>(OutObjectPath, EC, sys::fs::OF_None); |
| check_error(EC, "cannot create output object file"); |
| |
| std::unique_ptr<buffer_ostream> BOS = |
| std::make_unique<buffer_ostream>(TempOut->os()); |
| raw_pwrite_stream *OS = BOS.get(); |
| |
| // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) |
| // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these |
| // two instances. |
| std::unique_ptr<MCStreamer> Streamer = BC->createStreamer(*OS); |
| |
| if (EHFrameSection) { |
| if (opts::UseOldText || opts::StrictMode) { |
| // The section is going to be regenerated from scratch. |
| // Empty the contents, but keep the section reference. |
| EHFrameSection->clearContents(); |
| } else { |
| // Make .eh_frame relocatable. |
| relocateEHFrameSection(); |
| } |
| } |
| |
| emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); |
| |
| Streamer->finish(); |
| if (Streamer->getContext().hadError()) { |
| errs() << "BOLT-ERROR: Emission failed.\n"; |
| exit(1); |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // Assign addresses to new sections. |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| // Get output object as ObjectFile. |
| std::unique_ptr<MemoryBuffer> ObjectMemBuffer = |
| MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false); |
| std::unique_ptr<object::ObjectFile> Obj = cantFail( |
| object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef()), |
| "error creating in-memory object"); |
| |
| BOLTSymbolResolver Resolver = BOLTSymbolResolver(*BC); |
| |
| MCAsmLayout FinalLayout( |
| static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler()); |
| |
| RTDyld.reset(new decltype(RTDyld)::element_type(*BC->EFMM, Resolver)); |
| RTDyld->setProcessAllSections(false); |
| RTDyld->loadObject(*Obj); |
| |
| // Assign addresses to all sections. If key corresponds to the object |
| // created by ourselves, call our regular mapping function. If we are |
| // loading additional objects as part of runtime libraries for |
| // instrumentation, treat them as extra sections. |
| mapFileSections(*RTDyld); |
| |
| RTDyld->finalizeWithMemoryManagerLocking(); |
| if (RTDyld->hasError()) { |
| errs() << "BOLT-ERROR: RTDyld failed: " << RTDyld->getErrorString() << "\n"; |
| exit(1); |
| } |
| |
| // Update output addresses based on the new section map and |
| // layout. Only do this for the object created by ourselves. |
| updateOutputValues(FinalLayout); |
| |
| if (opts::UpdateDebugSections) |
| DebugInfoRewriter->updateLineTableOffsets(FinalLayout); |
| |
| if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) |
| RtLibrary->link(*BC, ToolPath, *RTDyld, [this](RuntimeDyld &R) { |
| this->mapExtraSections(*RTDyld); |
| }); |
| |
| // Once the code is emitted, we can rename function sections to actual |
| // output sections and de-register sections used for emission. |
| for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { |
| ErrorOr<BinarySection &> Section = Function->getCodeSection(); |
| if (Section && |
| (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) |
| continue; |
| |
| // Restore origin section for functions that were emitted or supposed to |
| // be emitted to patch sections. |
| if (Section) |
| BC->deregisterSection(*Section); |
| assert(Function->getOriginSectionName() && "expected origin section"); |
| Function->CodeSectionName = std::string(*Function->getOriginSectionName()); |
| if (Function->isSplit()) { |
| if (ErrorOr<BinarySection &> ColdSection = Function->getColdCodeSection()) |
| BC->deregisterSection(*ColdSection); |
| Function->ColdCodeSectionName = std::string(getBOLTTextSectionName()); |
| } |
| } |
| |
| if (opts::PrintCacheMetrics) { |
| outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; |
| CacheMetrics::printAll(BC->getSortedFunctions()); |
| } |
| |
| if (opts::KeepTmp) { |
| TempOut->keep(); |
| outs() << "BOLT-INFO: intermediary output object file saved for debugging " |
| "purposes: " |
| << OutObjectPath << "\n"; |
| } |
| } |
| |
| void RewriteInstance::updateMetadata() { |
| updateSDTMarkers(); |
| updateLKMarkers(); |
| parsePseudoProbe(); |
| updatePseudoProbes(); |
| |
| if (opts::UpdateDebugSections) { |
| NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, |
| TimerGroupDesc, opts::TimeRewrite); |
| DebugInfoRewriter->updateDebugInfo(); |
| } |
| |
| if (opts::WriteBoltInfoSection) |
| addBoltInfoSection(); |
| } |
| |
| void RewriteInstance::updatePseudoProbes() { |
| // check if there is pseudo probe section decoded |
| if (BC->ProbeDecoder.getAddress2ProbesMap().empty()) |
| return; |
| // input address converted to output |
| AddressProbesMap &Address2ProbesMap = BC->ProbeDecoder.getAddress2ProbesMap(); |
| const GUIDProbeFunctionMap &GUID2Func = |
| BC->ProbeDecoder.getGUID2FuncDescMap(); |
| |
| for (auto &AP : Address2ProbesMap) { |
| BinaryFunction *F = BC->getBinaryFunctionContainingAddress(AP.first); |
| // If F is removed, eliminate all probes inside it from inline tree |
| // Setting probes' addresses as INT64_MAX means elimination |
| if (!F) { |
| for (MCDecodedPseudoProbe &Probe : AP.second) |
| Probe.setAddress(INT64_MAX); |
| continue; |
| } |
| // If F is not emitted, the function will remain in the same address as its |
| // input |
| if (!F->isEmitted()) |
| continue; |
| |
| uint64_t Offset = AP.first - F->getAddress(); |
| const BinaryBasicBlock *BB = F->getBasicBlockContainingOffset(Offset); |
| uint64_t BlkOutputAddress = BB->getOutputAddressRange().first; |
| // Check if block output address is defined. |
| // If not, such block is removed from binary. Then remove the probes from |
| // inline tree |
| if (BlkOutputAddress == 0) { |
| for (MCDecodedPseudoProbe &Probe : AP.second) |
| Probe.setAddress(INT64_MAX); |
| continue; |
| } |
| |
| unsigned ProbeTrack = AP.second.size(); |
| std::list<MCDecodedPseudoProbe>::iterator Probe = AP.second.begin(); |
| while (ProbeTrack != 0) { |
| if (Probe->isBlock()) { |
| Probe->setAddress(BlkOutputAddress); |
| } else if (Probe->isCall()) { |
| // A call probe may be duplicated due to ICP |
| // Go through output of InputOffsetToAddressMap to collect all related |
| // probes |
| const InputOffsetToAddressMapTy &Offset2Addr = |
| F->getInputOffsetToAddressMap(); |
| auto CallOutputAddresses = Offset2Addr.equal_range(Offset); |
| auto CallOutputAddress = CallOutputAddresses.first; |
| if (CallOutputAddress == CallOutputAddresses.second) { |
| Probe->setAddress(INT64_MAX); |
| } else { |
| Probe->setAddress(CallOutputAddress->second); |
| CallOutputAddress = std::next(CallOutputAddress); |
| } |
| |
| while (CallOutputAddress != CallOutputAddresses.second) { |
| AP.second.push_back(*Probe); |
| AP.second.back().setAddress(CallOutputAddress->second); |
| Probe->getInlineTreeNode()->addProbes(&(AP.second.back())); |
| CallOutputAddress = std::next(CallOutputAddress); |
| } |
| } |
| Probe = std::next(Probe); |
| ProbeTrack--; |
| } |
| } |
| |
| if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || |
| opts::PrintPseudoProbes == |
| opts::PrintPseudoProbesOptions::PPP_Probes_Address_Conversion) { |
| outs() << "Pseudo Probe Address Conversion results:\n"; |
| // table that correlates address to block |
| std::unordered_map<uint64_t, StringRef> Addr2BlockNames; |
| for (auto &F : BC->getBinaryFunctions()) |
| for (BinaryBasicBlock &BinaryBlock : F.second) |
| Addr2BlockNames[BinaryBlock.getOutputAddressRange().first] = |
| BinaryBlock.getName(); |
| |
| // scan all addresses -> correlate probe to block when print out |
| std::vector<uint64_t> Addresses; |
| for (auto &Entry : Address2ProbesMap) |
| Addresses.push_back(Entry.first); |
| llvm::sort(Addresses); |
| for (uint64_t Key : Addresses) { |
| for (MCDecodedPseudoProbe &Probe : Address2ProbesMap[Key]) { |
| if (Probe.getAddress() == INT64_MAX) |
| outs() << "Deleted Probe: "; |
| else |
| outs() << "Address: " << format_hex(Probe.getAddress(), 8) << " "; |
| Probe.print(outs(), GUID2Func, true); |
| // print block name only if the probe is block type and undeleted. |
| if (Probe.isBlock() && Probe.getAddress() != INT64_MAX) |
| outs() << format_hex(Probe.getAddress(), 8) << " Probe is in " |
| << Addr2BlockNames[Probe.getAddress()] << "\n"; |
| } |
| } |
| outs() << "=======================================\n"; |
| } |
| |
| // encode pseudo probes with updated addresses |
| encodePseudoProbes(); |
| } |
| |
| template <typename F> |
| static void emitLEB128IntValue(F encode, uint64_t Value, |
| SmallString<8> &Contents) { |
| SmallString<128> Tmp; |
| raw_svector_ostream OSE(Tmp); |
| encode(Value, OSE); |
| Contents.append(OSE.str().begin(), OSE.str().end()); |
| } |
| |
| void RewriteInstance::encodePseudoProbes() { |
| // Buffer for new pseudo probes section |
| SmallString<8> Contents; |
| MCDecodedPseudoProbe *LastProbe = nullptr; |
| |
| auto EmitInt = [&](uint64_t Value, uint32_t Size) { |
| const bool IsLittleEndian = BC->AsmInfo->isLittleEndian(); |
| uint64_t Swapped = support::endian::byte_swap( |
| Value, IsLittleEndian ? support::little : support::big); |
| unsigned Index = IsLittleEndian ? 0 : 8 - Size; |
| auto Entry = StringRef(reinterpret_cast<char *>(&Swapped) + Index, Size); |
| Contents.append(Entry.begin(), Entry.end()); |
| }; |
| |
| auto EmitULEB128IntValue = [&](uint64_t Value) { |
| SmallString<128> Tmp; |
| raw_svector_ostream OSE(Tmp); |
| encodeULEB128(Value, OSE, 0); |
| Contents.append(OSE.str().begin(), OSE.str().end()); |
| }; |
| |
| auto EmitSLEB128IntValue = [&](int64_t Value) { |
| SmallString<128> Tmp; |
| raw_svector_ostream OSE(Tmp); |
| encodeSLEB128(Value, OSE); |
| Contents.append(OSE.str().begin(), OSE.str().end()); |
| }; |
| |
| // Emit indiviual pseudo probes in a inline tree node |
| // Probe index, type, attribute, address type and address are encoded |
| // Address of the first probe is absolute. |
| // Other probes' address are represented by delta |
| auto EmitDecodedPseudoProbe = [&](MCDecodedPseudoProbe *&CurProbe) { |
| EmitULEB128IntValue(CurProbe->getIndex()); |
| uint8_t PackedType = CurProbe->getType() | (CurProbe->getAttributes() << 4); |
| uint8_t Flag = |
| LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0; |
| EmitInt(Flag | PackedType, 1); |
| if (LastProbe) { |
| // Emit the delta between the address label and LastProbe. |
| int64_t Delta = CurProbe->getAddress() - LastProbe->getAddress(); |
| EmitSLEB128IntValue(Delta); |
| } else { |
| // Emit absolute address for encoding the first pseudo probe. |
| uint32_t AddrSize = BC->AsmInfo->getCodePointerSize(); |
| EmitInt(CurProbe->getAddress(), AddrSize); |
| } |
| }; |
| |
| std::map<InlineSite, MCDecodedPseudoProbeInlineTree *, |
| std::greater<InlineSite>> |
| Inlinees; |
| |
| // DFS of inline tree to emit pseudo probes in all tree node |
| // Inline site index of a probe is emitted first. |
| // Then tree node Guid, size of pseudo probes and children nodes, and detail |
| // of contained probes are emitted Deleted probes are skipped Root node is not |
| // encoded to binaries. It's a "wrapper" of inline trees of each function. |
| std::list<std::pair<uint64_t, MCDecodedPseudoProbeInlineTree *>> NextNodes; |
| const MCDecodedPseudoProbeInlineTree &Root = |
| BC->ProbeDecoder.getDummyInlineRoot(); |
| for (auto Child = Root.getChildren().begin(); |
| Child != Root.getChildren().end(); ++Child) |
| Inlinees[Child->first] = Child->second.get(); |
| |
| for (auto Inlinee : Inlinees) |
| // INT64_MAX is "placeholder" of unused callsite index field in the pair |
| NextNodes.push_back({INT64_MAX, Inlinee.second}); |
| |
| Inlinees.clear(); |
| |
| while (!NextNodes.empty()) { |
| uint64_t ProbeIndex = NextNodes.back().first; |
| MCDecodedPseudoProbeInlineTree *Cur = NextNodes.back().second; |
| NextNodes.pop_back(); |
| |
| if (Cur->Parent && !Cur->Parent->isRoot()) |
| // Emit probe inline site |
| EmitULEB128IntValue(ProbeIndex); |
| |
| // Emit probes grouped by GUID. |
| LLVM_DEBUG({ |
| dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); |
| dbgs() << "GUID: " << Cur->Guid << "\n"; |
| }); |
| // Emit Guid |
| EmitInt(Cur->Guid, 8); |
| // Emit number of probes in this node |
| uint64_t Deleted = 0; |
| for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) |
| if (Probe->getAddress() == INT64_MAX) |
| Deleted++; |
| LLVM_DEBUG(dbgs() << "Deleted Probes:" << Deleted << "\n"); |
| uint64_t ProbesSize = Cur->getProbes().size() - Deleted; |
| EmitULEB128IntValue(ProbesSize); |
| // Emit number of direct inlinees |
| EmitULEB128IntValue(Cur->getChildren().size()); |
| // Emit probes in this group |
| for (MCDecodedPseudoProbe *&Probe : Cur->getProbes()) { |
| if (Probe->getAddress() == INT64_MAX) |
| continue; |
| EmitDecodedPseudoProbe(Probe); |
| LastProbe = Probe; |
| } |
| |
| for (auto Child = Cur->getChildren().begin(); |
| Child != Cur->getChildren().end(); ++Child) |
| Inlinees[Child->first] = Child->second.get(); |
| for (const auto &Inlinee : Inlinees) { |
| assert(Cur->Guid != 0 && "non root tree node must have nonzero Guid"); |
| NextNodes.push_back({std::get<1>(Inlinee.first), Inlinee.second}); |
| LLVM_DEBUG({ |
| dbgs().indent(MCPseudoProbeTable::DdgPrintIndent); |
| dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n"; |
| }); |
| } |
| Inlinees.clear(); |
| } |
| |
| // Create buffer for new contents for the section |
| // Freed when parent section is destroyed |
| uint8_t *Output = new uint8_t[Contents.str().size()]; |
| memcpy(Output, Contents.str().data(), Contents.str().size()); |
| addToDebugSectionsToOverwrite(".pseudo_probe"); |
| BC->registerOrUpdateSection(".pseudo_probe", PseudoProbeSection->getELFType(), |
| PseudoProbeSection->getELFFlags(), Output, |
| Contents.str().size(), 1); |
| if (opts::PrintPseudoProbes == opts::PrintPseudoProbesOptions::PPP_All || |
| opts::PrintPseudoProbes == |
| opts::PrintPseudoProbesOptions::PPP_Encoded_Probes) { |
| // create a dummy decoder; |
| MCPseudoProbeDecoder DummyDecoder; |
| StringRef DescContents = PseudoProbeDescSection->getContents(); |
| DummyDecoder.buildGUID2FuncDescMap( |
| reinterpret_cast<const uint8_t *>(DescContents.data()), |
| DescContents.size()); |
| StringRef ProbeContents = PseudoProbeSection->getOutputContents(); |
| DummyDecoder.buildAddress2ProbeMap( |
| reinterpret_cast<const uint8_t *>(ProbeContents.data()), |
| ProbeContents.size()); |
| DummyDecoder.printProbesForAllAddresses(outs()); |
| } |
| } |
| |
| void RewriteInstance::updateSDTMarkers() { |
| NamedRegionTimer T("updateSDTMarkers", "update SDT markers", TimerGroupName, |
| TimerGroupDesc, opts::TimeRewrite); |
| |
| if (!SDTSection) |
| return; |
| SDTSection->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); |
| |
| SimpleBinaryPatcher *SDTNotePatcher = |
| static_cast<SimpleBinaryPatcher *>(SDTSection->getPatcher()); |
| for (auto &SDTInfoKV : BC->SDTMarkers) { |
| const uint64_t OriginalAddress = SDTInfoKV.first; |
| SDTMarkerInfo &SDTInfo = SDTInfoKV.second; |
| const BinaryFunction *F = |
| BC->getBinaryFunctionContainingAddress(OriginalAddress); |
| if (!F) |
| continue; |
| const uint64_t NewAddress = |
| F->translateInputToOutputAddress(OriginalAddress); |
| SDTNotePatcher->addLE64Patch(SDTInfo.PCOffset, NewAddress); |
| } |
| } |
| |
| void RewriteInstance::updateLKMarkers() { |
| if (BC->LKMarkers.size() == 0) |
| return; |
| |
| NamedRegionTimer T("updateLKMarkers", "update LK markers", TimerGroupName, |
| TimerGroupDesc, opts::TimeRewrite); |
| |
| std::unordered_map<std::string, uint64_t> PatchCounts; |
| for (std::pair<const uint64_t, std::vector<LKInstructionMarkerInfo>> |
| &LKMarkerInfoKV : BC->LKMarkers) { |
| const uint64_t OriginalAddress = LKMarkerInfoKV.first; |
| const BinaryFunction *BF = |
| BC->getBinaryFunctionContainingAddress(OriginalAddress, false, true); |
| if (!BF) |
| continue; |
| |
| uint64_t NewAddress = BF->translateInputToOutputAddress(OriginalAddress); |
| if (NewAddress == 0) |
| continue; |
| |
| // Apply base address. |
| if (OriginalAddress >= 0xffffffff00000000 && NewAddress < 0xffffffff) |
| NewAddress = NewAddress + 0xffffffff00000000; |
| |
| if (OriginalAddress == NewAddress) |
| continue; |
| |
| for (LKInstructionMarkerInfo &LKMarkerInfo : LKMarkerInfoKV.second) { |
| StringRef SectionName = LKMarkerInfo.SectionName; |
| SimpleBinaryPatcher *LKPatcher; |
| ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); |
| assert(BSec && "missing section info for kernel section"); |
| if (!BSec->getPatcher()) |
| BSec->registerPatcher(std::make_unique<SimpleBinaryPatcher>()); |
| LKPatcher = static_cast<SimpleBinaryPatcher *>(BSec->getPatcher()); |
| PatchCounts[std::string(SectionName)]++; |
| if (LKMarkerInfo.IsPCRelative) |
| LKPatcher->addLE32Patch(LKMarkerInfo.SectionOffset, |
| NewAddress - OriginalAddress + |
| LKMarkerInfo.PCRelativeOffset); |
| else |
| LKPatcher->addLE64Patch(LKMarkerInfo.SectionOffset, NewAddress); |
| } |
| } |
| outs() << "BOLT-INFO: patching linux kernel sections. Total patches per " |
| "section are as follows:\n"; |
| for (const std::pair<const std::string, uint64_t> &KV : PatchCounts) |
| outs() << " Section: " << KV.first << ", patch-counts: " << KV.second |
| << '\n'; |
| } |
| |
| void RewriteInstance::mapFileSections(RuntimeDyld &RTDyld) { |
| mapCodeSections(RTDyld); |
| mapDataSections(RTDyld); |
| } |
| |
| std::vector<BinarySection *> RewriteInstance::getCodeSections() { |
| std::vector<BinarySection *> CodeSections; |
| for (BinarySection &Section : BC->textSections()) |
| if (Section.hasValidSectionID()) |
| CodeSections.emplace_back(&Section); |
| |
| auto compareSections = [&](const BinarySection *A, const BinarySection *B) { |
| // Place movers before anything else. |
| if (A->getName() == BC->getHotTextMoverSectionName()) |
| return true; |
| if (B->getName() == BC->getHotTextMoverSectionName()) |
| return false; |
| |
| // Depending on the option, put main text at the beginning or at the end. |
| if (opts::HotFunctionsAtEnd) |
| return B->getName() == BC->getMainCodeSectionName(); |
| else |
| return A->getName() == BC->getMainCodeSectionName(); |
| }; |
| |
| // Determine the order of sections. |
| llvm::stable_sort(CodeSections, compareSections); |
| |
| return CodeSections; |
| } |
| |
| void RewriteInstance::mapCodeSections(RuntimeDyld &RTDyld) { |
| if (BC->HasRelocations) { |
| ErrorOr<BinarySection &> TextSection = |
| BC->getUniqueSectionByName(BC->getMainCodeSectionName()); |
| assert(TextSection && ".text section not found in output"); |
| assert(TextSection->hasValidSectionID() && ".text section should be valid"); |
| |
| // Map sections for functions with pre-assigned addresses. |
| for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { |
| const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); |
| if (!OutputAddress) |
| continue; |
| |
| ErrorOr<BinarySection &> FunctionSection = |
| InjectedFunction->getCodeSection(); |
| assert(FunctionSection && "function should have section"); |
| FunctionSection->setOutputAddress(OutputAddress); |
| RTDyld.reassignSectionAddress(FunctionSection->getSectionID(), |
| OutputAddress); |
| InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); |
| InjectedFunction->setImageSize(FunctionSection->getOutputSize()); |
| } |
| |
| // Populate the list of sections to be allocated. |
| std::vector<BinarySection *> CodeSections = getCodeSections(); |
| |
| // Remove sections that were pre-allocated (patch sections). |
| llvm::erase_if(CodeSections, [](BinarySection *Section) { |
| return Section->getOutputAddress(); |
| }); |
| LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; |
| for (const BinarySection *Section : CodeSections) |
| dbgs() << Section->getName() << '\n'; |
| ); |
| |
| uint64_t PaddingSize = 0; // size of padding required at the end |
| |
| // Allocate sections starting at a given Address. |
| auto allocateAt = [&](uint64_t Address) { |
| for (BinarySection *Section : CodeSections) { |
| Address = alignTo(Address, Section->getAlignment()); |
| Section->setOutputAddress(Address); |
| Address += Section->getOutputSize(); |
| } |
| |
| // Make sure we allocate enough space for huge pages. |
| if (opts::HotText) { |
| uint64_t HotTextEnd = |
| TextSection->getOutputAddress() + TextSection->getOutputSize(); |
| HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); |
| if (HotTextEnd > Address) { |
| PaddingSize = HotTextEnd - Address; |
| Address = HotTextEnd; |
| } |
| } |
| return Address; |
| }; |
| |
| // Check if we can fit code in the original .text |
| bool AllocationDone = false; |
| if (opts::UseOldText) { |
| const uint64_t CodeSize = |
| allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; |
| |
| if (CodeSize <= BC->OldTextSectionSize) { |
| outs() << "BOLT-INFO: using original .text for new code with 0x" |
| << Twine::utohexstr(opts::AlignText) << " alignment\n"; |
| AllocationDone = true; |
| } else { |
| errs() << "BOLT-WARNING: original .text too small to fit the new code" |
| << " using 0x" << Twine::utohexstr(opts::AlignText) |
| << " alignment. " << CodeSize << " bytes needed, have " |
| << BC->OldTextSectionSize << " bytes available.\n"; |
| opts::UseOldText = false; |
| } |
| } |
| |
| if (!AllocationDone) |
| NextAvailableAddress = allocateAt(NextAvailableAddress); |
| |
| // Do the mapping for ORC layer based on the allocation. |
| for (BinarySection *Section : CodeSections) { |
| LLVM_DEBUG( |
| dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" |
| << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" |
| << Twine::utohexstr(Section->getOutputAddress()) << '\n'); |
| RTDyld.reassignSectionAddress(Section->getSectionID(), |
| Section->getOutputAddress()); |
| Section->setOutputFileOffset( |
| getFileOffsetForAddress(Section->getOutputAddress())); |
| } |
| |
| // Check if we need to insert a padding section for hot text. |
| if (PaddingSize && !opts::UseOldText) |
| outs() << "BOLT-INFO: padding code to 0x" |
| << Twine::utohexstr(NextAvailableAddress) |
| << " to accommodate hot text\n"; |
| |
| return; |
| } |
| |
| // Processing in non-relocation mode. |
| uint64_t NewTextSectionStartAddress = NextAvailableAddress; |
| |
| for (auto &BFI : BC->getBinaryFunctions()) { |
| BinaryFunction &Function = BFI.second; |
| if (!Function.isEmitted()) |
| continue; |
| |
| bool TooLarge = false; |
| ErrorOr<BinarySection &> FuncSection = Function.getCodeSection(); |
| assert(FuncSection && "cannot find section for function"); |
| FuncSection->setOutputAddress(Function.getAddress()); |
| LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" |
| << Twine::utohexstr(FuncSection->getAllocAddress()) |
| << " to 0x" << Twine::utohexstr(Function.getAddress()) |
| << '\n'); |
| RTDyld.reassignSectionAddress(FuncSection->getSectionID(), |
| Function.getAddress()); |
| Function.setImageAddress(FuncSection->getAllocAddress()); |
| Function.setImageSize(FuncSection->getOutputSize()); |
| if (Function.getImageSize() > Function.getMaxSize()) { |
| TooLarge = true; |
| FailedAddresses.emplace_back(Function.getAddress()); |
| } |
| |
| // Map jump tables if updating in-place. |
| if (opts::JumpTables == JTS_BASIC) { |
| for (auto &JTI : Function.JumpTables) { |
| JumpTable *JT = JTI.second; |
| BinarySection &Section = JT->getOutputSection(); |
| Section.setOutputAddress(JT->getAddress()); |
| Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping " << Section.getName() |
| << " to 0x" << Twine::utohexstr(JT->getAddress()) |
| << '\n'); |
| RTDyld.reassignSectionAddress(Section.getSectionID(), JT->getAddress()); |
| } |
| } |
| |
| if (!Function.isSplit()) |
| continue; |
| |
| ErrorOr<BinarySection &> ColdSection = Function.getColdCodeSection(); |
| assert(ColdSection && "cannot find section for cold part"); |
| // Cold fragments are aligned at 16 bytes. |
| NextAvailableAddress = alignTo(NextAvailableAddress, 16); |
| BinaryFunction::FragmentInfo &ColdPart = Function.cold(); |
| if (TooLarge) { |
| // The corresponding FDE will refer to address 0. |
| ColdPart.setAddress(0); |
| ColdPart.setImageAddress(0); |
| ColdPart.setImageSize(0); |
| ColdPart.setFileOffset(0); |
| } else { |
| ColdPart.setAddress(NextAvailableAddress); |
| ColdPart.setImageAddress(ColdSection->getAllocAddress()); |
| ColdPart.setImageSize(ColdSection->getOutputSize()); |
| ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); |
| ColdSection->setOutputAddress(ColdPart.getAddress()); |
| } |
| |
| LLVM_DEBUG(dbgs() << "BOLT: mapping cold fragment 0x" |
| << Twine::utohexstr(ColdPart.getImageAddress()) |
| << " to 0x" << Twine::utohexstr(ColdPart.getAddress()) |
| << " with size " |
| << Twine::utohexstr(ColdPart.getImageSize()) << '\n'); |
| RTDyld.reassignSectionAddress(ColdSection->getSectionID(), |
| ColdPart.getAddress()); |
| |
| NextAvailableAddress += ColdPart.getImageSize(); |
| } |
| |
| // Add the new text section aggregating all existing code sections. |
| // This is pseudo-section that serves a purpose of creating a corresponding |
| // entry in section header table. |
| int64_t NewTextSectionSize = |
| NextAvailableAddress - NewTextSectionStartAddress; |
| if (NewTextSectionSize) { |
| const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, |
| /*IsText=*/true, |
| /*IsAllocatable=*/true); |
| BinarySection &Section = |
| BC->registerOrUpdateSection(getBOLTTextSectionName(), |
| ELF::SHT_PROGBITS, |
| Flags, |
| /*Data=*/nullptr, |
| NewTextSectionSize, |
| 16); |
| Section.setOutputAddress(NewTextSectionStartAddress); |
| Section.setOutputFileOffset( |
| getFileOffsetForAddress(NewTextSectionStartAddress)); |
| } |
| } |
| |
| void RewriteInstance::mapDataSections(RuntimeDyld &RTDyld) { |
| // Map special sections to their addresses in the output image. |
| // These are the sections that we generate via MCStreamer. |
| // The order is important. |
| std::vector<std::string> Sections = { |
| ".eh_frame", Twine(getOrgSecPrefix(), ".eh_frame").str(), |
| ".gcc_except_table", ".rodata", ".rodata.cold"}; |
| if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) |
| RtLibrary->addRuntimeLibSections(Sections); |
| |
| for (std::string &SectionName : Sections) { |
| ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); |
| if (!Section || !Section->isAllocatable() || !Section->isFinalized()) |
| continue; |
| NextAvailableAddress = |
| alignTo(NextAvailableAddress, Section->getAlignment()); |
| LLVM_DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x" |
| << Twine::utohexstr(Section->getAllocAddress()) |
| << ") to 0x" << Twine::utohexstr(NextAvailableAddress) |
| << ":0x" |
| << Twine::utohexstr(NextAvailableAddress + |
| Section->getOutputSize()) |
| << '\n'); |
| |
| RTDyld.reassignSectionAddress(Section->getSectionID(), |
| NextAvailableAddress); |
| Section->setOutputAddress(NextAvailableAddress); |
| Section->setOutputFileOffset(getFileOffsetForAddress(NextAvailableAddress)); |
| |
| NextAvailableAddress += Section->getOutputSize(); |
| } |
| |
| // Handling for sections with relocations. |
| for (BinarySection &Section : BC->sections()) { |
| if (!Section.hasSectionRef()) |
| continue; |
| |
| StringRef SectionName = Section.getName(); |
| ErrorOr<BinarySection &> OrgSection = |
| BC->getUniqueSectionByName((getOrgSecPrefix() + SectionName).str()); |
| if (!OrgSection || |
| !OrgSection->isAllocatable() || |
| !OrgSection->isFinalized() || |
| !OrgSection->hasValidSectionID()) |
| continue; |
| |
| if (OrgSection->getOutputAddress()) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName |
| << " is already mapped at 0x" |
| << Twine::utohexstr(OrgSection->getOutputAddress()) |
| << '\n'); |
| continue; |
| } |
| LLVM_DEBUG( |
| dbgs() << "BOLT: mapping original section " << SectionName << " (0x" |
| << Twine::utohexstr(OrgSection->getAllocAddress()) << ") to 0x" |
| << Twine::utohexstr(Section.getAddress()) << '\n'); |
| |
| RTDyld.reassignSectionAddress(OrgSection->getSectionID(), |
| Section.getAddress()); |
| |
| OrgSection->setOutputAddress(Section.getAddress()); |
| OrgSection->setOutputFileOffset(Section.getContents().data() - |
| InputFile->getData().data()); |
| } |
| } |
| |
| void RewriteInstance::mapExtraSections(RuntimeDyld &RTDyld) { |
| for (BinarySection &Section : BC->allocatableSections()) { |
| if (Section.getOutputAddress() || !Section.hasValidSectionID()) |
| continue; |
| NextAvailableAddress = |
| alignTo(NextAvailableAddress, Section.getAlignment()); |
| Section.setOutputAddress(NextAvailableAddress); |
| NextAvailableAddress += Section.getOutputSize(); |
| |
| LLVM_DEBUG(dbgs() << "BOLT: (extra) mapping " << Section.getName() |
| << " at 0x" << Twine::utohexstr(Section.getAllocAddress()) |
| << " to 0x" |
| << Twine::utohexstr(Section.getOutputAddress()) << '\n'); |
| |
| RTDyld.reassignSectionAddress(Section.getSectionID(), |
| Section.getOutputAddress()); |
| Section.setOutputFileOffset( |
| getFileOffsetForAddress(Section.getOutputAddress())); |
| } |
| } |
| |
| void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) { |
| for (BinaryFunction *Function : BC->getAllBinaryFunctions()) |
| Function->updateOutputValues(Layout); |
| } |
| |
| void RewriteInstance::patchELFPHDRTable() { |
| auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); |
| if (!ELF64LEFile) { |
| errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; |
| exit(1); |
| } |
| const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); |
| raw_fd_ostream &OS = Out->os(); |
| |
| // Write/re-write program headers. |
| Phnum = Obj.getHeader().e_phnum; |
| if (PHDRTableOffset) { |
| // Writing new pheader table. |
| Phnum += 1; // only adding one new segment |
| // Segment size includes the size of the PHDR area. |
| NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; |
| } else { |
| assert(!PHDRTableAddress && "unexpected address for program header table"); |
| // Update existing table. |
| PHDRTableOffset = Obj.getHeader().e_phoff; |
| NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; |
| } |
| OS.seek(PHDRTableOffset); |
| |
| bool ModdedGnuStack = false; |
| (void)ModdedGnuStack; |
| bool AddedSegment = false; |
| (void)AddedSegment; |
| |
| auto createNewTextPhdr = [&]() { |
| ELF64LEPhdrTy NewPhdr; |
| NewPhdr.p_type = ELF::PT_LOAD; |
| if (PHDRTableAddress) { |
| NewPhdr.p_offset = PHDRTableOffset; |
| NewPhdr.p_vaddr = PHDRTableAddress; |
| NewPhdr.p_paddr = PHDRTableAddress; |
| } else { |
| NewPhdr.p_offset = NewTextSegmentOffset; |
| NewPhdr.p_vaddr = NewTextSegmentAddress; |
| NewPhdr.p_paddr = NewTextSegmentAddress; |
| } |
| NewPhdr.p_filesz = NewTextSegmentSize; |
| NewPhdr.p_memsz = NewTextSegmentSize; |
| NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; |
| // FIXME: Currently instrumentation is experimental and the runtime data |
| // is emitted with code, thus everything needs to be writable |
| if (opts::Instrument) |
| NewPhdr.p_flags |= ELF::PF_W; |
| NewPhdr.p_align = BC->PageAlign; |
| |
| return NewPhdr; |
| }; |
| |
| // Copy existing program headers with modifications. |
| for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { |
| ELF64LE::Phdr NewPhdr = Phdr; |
| if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) { |
| NewPhdr.p_offset = PHDRTableOffset; |
| NewPhdr.p_vaddr = PHDRTableAddress; |
| NewPhdr.p_paddr = PHDRTableAddress; |
| NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; |
| NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; |
| } else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) { |
| ErrorOr<BinarySection &> EHFrameHdrSec = |
| BC->getUniqueSectionByName(".eh_frame_hdr"); |
| if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && |
| EHFrameHdrSec->isFinalized()) { |
| NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); |
| NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); |
| NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); |
| NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); |
| NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); |
| } |
| } else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) { |
| NewPhdr = createNewTextPhdr(); |
| ModdedGnuStack = true; |
| } else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) { |
| // Insert the new header before DYNAMIC. |
| ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); |
| OS.write(reinterpret_cast<const char *>(&NewTextPhdr), |
| sizeof(NewTextPhdr)); |
| AddedSegment = true; |
| } |
| OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr)); |
| } |
| |
| if (!opts::UseGnuStack && !AddedSegment) { |
| // Append the new header to the end of the table. |
| ELF64LE::Phdr NewTextPhdr = createNewTextPhdr(); |
| OS.write(reinterpret_cast<const char *>(&NewTextPhdr), sizeof(NewTextPhdr)); |
| } |
| |
| assert((!opts::UseGnuStack || ModdedGnuStack) && |
| "could not find GNU_STACK program header to modify"); |
| } |
| |
| namespace { |
| |
| /// Write padding to \p OS such that its current \p Offset becomes aligned |
| /// at \p Alignment. Return new (aligned) offset. |
| uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, |
| uint64_t Alignment) { |
| if (!Alignment) |
| return Offset; |
| |
| const uint64_t PaddingSize = |
| offsetToAlignment(Offset, llvm::Align(Alignment)); |
| for (unsigned I = 0; I < PaddingSize; ++I) |
| OS.write((unsigned char)0); |
| return Offset + PaddingSize; |
| } |
| |
| } |
| |
| void RewriteInstance::rewriteNoteSections() { |
| auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile); |
| if (!ELF64LEFile) { |
| errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n"; |
| exit(1); |
| } |
| const ELFFile<ELF64LE> &Obj = ELF64LEFile->getELFFile(); |
| raw_fd_ostream &OS = Out->os(); |
| |
| uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); |
| assert(NextAvailableOffset >= FirstNonAllocatableOffset && |
| "next available offset calculation failure"); |
| OS.seek(NextAvailableOffset); |
| |
| // Copy over non-allocatable section contents and update file offsets. |
| for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { |
| if (Section.sh_type == ELF::SHT_NULL) |
| continue; |
| if (Section.sh_flags & ELF::SHF_ALLOC) |
| continue; |
| |
| StringRef SectionName = |
| cantFail(Obj.getSectionName(Section), "cannot get section name"); |
| ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); |
| |
| if (shouldStrip(Section, SectionName)) |
| continue; |
| |
| // Insert padding as needed. |
| NextAvailableOffset = |
| appendPadding(OS, NextAvailableOffset, Section.sh_addralign); |
| |
| // New section size. |
| uint64_t Size = 0; |
| bool DataWritten = false; |
| uint8_t *SectionData = nullptr; |
| // Copy over section contents unless it's one of the sections we overwrite. |
| if (!willOverwriteSection(SectionName)) { |
| Size = Section.sh_size; |
| StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); |
| std::string Data; |
| if (BSec && BSec->getPatcher()) { |
| Data = BSec->getPatcher()->patchBinary(Dataref); |
| Dataref = StringRef(Data); |
| } |
| |
| // Section was expanded, so need to treat it as overwrite. |
| if (Size != Dataref.size()) { |
| BSec = BC->registerOrUpdateNoteSection( |
| SectionName, copyByteArray(Dataref), Dataref.size()); |
| Size = 0; |
| } else { |
| OS << Dataref; |
| DataWritten = true; |
| |
| // Add padding as the section extension might rely on the alignment. |
| Size = appendPadding(OS, Size, Section.sh_addralign); |
| } |
| } |
| |
| // Perform section post-processing. |
| if (BSec && !BSec->isAllocatable()) { |
| assert(BSec->getAlignment() <= Section.sh_addralign && |
| "alignment exceeds value in file"); |
| |
| if (BSec->getAllocAddress()) { |
| assert(!DataWritten && "Writing section twice."); |
| (void)DataWritten; |
| SectionData = BSec->getOutputData(); |
| |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") |
| << " contents to section " << SectionName << '\n'); |
| OS.write(reinterpret_cast<char *>(SectionData), BSec->getOutputSize()); |
| Size += BSec->getOutputSize(); |
| } |
| |
| BSec->setOutputFileOffset(NextAvailableOffset); |
| BSec->flushPendingRelocations(OS, |
| [this] (const MCSymbol *S) { |
| return getNewValueForSymbol(S->getName()); |
| }); |
| } |
| |
| // Set/modify section info. |
| BinarySection &NewSection = |
| BC->registerOrUpdateNoteSection(SectionName, |
| SectionData, |
| Size, |
| Section.sh_addralign, |
| BSec ? BSec->isReadOnly() : false, |
| BSec ? BSec->getELFType() |
| : ELF::SHT_PROGBITS); |
| NewSection.setOutputAddress(0); |
| NewSection.setOutputFileOffset(NextAvailableOffset); |
| |
| NextAvailableOffset += Size; |
| } |
| |
| // Write new note sections. |
| for (BinarySection &Section : BC->nonAllocatableSections()) { |
| if (Section.getOutputFileOffset() || !Section.getAllocAddress()) |
| continue; |
| |
| assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); |
| |
| NextAvailableOffset = |
| appendPadding(OS, NextAvailableOffset, Section.getAlignment()); |
| Section.setOutputFileOffset(NextAvailableOffset); |
| |
| LLVM_DEBUG( |
| dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() |
| << " of size " << Section.getOutputSize() << " at offset 0x" |
| << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); |
| |
| OS.write(Section.getOutputContents().data(), Section.getOutputSize()); |
| NextAvailableOffset += Section.getOutputSize(); |
| } |
| } |
| |
| template <typename ELFT> |
| void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) { |
| using ELFShdrTy = typename ELFT::Shdr; |
| const ELFFile<ELFT> &Obj = File->getELFFile(); |
| |
| // Pre-populate section header string table. |
| for (const ELFShdrTy &Section : cantFail(Obj.sections())) { |
| StringRef SectionName = |
| cantFail(Obj.getSectionName(Section), "cannot get section name"); |
| SHStrTab.add(SectionName); |
| std::string OutputSectionName = getOutputSectionName(Obj, Section); |
| if (OutputSectionName != SectionName) |
| SHStrTabPool.emplace_back(std::move(OutputSectionName)); |
| } |
| for (const std::string &Str : SHStrTabPool) |
| SHStrTab.add(Str); |
| for (const BinarySection &Section : BC->sections()) |
| SHStrTab.add(Section.getName()); |
| SHStrTab.finalize(); |
| |
| const size_t SHStrTabSize = SHStrTab.getSize(); |
| uint8_t *DataCopy = new uint8_t[SHStrTabSize]; |
| memset(DataCopy, 0, SHStrTabSize); |
| SHStrTab.write(DataCopy); |
| BC->registerOrUpdateNoteSection(".shstrtab", |
| DataCopy, |
| SHStrTabSize, |
| /*Alignment=*/1, |
| /*IsReadOnly=*/true, |
| ELF::SHT_STRTAB); |
| } |
| |
| void RewriteInstance::addBoltInfoSection() { |
| std::string DescStr; |
| raw_string_ostream DescOS(DescStr); |
| |
| DescOS << "BOLT revision: " << BoltRevision << ", " |
| << "command line:"; |
| for (int I = 0; I < Argc; ++I) |
| DescOS << " " << Argv[I]; |
| DescOS.flush(); |
| |
| // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' |
| const std::string BoltInfo = |
| BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); |
| BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), |
| BoltInfo.size(), |
| /*Alignment=*/1, |
| /*IsReadOnly=*/true, ELF::SHT_NOTE); |
| } |
| |
| void RewriteInstance::addBATSection() { |
| BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, |
| 0, |
| /*Alignment=*/1, |
| /*IsReadOnly=*/true, ELF::SHT_NOTE); |
| } |
| |
| void RewriteInstance::encodeBATSection() { |
| std::string DescStr; |
| raw_string_ostream DescOS(DescStr); |
| |
| BAT->write(DescOS); |
| DescOS.flush(); |
| |
| const std::string BoltInfo = |
| BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); |
| BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, |
| copyByteArray(BoltInfo), BoltInfo.size(), |
| /*Alignment=*/1, |
| /*IsReadOnly=*/true, ELF::SHT_NOTE); |
| } |
| |
| template <typename ELFObjType, typename ELFShdrTy> |
| std::string RewriteInstance::getOutputSectionName(const ELFObjType &Obj, |
| const ELFShdrTy &Section) { |
| if (Section.sh_type == ELF::SHT_NULL) |
| return ""; |
| |
| StringRef SectionName = |
| cantFail(Obj.getSectionName(Section), "cannot get section name"); |
| |
| if ((Section.sh_flags & ELF::SHF_ALLOC) && willOverwriteSection(SectionName)) |
| return (getOrgSecPrefix() + SectionName).str(); |
| |
| return std::string(SectionName); |
| } |
| |
| template <typename ELFShdrTy> |
| bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, |
| StringRef SectionName) { |
| // Strip non-allocatable relocation sections. |
| if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) |
| return true; |
| |
| // Strip debug sections if not updating them. |
| if (isDebugSection(SectionName) && !opts::UpdateDebugSections) |
| return true; |
| |
| // Strip symtab section if needed |
| if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) |
| return true; |
| |
| return false; |
| } |
| |
| template <typename ELFT> |
| std::vector<typename object::ELFObjectFile<ELFT>::Elf_Shdr> |
| RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File, |
| std::vector<uint32_t> &NewSectionIndex) { |
| using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; |
| const ELFFile<ELFT> &Obj = File->getELFFile(); |
| typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); |
| |
| // Keep track of section header entries together with their name. |
| std::vector<std::pair<std::string, ELFShdrTy>> OutputSections; |
| auto addSection = [&](const std::string &Name, const ELFShdrTy &Section) { |
| ELFShdrTy NewSection = Section; |
| NewSection.sh_name = SHStrTab.getOffset(Name); |
| OutputSections.emplace_back(Name, std::move(NewSection)); |
| }; |
| |
| // Copy over entries for original allocatable sections using modified name. |
| for (const ELFShdrTy &Section : Sections) { |
| // Always ignore this section. |
| if (Section.sh_type == ELF::SHT_NULL) { |
| OutputSections.emplace_back("", Section); |
| continue; |
| } |
| |
| if (!(Section.sh_flags & ELF::SHF_ALLOC)) |
| continue; |
| |
| addSection(getOutputSectionName(Obj, Section), Section); |
| } |
| |
| for (const BinarySection &Section : BC->allocatableSections()) { |
| if (!Section.isFinalized()) |
| continue; |
| |
| if (Section.getName().startswith(getOrgSecPrefix()) || |
| Section.isAnonymous()) { |
| if (opts::Verbosity) |
| outs() << "BOLT-INFO: not writing section header for section " |
| << Section.getName() << '\n'; |
| continue; |
| } |
| |
| if (opts::Verbosity >= 1) |
| outs() << "BOLT-INFO: writing section header for " << Section.getName() |
| << '\n'; |
| ELFShdrTy NewSection; |
| NewSection.sh_type = ELF::SHT_PROGBITS; |
| NewSection.sh_addr = Section.getOutputAddress(); |
| NewSection.sh_offset = Section.getOutputFileOffset(); |
| NewSection.sh_size = Section.getOutputSize(); |
| NewSection.sh_entsize = 0; |
| NewSection.sh_flags = Section.getELFFlags(); |
| NewSection.sh_link = 0; |
| NewSection.sh_info = 0; |
| NewSection.sh_addralign = Section.getAlignment(); |
| addSection(std::string(Section.getName()), NewSection); |
| } |
| |
| // Sort all allocatable sections by their offset. |
| llvm::stable_sort(OutputSections, |
| [](const std::pair<std::string, ELFShdrTy> &A, |
| const std::pair<std::string, ELFShdrTy> &B) { |
| return A.second.sh_offset < B.second.sh_offset; |
| }); |
| |
| // Fix section sizes to prevent overlapping. |
| ELFShdrTy *PrevSection = nullptr; |
| StringRef PrevSectionName; |
| for (auto &SectionKV : OutputSections) { |
| ELFShdrTy &Section = SectionKV.second; |
| |
| // TBSS section does not take file or memory space. Ignore it for layout |
| // purposes. |
| if (Section.sh_type == ELF::SHT_NOBITS && (Section.sh_flags & ELF::SHF_TLS)) |
| continue; |
| |
| if (PrevSection && |
| PrevSection->sh_addr + PrevSection->sh_size > Section.sh_addr) { |
| if (opts::Verbosity > 1) |
| outs() << "BOLT-INFO: adjusting size for section " << PrevSectionName |
| << '\n'; |
| PrevSection->sh_size = Section.sh_addr > PrevSection->sh_addr |
| ? Section.sh_addr - PrevSection->sh_addr |
| : 0; |
| } |
| |
| PrevSection = &Section; |
| PrevSectionName = SectionKV.first; |
| } |
| |
| uint64_t LastFileOffset = 0; |
| |
| // Copy over entries for non-allocatable sections performing necessary |
| // adjustments. |
| for (const ELFShdrTy &Section : Sections) { |
| if (Section.sh_type == ELF::SHT_NULL) |
| continue; |
| if (Section.sh_flags & ELF::SHF_ALLOC) |
| continue; |
| |
| StringRef SectionName = |
| cantFail(Obj.getSectionName(Section), "cannot get section name"); |
| |
| if (shouldStrip(Section, SectionName)) |
| continue; |
| |
| ErrorOr<BinarySection &> BSec = BC->getUniqueSectionByName(SectionName); |
| assert(BSec && "missing section info for non-allocatable section"); |
| |
| ELFShdrTy NewSection = Section; |
| NewSection.sh_offset = BSec->getOutputFileOffset(); |
| NewSection.sh_size = BSec->getOutputSize(); |
| |
| if (NewSection.sh_type == ELF::SHT_SYMTAB) |
| NewSection.sh_info = NumLocalSymbols; |
| |
| addSection(std::string(SectionName), NewSection); |
| |
| LastFileOffset = BSec->getOutputFileOffset(); |
| } |
| |
| // Create entries for new non-allocatable sections. |
| for (BinarySection &Section : BC->nonAllocatableSections()) { |
| if (Section.getOutputFileOffset() <= LastFileOffset) |
| continue; |
| |
| if (opts::Verbosity >= 1) |
| outs() << "BOLT-INFO: writing section header for " << Section.getName() |
| << '\n'; |
| |
| ELFShdrTy NewSection; |
| NewSection.sh_type = Section.getELFType(); |
| NewSection.sh_addr = 0; |
| NewSection.sh_offset = Section.getOutputFileOffset(); |
| NewSection.sh_size = Section.getOutputSize(); |
| NewSection.sh_entsize = 0; |
| NewSection.sh_flags = Section.getELFFlags(); |
| NewSection.sh_link = 0; |
| NewSection.sh_info = 0; |
| NewSection.sh_addralign = Section.getAlignment(); |
| |
| addSection(std::string(Section.getName()), NewSection); |
| } |
| |
| // Assign indices to sections. |
| std::unordered_map<std::string, uint64_t> NameToIndex; |
| for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) { |
| const std::string &SectionName = OutputSections[Index].first; |
| NameToIndex[SectionName] = Index; |
| if (ErrorOr<BinarySection &> Section = |
| BC->getUniqueSectionByName(SectionName)) |
| Section->setIndex(Index); |
| } |
| |
| // Update section index mapping |
| NewSectionIndex.clear(); |
| NewSectionIndex.resize(Sections.size(), 0); |
| for (const ELFShdrTy &Section : Sections) { |
| if (Section.sh_type == ELF::SHT_NULL) |
| continue; |
| |
| size_t OrgIndex = std::distance(Sections.begin(), &Section); |
| std::string SectionName = getOutputSectionName(Obj, Section); |
| |
| // Some sections are stripped |
| if (!NameToIndex.count(SectionName)) |
| continue; |
| |
| NewSectionIndex[OrgIndex] = NameToIndex[SectionName]; |
| } |
| |
| std::vector<ELFShdrTy> SectionsOnly(OutputSections.size()); |
| llvm::transform(OutputSections, SectionsOnly.begin(), |
| [](std::pair<std::string, ELFShdrTy> &SectionInfo) { |
| return SectionInfo.second; |
| }); |
| |
| return SectionsOnly; |
| } |
| |
| // Rewrite section header table inserting new entries as needed. The sections |
| // header table size itself may affect the offsets of other sections, |
| // so we are placing it at the end of the binary. |
| // |
| // As we rewrite entries we need to track how many sections were inserted |
| // as it changes the sh_link value. We map old indices to new ones for |
| // existing sections. |
| template <typename ELFT> |
| void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) { |
| using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; |
| using ELFEhdrTy = typename ELFObjectFile<ELFT>::Elf_Ehdr; |
| raw_fd_ostream &OS = Out->os(); |
| const ELFFile<ELFT> &Obj = File->getELFFile(); |
| |
| std::vector<uint32_t> NewSectionIndex; |
| std::vector<ELFShdrTy> OutputSections = |
| getOutputSections(File, NewSectionIndex); |
| LLVM_DEBUG( |
| dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; |
| for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) |
| dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; |
| ); |
| |
| // Align starting address for section header table. |
| uint64_t SHTOffset = OS.tell(); |
| SHTOffset = appendPadding(OS, SHTOffset, sizeof(ELFShdrTy)); |
| |
| // Write all section header entries while patching section references. |
| for (ELFShdrTy &Section : OutputSections) { |
| Section.sh_link = NewSectionIndex[Section.sh_link]; |
| if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) { |
| if (Section.sh_info) |
| Section.sh_info = NewSectionIndex[Section.sh_info]; |
| } |
| OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section)); |
| } |
| |
| // Fix ELF header. |
| ELFEhdrTy NewEhdr = Obj.getHeader(); |
| |
| if (BC->HasRelocations) { |
| if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) |
| NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); |
| else |
| NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); |
| assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && |
| "cannot find new address for entry point"); |
| } |
| NewEhdr.e_phoff = PHDRTableOffset; |
| NewEhdr.e_phnum = Phnum; |
| NewEhdr.e_shoff = SHTOffset; |
| NewEhdr.e_shnum = OutputSections.size(); |
| NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; |
| OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0); |
| } |
| |
| template <typename ELFT, typename WriteFuncTy, typename StrTabFuncTy> |
| void RewriteInstance::updateELFSymbolTable( |
| ELFObjectFile<ELFT> *File, bool IsDynSym, |
| const typename object::ELFObjectFile<ELFT>::Elf_Shdr &SymTabSection, |
| const std::vector<uint32_t> &NewSectionIndex, WriteFuncTy Write, |
| StrTabFuncTy AddToStrTab) { |
| const ELFFile<ELFT> &Obj = File->getELFFile(); |
| using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; |
| |
| StringRef StringSection = |
| cantFail(Obj.getStringTableForSymtab(SymTabSection)); |
| |
| unsigned NumHotTextSymsUpdated = 0; |
| unsigned NumHotDataSymsUpdated = 0; |
| |
| std::map<const BinaryFunction *, uint64_t> IslandSizes; |
| auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { |
| auto Itr = IslandSizes.find(&BF); |
| if (Itr != IslandSizes.end()) |
| return Itr->second; |
| return IslandSizes[&BF] = BF.estimateConstantIslandSize(); |
| }; |
| |
| // Symbols for the new symbol table. |
| std::vector<ELFSymTy> Symbols; |
| |
| auto getNewSectionIndex = [&](uint32_t OldIndex) { |
| assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); |
| const uint32_t NewIndex = NewSectionIndex[OldIndex]; |
| |
| // We may have stripped the section that dynsym was referencing due to |
| // the linker bug. In that case return the old index avoiding marking |
| // the symbol as undefined. |
| if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) |
| return OldIndex; |
| return NewIndex; |
| }; |
| |
| // Add extra symbols for the function. |
| // |
| // Note that addExtraSymbols() could be called multiple times for the same |
| // function with different FunctionSymbol matching the main function entry |
| // point. |
| auto addExtraSymbols = [&](const BinaryFunction &Function, |
| const ELFSymTy &FunctionSymbol) { |
| if (Function.isFolded()) { |
| BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); |
| while (ICFParent->isFolded()) |
| ICFParent = ICFParent->getFoldedIntoFunction(); |
| ELFSymTy ICFSymbol = FunctionSymbol; |
| SmallVector<char, 256> Buf; |
| ICFSymbol.st_name = |
| AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) |
| .concat(".icf.0") |
| .toStringRef(Buf)); |
| ICFSymbol.st_value = ICFParent->getOutputAddress(); |
| ICFSymbol.st_size = ICFParent->getOutputSize(); |
| ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); |
| Symbols.emplace_back(ICFSymbol); |
| } |
| if (Function.isSplit() && Function.cold().getAddress()) { |
| ELFSymTy NewColdSym = FunctionSymbol; |
| SmallVector<char, 256> Buf; |
| NewColdSym.st_name = |
| AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) |
| .concat(".cold.0") |
| .toStringRef(Buf)); |
| NewColdSym.st_shndx = Function.getColdCodeSection()->getIndex(); |
| NewColdSym.st_value = Function.cold().getAddress(); |
| NewColdSym.st_size = Function.cold().getImageSize(); |
| NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); |
| Symbols.emplace_back(NewColdSym); |
| } |
| if (Function.hasConstantIsland()) { |
| uint64_t DataMark = Function.getOutputDataAddress(); |
| uint64_t CISize = getConstantIslandSize(Function); |
| uint64_t CodeMark = DataMark + CISize; |
| ELFSymTy DataMarkSym = FunctionSymbol; |
| DataMarkSym.st_name = AddToStrTab("$d"); |
| DataMarkSym.st_value = DataMark; |
| DataMarkSym.st_size = 0; |
| DataMarkSym.setType(ELF::STT_NOTYPE); |
| DataMarkSym.setBinding(ELF::STB_LOCAL); |
| ELFSymTy CodeMarkSym = DataMarkSym; |
| CodeMarkSym.st_name = AddToStrTab("$x"); |
| CodeMarkSym.st_value = CodeMark; |
| Symbols.emplace_back(DataMarkSym); |
| Symbols.emplace_back(CodeMarkSym); |
| } |
| if (Function.hasConstantIsland() && Function.isSplit()) { |
| uint64_t DataMark = Function.getOutputColdDataAddress(); |
| uint64_t CISize = getConstantIslandSize(Function); |
| uint64_t CodeMark = DataMark + CISize; |
| ELFSymTy DataMarkSym = FunctionSymbol; |
| DataMarkSym.st_name = AddToStrTab("$d"); |
| DataMarkSym.st_value = DataMark; |
| DataMarkSym.st_size = 0; |
| DataMarkSym.setType(ELF::STT_NOTYPE); |
| DataMarkSym.setBinding(ELF::STB_LOCAL); |
| ELFSymTy CodeMarkSym = DataMarkSym; |
| CodeMarkSym.st_name = AddToStrTab("$x"); |
| CodeMarkSym.st_value = CodeMark; |
| Symbols.emplace_back(DataMarkSym); |
| Symbols.emplace_back(CodeMarkSym); |
| } |
| }; |
| |
| // For regular (non-dynamic) symbol table, exclude symbols referring |
| // to non-allocatable sections. |
| auto shouldStrip = [&](const ELFSymTy &Symbol) { |
| if (Symbol.isAbsolute() || !Symbol.isDefined()) |
| return false; |
| |
| // If we cannot link the symbol to a section, leave it as is. |
| Expected<const typename ELFT::Shdr *> Section = |
| Obj.getSection(Symbol.st_shndx); |
| if (!Section) |
| return false; |
| |
| // Remove the section symbol iif the corresponding section was stripped. |
| if (Symbol.getType() == ELF::STT_SECTION) { |
| if (!getNewSectionIndex(Symbol.st_shndx)) |
| return true; |
| return false; |
| } |
| |
| // Symbols in non-allocatable sections are typically remnants of relocations |
| // emitted under "-emit-relocs" linker option. Delete those as we delete |
| // relocations against non-allocatable sections. |
| if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) |
| return true; |
| |
| return false; |
| }; |
| |
| for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { |
| // For regular (non-dynamic) symbol table strip unneeded symbols. |
| if (!IsDynSym && shouldStrip(Symbol)) |
| continue; |
| |
| const BinaryFunction *Function = |
| BC->getBinaryFunctionAtAddress(Symbol.st_value); |
| // Ignore false function references, e.g. when the section address matches |
| // the address of the function. |
| if (Function && Symbol.getType() == ELF::STT_SECTION) |
| Function = nullptr; |
| |
| // For non-dynamic symtab, make sure the symbol section matches that of |
| // the function. It can mismatch e.g. if the symbol is a section marker |
| // in which case we treat the symbol separately from the function. |
| // For dynamic symbol table, the section index could be wrong on the input, |
| // and its value is ignored by the runtime if it's different from |
| // SHN_UNDEF and SHN_ABS. |
| if (!IsDynSym && Function && |
| Symbol.st_shndx != |
| Function->getOriginSection()->getSectionRef().getIndex()) |
| Function = nullptr; |
| |
| // Create a new symbol based on the existing symbol. |
| ELFSymTy NewSymbol = Symbol; |
| |
| if (Function) { |
| // If the symbol matched a function that was not emitted, update the |
| // corresponding section index but otherwise leave it unchanged. |
| if (Function->isEmitted()) { |
| NewSymbol.st_value = Function->getOutputAddress(); |
| NewSymbol.st_size = Function->getOutputSize(); |
| NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); |
| } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { |
| NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); |
| } |
| |
| // Add new symbols to the symbol table if necessary. |
| if (!IsDynSym) |
| addExtraSymbols(*Function, NewSymbol); |
| } else { |
| // Check if the function symbol matches address inside a function, i.e. |
| // it marks a secondary entry point. |
| Function = |
| (Symbol.getType() == ELF::STT_FUNC) |
| ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, |
| /*CheckPastEnd=*/false, |
| /*UseMaxSize=*/true) |
| : nullptr; |
| |
| if (Function && Function->isEmitted()) { |
| const uint64_t OutputAddress = |
| Function->translateInputToOutputAddress(Symbol.st_value); |
| |
| NewSymbol.st_value = OutputAddress; |
| // Force secondary entry points to have zero size. |
| NewSymbol.st_size = 0; |
| NewSymbol.st_shndx = |
| OutputAddress >= Function->cold().getAddress() && |
| OutputAddress < Function->cold().getImageSize() |
| ? Function->getColdCodeSection()->getIndex() |
| : Function->getCodeSection()->getIndex(); |
| } else { |
| // Check if the symbol belongs to moved data object and update it. |
| BinaryData *BD = opts::ReorderData.empty() |
| ? nullptr |
| : BC->getBinaryDataAtAddress(Symbol.st_value); |
| if (BD && BD->isMoved() && !BD->isJumpTable()) { |
| assert((!BD->getSize() || !Symbol.st_size || |
| Symbol.st_size == BD->getSize()) && |
| "sizes must match"); |
| |
| BinarySection &OutputSection = BD->getOutputSection(); |
| assert(OutputSection.getIndex()); |
| LLVM_DEBUG(dbgs() |
| << "BOLT-DEBUG: moving " << BD->getName() << " from " |
| << *BC->getSectionNameForAddress(Symbol.st_value) << " (" |
| << Symbol.st_shndx << ") to " << OutputSection.getName() |
| << " (" << OutputSection.getIndex() << ")\n"); |
| NewSymbol.st_shndx = OutputSection.getIndex(); |
| NewSymbol.st_value = BD->getOutputAddress(); |
| } else { |
| // Otherwise just update the section for the symbol. |
| if (Symbol.st_shndx < ELF::SHN_LORESERVE) |
| NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); |
| } |
| |
| // Detect local syms in the text section that we didn't update |
| // and that were preserved by the linker to support relocations against |
| // .text. Remove them from the symtab. |
| if (Symbol.getType() == ELF::STT_NOTYPE && |
| Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { |
| if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, |
| /*CheckPastEnd=*/false, |
| /*UseMaxSize=*/true)) { |
| // Can only delete the symbol if not patching. Such symbols should |
| // not exist in the dynamic symbol table. |
| assert(!IsDynSym && "cannot delete symbol"); |
| continue; |
| } |
| } |
| } |
| } |
| |
| // Handle special symbols based on their name. |
| Expected<StringRef> SymbolName = Symbol.getName(StringSection); |
| assert(SymbolName && "cannot get symbol name"); |
| |
| auto updateSymbolValue = [&](const StringRef Name, unsigned &IsUpdated) { |
| NewSymbol.st_value = getNewValueForSymbol(Name); |
| NewSymbol.st_shndx = ELF::SHN_ABS; |
| outs() << "BOLT-INFO: setting " << Name << " to 0x" |
| << Twine::utohexstr(NewSymbol.st_value) << '\n'; |
| ++IsUpdated; |
| }; |
| |
| if (opts::HotText && |
| (*SymbolName == "__hot_start" || *SymbolName == "__hot_end")) |
| updateSymbolValue(*SymbolName, NumHotTextSymsUpdated); |
| |
| if (opts::HotData && |
| (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end")) |
| updateSymbolValue(*SymbolName, NumHotDataSymsUpdated); |
| |
| if (*SymbolName == "_end") { |
| unsigned Ignored; |
| updateSymbolValue(*SymbolName, Ignored); |
| } |
| |
| if (IsDynSym) |
| Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * |
| sizeof(ELFSymTy), |
| NewSymbol); |
| else |
| Symbols.emplace_back(NewSymbol); |
| } |
| |
| if (IsDynSym) { |
| assert(Symbols.empty()); |
| return; |
| } |
| |
| // Add symbols of injected functions |
| for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { |
| ELFSymTy NewSymbol; |
| BinarySection *OriginSection = Function->getOriginSection(); |
| NewSymbol.st_shndx = |
| OriginSection |
| ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) |
| : Function->getCodeSection()->getIndex(); |
| NewSymbol.st_value = Function->getOutputAddress(); |
| NewSymbol.st_name = AddToStrTab(Function->getOneName()); |
| NewSymbol.st_size = Function->getOutputSize(); |
| NewSymbol.st_other = 0; |
| NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); |
| Symbols.emplace_back(NewSymbol); |
| |
| if (Function->isSplit()) { |
| ELFSymTy NewColdSym = NewSymbol; |
| NewColdSym.setType(ELF::STT_NOTYPE); |
| SmallVector<char, 256> Buf; |
| NewColdSym.st_name = AddToStrTab( |
| Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); |
| NewColdSym.st_value = Function->cold().getAddress(); |
| NewColdSym.st_size = Function->cold().getImageSize(); |
| Symbols.emplace_back(NewColdSym); |
| } |
| } |
| |
| assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && |
| "either none or both __hot_start/__hot_end symbols were expected"); |
| assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && |
| "either none or both __hot_data_start/__hot_data_end symbols were " |
| "expected"); |
| |
| auto addSymbol = [&](const std::string &Name) { |
| ELFSymTy Symbol; |
| Symbol.st_value = getNewValueForSymbol(Name); |
| Symbol.st_shndx = ELF::SHN_ABS; |
| Symbol.st_name = AddToStrTab(Name); |
| Symbol.st_size = 0; |
| Symbol.st_other = 0; |
| Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); |
| |
| outs() << "BOLT-INFO: setting " << Name << " to 0x" |
| << Twine::utohexstr(Symbol.st_value) << '\n'; |
| |
| Symbols.emplace_back(Symbol); |
| }; |
| |
| if (opts::HotText && !NumHotTextSymsUpdated) { |
| addSymbol("__hot_start"); |
| addSymbol("__hot_end"); |
| } |
| |
| if (opts::HotData && !NumHotDataSymsUpdated) { |
| addSymbol("__hot_data_start"); |
| addSymbol("__hot_data_end"); |
| } |
| |
| // Put local symbols at the beginning. |
| llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) { |
| if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL) |
| return true; |
| return false; |
| }); |
| |
| for (const ELFSymTy &Symbol : Symbols) |
| Write(0, Symbol); |
| } |
| |
| template <typename ELFT> |
| void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) { |
| const ELFFile<ELFT> &Obj = File->getELFFile(); |
| using ELFShdrTy = typename ELFObjectFile<ELFT>::Elf_Shdr; |
| using ELFSymTy = typename ELFObjectFile<ELFT>::Elf_Sym; |
| |
| // Compute a preview of how section indices will change after rewriting, so |
| // we can properly update the symbol table based on new section indices. |
| std::vector<uint32_t> NewSectionIndex; |
| getOutputSections(File, NewSectionIndex); |
| |
| // Set pointer at the end of the output file, so we can pwrite old symbol |
| // tables if we need to. |
| uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress); |
| assert(NextAvailableOffset >= FirstNonAllocatableOffset && |
| "next available offset calculation failure"); |
| Out->os().seek(NextAvailableOffset); |
| |
| // Update dynamic symbol table. |
| const ELFShdrTy *DynSymSection = nullptr; |
| for (const ELFShdrTy &Section : cantFail(Obj.sections())) { |
| if (Section.sh_type == ELF::SHT_DYNSYM) { |
| DynSymSection = &Section; |
| break; |
| } |
| } |
| assert((DynSymSection || BC->IsStaticExecutable) && |
| "dynamic symbol table expected"); |
| if (DynSymSection) { |
| updateELFSymbolTable( |
| File, |
| /*IsDynSym=*/true, |
| *DynSymSection, |
| NewSectionIndex, |
| [&](size_t Offset, const ELFSymTy &Sym) { |
| Out->os().pwrite(reinterpret_cast<const char *>(&Sym), |
| sizeof(ELFSymTy), |
| DynSymSection->sh_offset + Offset); |
| }, |
| [](StringRef) -> size_t { return 0; }); |
| } |
| |
| if (opts::RemoveSymtab) |
| return; |
| |
| // (re)create regular symbol table. |
| const ELFShdrTy *SymTabSection = nullptr; |
| for (const ELFShdrTy &Section : cantFail(Obj.sections())) { |
| if (Section.sh_type == ELF::SHT_SYMTAB) { |
| SymTabSection = &Section; |
| break; |
| } |
| } |
| if (!SymTabSection) { |
| errs() << "BOLT-WARNING: no symbol table found\n"; |
| return; |
| } |
| |
| const ELFShdrTy *StrTabSection = |
| cantFail(Obj.getSection(SymTabSection->sh_link)); |
| std::string NewContents; |
| std::string NewStrTab = std::string( |
| File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); |
| StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); |
| StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); |
| |
| NumLocalSymbols = 0; |
| updateELFSymbolTable( |
| File, |
| /*IsDynSym=*/false, |
| *SymTabSection, |
| NewSectionIndex, |
| [&](size_t Offset, const ELFSymTy &Sym) { |
| if (Sym.getBinding() == ELF::STB_LOCAL) |
| ++NumLocalSymbols; |
| NewContents.append(reinterpret_cast<const char *>(&Sym), |
| sizeof(ELFSymTy)); |
| }, |
| [&](StringRef Str) { |
| size_t Idx = NewStrTab.size(); |
| NewStrTab.append(NameResolver::restore(Str).str()); |
| NewStrTab.append(1, '\0'); |
| return Idx; |
| }); |
| |
| BC->registerOrUpdateNoteSection(SecName, |
| copyByteArray(NewContents), |
| NewContents.size(), |
| /*Alignment=*/1, |
| /*IsReadOnly=*/true, |
| ELF::SHT_SYMTAB); |
| |
| BC->registerOrUpdateNoteSection(StrSecName, |
| copyByteArray(NewStrTab), |
| NewStrTab.size(), |
| /*Alignment=*/1, |
| /*IsReadOnly=*/true, |
| ELF::SHT_STRTAB); |
| } |
| |
| template <typename ELFT> |
| void |
| RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile<ELFT> *File) { |
| using Elf_Rela = typename ELFT::Rela; |
| raw_fd_ostream &OS = Out->os(); |
| const ELFFile<ELFT> &EF = File->getELFFile(); |
| |
| uint64_t RelDynOffset = 0, RelDynEndOffset = 0; |
| uint64_t RelPltOffset = 0, RelPltEndOffset = 0; |
| |
| auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, |
| uint64_t &End) { |
| ErrorOr<BinarySection &> Section = BC->getSectionForAddress(Address); |
| Start = Section->getInputFileOffset(); |
| End = Start + Section->getSize(); |
| }; |
| |
| if (!DynamicRelocationsAddress && !PLTRelocationsAddress) |
| return; |
| |
| if (DynamicRelocationsAddress) |
| setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, |
| RelDynEndOffset); |
| |
| if (PLTRelocationsAddress) |
| setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, |
| RelPltEndOffset); |
| |
| DynamicRelativeRelocationsCount = 0; |
| |
| auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { |
| OS.pwrite(reinterpret_cast<const char *>(RelA), sizeof(*RelA), Offset); |
| Offset += sizeof(*RelA); |
| }; |
| |
| auto writeRelocations = [&](bool PatchRelative) { |
| for (BinarySection &Section : BC->allocatableSections()) { |
| for (const Relocation &Rel : Section.dynamicRelocations()) { |
| const bool IsRelative = Rel.isRelative(); |
| if (PatchRelative != IsRelative) |
| continue; |
| |
| if (IsRelative) |
| ++DynamicRelativeRelocationsCount; |
| |
| Elf_Rela NewRelA; |
| uint64_t SectionAddress = Section.getOutputAddress(); |
| SectionAddress = |
| SectionAddress == 0 ? Section.getAddress() : SectionAddress; |
| MCSymbol *Symbol = Rel.Symbol; |
| uint32_t SymbolIdx = 0; |
| uint64_t Addend = Rel.Addend; |
| |
| if (Rel.Symbol) { |
| SymbolIdx = getOutputDynamicSymbolIndex(Symbol); |
| } else { |
| // Usually this case is used for R_*_(I)RELATIVE relocations |
| const uint64_t Address = getNewFunctionOrDataAddress(Addend); |
| if (Address) |
| Addend = Address; |
| } |
| |
| NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); |
| NewRelA.r_offset = SectionAddress + Rel.Offset; |
| NewRelA.r_addend = Addend; |
| |
| const bool IsJmpRel = |
| !!(IsJmpRelocation.find(Rel.Type) != IsJmpRelocation.end()); |
| uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; |
| const uint64_t &EndOffset = |
| IsJmpRel ? RelPltEndOffset : RelDynEndOffset; |
| if (!Offset || !EndOffset) { |
| errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; |
| exit(1); |
| } |
| |
| if (Offset + sizeof(NewRelA) > EndOffset) { |
| errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; |
| exit(1); |
| } |
| |
| writeRela(&NewRelA, Offset); |
| } |
| } |
| }; |
| |
| // The dynamic linker expects R_*_RELATIVE relocations to be emitted first |
| writeRelocations(/* PatchRelative */ true); |
| writeRelocations(/* PatchRelative */ false); |
| |
| auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { |
| if (!Offset) |
| return; |
| |
| typename ELFObjectFile<ELFT>::Elf_Rela RelA; |
| RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); |
| RelA.r_offset = 0; |
| RelA.r_addend = 0; |
| while (Offset < EndOffset) |
| writeRela(&RelA, Offset); |
| |
| assert(Offset == EndOffset && "Unexpected section overflow"); |
| }; |
| |
| // Fill the rest of the sections with R_*_NONE relocations |
| fillNone(RelDynOffset, RelDynEndOffset); |
| fillNone(RelPltOffset, RelPltEndOffset); |
| } |
| |
| template <typename ELFT> |
| void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) { |
| raw_fd_ostream &OS = Out->os(); |
| |
| SectionRef GOTSection; |
| for (const SectionRef &Section : File->sections()) { |
| StringRef SectionName = cantFail(Section.getName()); |
| if (SectionName == ".got") { |
| GOTSection = Section; |
| break; |
| } |
| } |
| if (!GOTSection.getObject()) { |
| if (!BC->IsStaticExecutable) |
| errs() << "BOLT-INFO: no .got section found\n"; |
| return; |
| } |
| |
| StringRef GOTContents = cantFail(GOTSection.getContents()); |
| for (const uint64_t *GOTEntry = |
| reinterpret_cast<const uint64_t *>(GOTContents.data()); |
| GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() + |
| GOTContents.size()); |
| ++GOTEntry) { |
| if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" |
| << Twine::utohexstr(*GOTEntry) << " with 0x" |
| << Twine::utohexstr(NewAddress) << '\n'); |
| OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress), |
| reinterpret_cast<const char *>(GOTEntry) - |
| File->getData().data()); |
| } |
| } |
| } |
| |
| template <typename ELFT> |
| void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) { |
| if (BC->IsStaticExecutable) |
| return; |
| |
| const ELFFile<ELFT> &Obj = File->getELFFile(); |
| raw_fd_ostream &OS = Out->os(); |
| |
| using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; |
| using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; |
| |
| // Locate DYNAMIC by looking through program headers. |
| uint64_t DynamicOffset = 0; |
| const Elf_Phdr *DynamicPhdr = 0; |
| for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { |
| if (Phdr.p_type == ELF::PT_DYNAMIC) { |
| DynamicOffset = Phdr.p_offset; |
| DynamicPhdr = &Phdr; |
| assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); |
| break; |
| } |
| } |
| assert(DynamicPhdr && "missing dynamic in ELF binary"); |
| |
| bool ZNowSet = false; |
| |
| // Go through all dynamic entries and patch functions addresses with |
| // new ones. |
| typename ELFT::DynRange DynamicEntries = |
| cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); |
| auto DTB = DynamicEntries.begin(); |
| for (const Elf_Dyn &Dyn : DynamicEntries) { |
| Elf_Dyn NewDE = Dyn; |
| bool ShouldPatch = true; |
| switch (Dyn.d_tag) { |
| default: |
| ShouldPatch = false; |
| break; |
| case ELF::DT_RELACOUNT: |
| NewDE.d_un.d_val = DynamicRelativeRelocationsCount; |
| break; |
| case ELF::DT_INIT: |
| case ELF::DT_FINI: { |
| if (BC->HasRelocations) { |
| if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " |
| << Dyn.getTag() << '\n'); |
| NewDE.d_un.d_ptr = NewAddress; |
| } |
| } |
| RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); |
| if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { |
| if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) |
| NewDE.d_un.d_ptr = Addr; |
| } |
| if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { |
| if (auto Addr = RtLibrary->getRuntimeStartAddress()) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" |
| << Twine::utohexstr(Addr) << '\n'); |
| NewDE.d_un.d_ptr = Addr; |
| } |
| } |
| break; |
| } |
| case ELF::DT_FLAGS: |
| if (BC->RequiresZNow) { |
| NewDE.d_un.d_val |= ELF::DF_BIND_NOW; |
| ZNowSet = true; |
| } |
| break; |
| case ELF::DT_FLAGS_1: |
| if (BC->RequiresZNow) { |
| NewDE.d_un.d_val |= ELF::DF_1_NOW; |
| ZNowSet = true; |
| } |
| break; |
| } |
| if (ShouldPatch) |
| OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE), |
| DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); |
| } |
| |
| if (BC->RequiresZNow && !ZNowSet) { |
| errs() << "BOLT-ERROR: output binary requires immediate relocation " |
| "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " |
| ".dynamic. Please re-link the binary with -znow.\n"; |
| exit(1); |
| } |
| } |
| |
| template <typename ELFT> |
| Error RewriteInstance::readELFDynamic(ELFObjectFile<ELFT> *File) { |
| const ELFFile<ELFT> &Obj = File->getELFFile(); |
| |
| using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr; |
| using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn; |
| |
| // Locate DYNAMIC by looking through program headers. |
| const Elf_Phdr *DynamicPhdr = 0; |
| for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { |
| if (Phdr.p_type == ELF::PT_DYNAMIC) { |
| DynamicPhdr = &Phdr; |
| break; |
| } |
| } |
| |
| if (!DynamicPhdr) { |
| outs() << "BOLT-INFO: static input executable detected\n"; |
| // TODO: static PIE executable might have dynamic header |
| BC->IsStaticExecutable = true; |
| return Error::success(); |
| } |
| |
| if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) |
| return createStringError(errc::executable_format_error, |
| "dynamic section sizes should match"); |
| |
| // Go through all dynamic entries to locate entries of interest. |
| auto DynamicEntriesOrErr = Obj.dynamicEntries(); |
| if (!DynamicEntriesOrErr) |
| return DynamicEntriesOrErr.takeError(); |
| typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); |
| |
| for (const Elf_Dyn &Dyn : DynamicEntries) { |
| switch (Dyn.d_tag) { |
| case ELF::DT_INIT: |
| if (!BC->HasInterpHeader) { |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); |
| BC->StartFunctionAddress = Dyn.getPtr(); |
| } |
| break; |
| case ELF::DT_FINI: |
| BC->FiniFunctionAddress = Dyn.getPtr(); |
| break; |
| case ELF::DT_RELA: |
| DynamicRelocationsAddress = Dyn.getPtr(); |
| break; |
| case ELF::DT_RELASZ: |
| DynamicRelocationsSize = Dyn.getVal(); |
| break; |
| case ELF::DT_JMPREL: |
| PLTRelocationsAddress = Dyn.getPtr(); |
| break; |
| case ELF::DT_PLTRELSZ: |
| PLTRelocationsSize = Dyn.getVal(); |
| break; |
| case ELF::DT_RELACOUNT: |
| DynamicRelativeRelocationsCount = Dyn.getVal(); |
| break; |
| } |
| } |
| |
| if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { |
| DynamicRelocationsAddress.reset(); |
| DynamicRelocationsSize = 0; |
| } |
| |
| if (!PLTRelocationsAddress || !PLTRelocationsSize) { |
| PLTRelocationsAddress.reset(); |
| PLTRelocationsSize = 0; |
| } |
| return Error::success(); |
| } |
| |
| uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { |
| const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); |
| if (!Function) |
| return 0; |
| |
| return Function->getOutputAddress(); |
| } |
| |
| uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { |
| if (uint64_t Function = getNewFunctionAddress(OldAddress)) |
| return Function; |
| |
| const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); |
| if (BD && BD->isMoved()) |
| return BD->getOutputAddress(); |
| |
| return 0; |
| } |
| |
| void RewriteInstance::rewriteFile() { |
| std::error_code EC; |
| Out = std::make_unique<ToolOutputFile>(opts::OutputFilename, EC, |
| sys::fs::OF_None); |
| check_error(EC, "cannot create output executable file"); |
| |
| raw_fd_ostream &OS = Out->os(); |
| |
| // Copy allocatable part of the input. |
| OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); |
| |
| // We obtain an asm-specific writer so that we can emit nops in an |
| // architecture-specific way at the end of the function. |
| std::unique_ptr<MCAsmBackend> MAB( |
| BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); |
| auto Streamer = BC->createStreamer(OS); |
| // Make sure output stream has enough reserved space, otherwise |
| // pwrite() will fail. |
| uint64_t Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress)); |
| (void)Offset; |
| assert(Offset == getFileOffsetForAddress(NextAvailableAddress) && |
| "error resizing output file"); |
| |
| // Overwrite functions with fixed output address. This is mostly used by |
| // non-relocation mode, with one exception: injected functions are covered |
| // here in both modes. |
| uint64_t CountOverwrittenFunctions = 0; |
| uint64_t OverwrittenScore = 0; |
| for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { |
| if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) |
| continue; |
| |
| if (Function->getImageSize() > Function->getMaxSize()) { |
| if (opts::Verbosity >= 1) |
| errs() << "BOLT-WARNING: new function size (0x" |
| << Twine::utohexstr(Function->getImageSize()) |
| << ") is larger than maximum allowed size (0x" |
| << Twine::utohexstr(Function->getMaxSize()) << ") for function " |
| << *Function << '\n'; |
| |
| // Remove jump table sections that this function owns in non-reloc mode |
| // because we don't want to write them anymore. |
| if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { |
| for (auto &JTI : Function->JumpTables) { |
| JumpTable *JT = JTI.second; |
| BinarySection &Section = JT->getOutputSection(); |
| BC->deregisterSection(Section); |
| } |
| } |
| continue; |
| } |
| |
| if (Function->isSplit() && (Function->cold().getImageAddress() == 0 || |
| Function->cold().getImageSize() == 0)) |
| continue; |
| |
| OverwrittenScore += Function->getFunctionScore(); |
| // Overwrite function in the output file. |
| if (opts::Verbosity >= 2) |
| outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; |
| |
| OS.pwrite(reinterpret_cast<char *>(Function->getImageAddress()), |
| Function->getImageSize(), Function->getFileOffset()); |
| |
| // Write nops at the end of the function. |
| if (Function->getMaxSize() != std::numeric_limits<uint64_t>::max()) { |
| uint64_t Pos = OS.tell(); |
| OS.seek(Function->getFileOffset() + Function->getImageSize()); |
| MAB->writeNopData(OS, Function->getMaxSize() - Function->getImageSize(), |
| &*BC->STI); |
| |
| OS.seek(Pos); |
| } |
| |
| if (!Function->isSplit()) { |
| ++CountOverwrittenFunctions; |
| if (opts::MaxFunctions && |
| CountOverwrittenFunctions == opts::MaxFunctions) { |
| outs() << "BOLT: maximum number of functions reached\n"; |
| break; |
| } |
| continue; |
| } |
| |
| // Write cold part |
| if (opts::Verbosity >= 2) |
| outs() << "BOLT: rewriting function \"" << *Function |
| << "\" (cold part)\n"; |
| |
| OS.pwrite(reinterpret_cast<char *>(Function->cold().getImageAddress()), |
| Function->cold().getImageSize(), |
| Function->cold().getFileOffset()); |
| |
| ++CountOverwrittenFunctions; |
| if (opts::MaxFunctions && CountOverwrittenFunctions == opts::MaxFunctions) { |
| outs() << "BOLT: maximum number of functions reached\n"; |
| break; |
| } |
| } |
| |
| // Print function statistics for non-relocation mode. |
| if (!BC->HasRelocations) { |
| outs() << "BOLT: " << CountOverwrittenFunctions << " out of " |
| << BC->getBinaryFunctions().size() |
| << " functions were overwritten.\n"; |
| if (BC->TotalScore != 0) { |
| double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; |
| outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage) |
| << "% of the execution count of simple functions of " |
| "this binary\n"; |
| } |
| } |
| |
| if (BC->HasRelocations && opts::TrapOldCode) { |
| uint64_t SavedPos = OS.tell(); |
| // Overwrite function body to make sure we never execute these instructions. |
| for (auto &BFI : BC->getBinaryFunctions()) { |
| BinaryFunction &BF = BFI.second; |
| if (!BF.getFileOffset() || !BF.isEmitted()) |
| continue; |
| OS.seek(BF.getFileOffset()); |
| for (unsigned I = 0; I < BF.getMaxSize(); ++I) |
| OS.write((unsigned char)BC->MIB->getTrapFillValue()); |
| } |
| OS.seek(SavedPos); |
| } |
| |
| // Write all allocatable sections - reloc-mode text is written here as well |
| for (BinarySection &Section : BC->allocatableSections()) { |
| if (!Section.isFinalized() || !Section.getOutputData()) |
| continue; |
| |
| if (opts::Verbosity >= 1) |
| outs() << "BOLT: writing new section " << Section.getName() |
| << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress()) |
| << "\n of size " << Section.getOutputSize() << "\n at offset " |
| << Section.getOutputFileOffset() << '\n'; |
| OS.pwrite(reinterpret_cast<const char *>(Section.getOutputData()), |
| Section.getOutputSize(), Section.getOutputFileOffset()); |
| } |
| |
| for (BinarySection &Section : BC->allocatableSections()) |
| Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { |
| return getNewValueForSymbol(S->getName()); |
| }); |
| |
| // If .eh_frame is present create .eh_frame_hdr. |
| if (EHFrameSection && EHFrameSection->isFinalized()) |
| writeEHFrameHeader(); |
| |
| // Add BOLT Addresses Translation maps to allow profile collection to |
| // happen in the output binary |
| if (opts::EnableBAT) |
| addBATSection(); |
| |
| // Patch program header table. |
| patchELFPHDRTable(); |
| |
| // Finalize memory image of section string table. |
| finalizeSectionStringTable(); |
| |
| // Update symbol tables. |
| patchELFSymTabs(); |
| |
| patchBuildID(); |
| |
| if (opts::EnableBAT) |
| encodeBATSection(); |
| |
| // Copy non-allocatable sections once allocatable part is finished. |
| rewriteNoteSections(); |
| |
| if (BC->HasRelocations) { |
| patchELFAllocatableRelaSections(); |
| patchELFGOT(); |
| } |
| |
| // Patch dynamic section/segment. |
| patchELFDynamic(); |
| |
| // Update ELF book-keeping info. |
| patchELFSectionHeaderTable(); |
| |
| if (opts::PrintSections) { |
| outs() << "BOLT-INFO: Sections after processing:\n"; |
| BC->printSections(outs()); |
| } |
| |
| Out->keep(); |
| EC = sys::fs::setPermissions(opts::OutputFilename, sys::fs::perms::all_all); |
| check_error(EC, "cannot set permissions of output file"); |
| } |
| |
| void RewriteInstance::writeEHFrameHeader() { |
| DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, |
| EHFrameSection->getOutputAddress()); |
| Error E = NewEHFrame.parse(DWARFDataExtractor( |
| EHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), |
| BC->AsmInfo->getCodePointerSize())); |
| check_error(std::move(E), "failed to parse EH frame"); |
| |
| uint64_t OldEHFrameAddress = 0; |
| StringRef OldEHFrameContents; |
| ErrorOr<BinarySection &> OldEHFrameSection = |
| BC->getUniqueSectionByName(Twine(getOrgSecPrefix(), ".eh_frame").str()); |
| if (OldEHFrameSection) { |
| OldEHFrameAddress = OldEHFrameSection->getOutputAddress(); |
| OldEHFrameContents = OldEHFrameSection->getOutputContents(); |
| } |
| DWARFDebugFrame OldEHFrame(BC->TheTriple->getArch(), true, OldEHFrameAddress); |
| Error Er = OldEHFrame.parse( |
| DWARFDataExtractor(OldEHFrameContents, BC->AsmInfo->isLittleEndian(), |
| BC->AsmInfo->getCodePointerSize())); |
| check_error(std::move(Er), "failed to parse EH frame"); |
| |
| LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n"); |
| |
| NextAvailableAddress = |
| appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); |
| |
| const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; |
| const uint64_t EHFrameHdrFileOffset = |
| getFileOffsetForAddress(NextAvailableAddress); |
| |
| std::vector<char> NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( |
| OldEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); |
| |
| assert(Out->os().tell() == EHFrameHdrFileOffset && "offset mismatch"); |
| Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); |
| |
| const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, |
| /*IsText=*/false, |
| /*IsAllocatable=*/true); |
| BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( |
| ".eh_frame_hdr", ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(), |
| /*Alignment=*/1); |
| EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); |
| EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); |
| |
| NextAvailableAddress += EHFrameHdrSec.getOutputSize(); |
| |
| // Merge new .eh_frame with original so that gdb can locate all FDEs. |
| if (OldEHFrameSection) { |
| const uint64_t EHFrameSectionSize = (OldEHFrameSection->getOutputAddress() + |
| OldEHFrameSection->getOutputSize() - |
| EHFrameSection->getOutputAddress()); |
| EHFrameSection = |
| BC->registerOrUpdateSection(".eh_frame", |
| EHFrameSection->getELFType(), |
| EHFrameSection->getELFFlags(), |
| EHFrameSection->getOutputData(), |
| EHFrameSectionSize, |
| EHFrameSection->getAlignment()); |
| BC->deregisterSection(*OldEHFrameSection); |
| } |
| |
| LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " |
| << EHFrameSection->getOutputSize() << '\n'); |
| } |
| |
| uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { |
| uint64_t Value = RTDyld->getSymbol(Name).getAddress(); |
| if (Value != 0) |
| return Value; |
| |
| // Return the original value if we haven't emitted the symbol. |
| BinaryData *BD = BC->getBinaryDataByName(Name); |
| if (!BD) |
| return 0; |
| |
| return BD->getAddress(); |
| } |
| |
| uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { |
| // Check if it's possibly part of the new segment. |
| if (Address >= NewTextSegmentAddress) |
| return Address - NewTextSegmentAddress + NewTextSegmentOffset; |
| |
| // Find an existing segment that matches the address. |
| const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); |
| if (SegmentInfoI == BC->SegmentMapInfo.begin()) |
| return 0; |
| |
| const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; |
| if (Address < SegmentInfo.Address || |
| Address >= SegmentInfo.Address + SegmentInfo.FileSize) |
| return 0; |
| |
| return SegmentInfo.FileOffset + Address - SegmentInfo.Address; |
| } |
| |
| bool RewriteInstance::willOverwriteSection(StringRef SectionName) { |
| for (const char *const &OverwriteName : SectionsToOverwrite) |
| if (SectionName == OverwriteName) |
| return true; |
| for (std::string &OverwriteName : DebugSectionsToOverwrite) |
| if (SectionName == OverwriteName) |
| return true; |
| |
| ErrorOr<BinarySection &> Section = BC->getUniqueSectionByName(SectionName); |
| return Section && Section->isAllocatable() && Section->isFinalized(); |
| } |
| |
| bool RewriteInstance::isDebugSection(StringRef SectionName) { |
| if (SectionName.startswith(".debug_") || SectionName.startswith(".zdebug_") || |
| SectionName == ".gdb_index" || SectionName == ".stab" || |
| SectionName == ".stabstr") |
| return true; |
| |
| return false; |
| } |
| |
| bool RewriteInstance::isKSymtabSection(StringRef SectionName) { |
| if (SectionName.startswith("__ksymtab")) |
| return true; |
| |
| return false; |
| } |