| // Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "expression.h" |
| #include "assignment.h" |
| #include "scope.h" |
| #include "semantics.h" |
| #include "symbol.h" |
| #include "tools.h" |
| #include "../common/idioms.h" |
| #include "../evaluate/common.h" |
| #include "../evaluate/fold.h" |
| #include "../evaluate/tools.h" |
| #include "../parser/characters.h" |
| #include "../parser/parse-tree-visitor.h" |
| #include "../parser/parse-tree.h" |
| #include <algorithm> |
| #include <functional> |
| #include <optional> |
| #include <set> |
| |
| // #define DUMP_ON_FAILURE 1 |
| // #define CRASH_ON_FAILURE 1 |
| #if DUMP_ON_FAILURE |
| #include "../parser/dump-parse-tree.h" |
| #include <iostream> |
| #endif |
| |
| // Typedef for optional generic expressions (ubiquitous in this file) |
| using MaybeExpr = |
| std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>; |
| |
| // Much of the code that implements semantic analysis of expressions is |
| // tightly coupled with their typed representations in lib/evaluate, |
| // and appears here in namespace Fortran::evaluate for convenience. |
| namespace Fortran::evaluate { |
| |
| using common::TypeCategory; |
| |
| struct DynamicTypeWithLength : public DynamicType { |
| explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {} |
| std::optional<Expr<SubscriptInteger>> LEN() const; |
| std::optional<Expr<SubscriptInteger>> length; |
| }; |
| |
| std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const { |
| if (length.has_value()) { |
| return length; |
| } |
| if (auto *lengthParam{charLength()}) { |
| if (const auto &len{lengthParam->GetExplicit()}) { |
| return ConvertToType<SubscriptInteger>(common::Clone(*len)); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec( |
| const std::optional<parser::TypeSpec> &spec) { |
| if (spec.has_value()) { |
| if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) { |
| // Name resolution sets TypeSpec::declTypeSpec only when it's valid |
| // (viz., an intrinsic type with valid known kind or a non-polymorphic |
| // & non-ABSTRACT derived type). |
| if (const semantics::IntrinsicTypeSpec * |
| intrinsic{typeSpec->AsIntrinsic()}) { |
| TypeCategory category{intrinsic->category()}; |
| if (auto optKind{ToInt64(intrinsic->kind())}) { |
| int kind{static_cast<int>(*optKind)}; |
| if (category == TypeCategory::Character) { |
| const semantics::CharacterTypeSpec &cts{ |
| typeSpec->characterTypeSpec()}; |
| const semantics::ParamValue &len{cts.length()}; |
| // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() & |
| // type guards, but not in array constructors. |
| return DynamicTypeWithLength{DynamicType{kind, len}}; |
| } else { |
| return DynamicTypeWithLength{DynamicType{category, kind}}; |
| } |
| } |
| } else if (const semantics::DerivedTypeSpec * |
| derived{typeSpec->AsDerived()}) { |
| return DynamicTypeWithLength{DynamicType{*derived}}; |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Wraps a object in an explicitly typed representation (e.g., Designator<> |
| // or FunctionRef<>) that has been instantiated on a dynamically chosen type. |
| template<TypeCategory CATEGORY, template<typename> typename WRAPPER, |
| typename WRAPPED> |
| common::IfNoLvalue<MaybeExpr, WRAPPED> WrapperHelper(int kind, WRAPPED &&x) { |
| return common::SearchTypes( |
| TypeKindVisitor<CATEGORY, WRAPPER, WRAPPED>{kind, std::move(x)}); |
| } |
| |
| template<template<typename> typename WRAPPER, typename WRAPPED> |
| common::IfNoLvalue<MaybeExpr, WRAPPED> TypedWrapper( |
| const DynamicType &dyType, WRAPPED &&x) { |
| switch (dyType.category()) { |
| case TypeCategory::Integer: |
| return WrapperHelper<TypeCategory::Integer, WRAPPER, WRAPPED>( |
| dyType.kind(), std::move(x)); |
| case TypeCategory::Real: |
| return WrapperHelper<TypeCategory::Real, WRAPPER, WRAPPED>( |
| dyType.kind(), std::move(x)); |
| case TypeCategory::Complex: |
| return WrapperHelper<TypeCategory::Complex, WRAPPER, WRAPPED>( |
| dyType.kind(), std::move(x)); |
| case TypeCategory::Character: |
| return WrapperHelper<TypeCategory::Character, WRAPPER, WRAPPED>( |
| dyType.kind(), std::move(x)); |
| case TypeCategory::Logical: |
| return WrapperHelper<TypeCategory::Logical, WRAPPER, WRAPPED>( |
| dyType.kind(), std::move(x)); |
| case TypeCategory::Derived: |
| return AsGenericExpr(Expr<SomeDerived>{WRAPPER<SomeDerived>{std::move(x)}}); |
| default: CRASH_NO_CASE; |
| } |
| } |
| |
| // Wraps a data reference in a typed Designator<>, and a procedure |
| // or procedure pointer reference in a ProcedureDesignator. |
| MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) { |
| const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; |
| if (semantics::IsProcedure(symbol)) { |
| if (auto *component{std::get_if<Component>(&ref.u)}) { |
| return Expr<SomeType>{ProcedureDesignator{std::move(*component)}}; |
| } else { |
| CHECK(std::holds_alternative<const Symbol *>(ref.u)); |
| return Expr<SomeType>{ProcedureDesignator{symbol}}; |
| } |
| } else if (auto dyType{DynamicType::From(symbol)}) { |
| return TypedWrapper<Designator, DataRef>(*dyType, std::move(ref)); |
| } else if (const auto *declTypeSpec{symbol.GetType()}) { |
| if (declTypeSpec->category() == semantics::DeclTypeSpec::TypeStar) { |
| Say("TYPE(*) assumed-type dummy argument '%s' may not be " |
| "used except as an actual argument"_err_en_US, |
| symbol.name()); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Some subscript semantic checks must be deferred until all of the |
| // subscripts are in hand. |
| MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) { |
| const Symbol &symbol{ref.GetLastSymbol().GetUltimate()}; |
| int symbolRank{symbol.Rank()}; |
| int subscripts{static_cast<int>(ref.size())}; |
| if (subscripts == 0) { |
| // A -> A(:,:) |
| for (; subscripts < symbolRank; ++subscripts) { |
| ref.emplace_back(Triplet{}); |
| } |
| } |
| if (subscripts != symbolRank) { |
| Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US, |
| symbolRank, symbol.name(), subscripts); |
| return std::nullopt; |
| } else if (subscripts == 0) { |
| // nothing to check |
| } else if (Component * component{ref.base().UnwrapComponent()}) { |
| int baseRank{component->base().Rank()}; |
| if (baseRank > 0) { |
| int subscriptRank{0}; |
| for (const auto &expr : ref.subscript()) { |
| subscriptRank += expr.Rank(); |
| } |
| if (subscriptRank > 0) { |
| Say("Subscripts of component '%s' of rank-%d derived type " |
| "array have rank %d but must all be scalar"_err_en_US, |
| symbol.name(), baseRank, subscriptRank); |
| return std::nullopt; |
| } |
| } |
| } else if (const auto *details{ |
| symbol.detailsIf<semantics::ObjectEntityDetails>()}) { |
| // C928 & C1002 |
| if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) { |
| if (!last->upper().has_value() && details->IsAssumedSize()) { |
| Say("Assumed-size array '%s' must have explicit final " |
| "subscript upper bound value"_err_en_US, |
| symbol.name()); |
| return std::nullopt; |
| } |
| } |
| } |
| return Designate(DataRef{std::move(ref)}); |
| } |
| |
| // Applies subscripts to a data reference. |
| MaybeExpr ExpressionAnalyzer::ApplySubscripts( |
| DataRef &&dataRef, std::vector<Subscript> &&subscripts) { |
| return std::visit( |
| common::visitors{ |
| [&](const Symbol *symbol) { |
| return CompleteSubscripts(ArrayRef{*symbol, std::move(subscripts)}); |
| }, |
| [&](Component &&c) { |
| return CompleteSubscripts( |
| ArrayRef{std::move(c), std::move(subscripts)}); |
| }, |
| [&](auto &&) -> MaybeExpr { |
| CHECK(!"bad base for ArrayRef"); |
| return std::nullopt; |
| }, |
| }, |
| std::move(dataRef.u)); |
| } |
| |
| // Top-level checks for data references. Unsubscripted whole array references |
| // get expanded -- e.g., MATRIX becomes MATRIX(:,:). |
| MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) { |
| bool addSubscripts{false}; |
| if (Component * component{std::get_if<Component>(&dataRef.u)}) { |
| const Symbol &symbol{component->GetLastSymbol()}; |
| int componentRank{symbol.Rank()}; |
| if (componentRank > 0) { |
| int baseRank{component->base().Rank()}; |
| if (baseRank > 0) { |
| Say("Reference to whole rank-%d component '%%%s' of " |
| "rank-%d array of derived type is not allowed"_err_en_US, |
| componentRank, symbol.name(), baseRank); |
| } else { |
| addSubscripts = true; |
| } |
| } |
| } else if (const Symbol **symbol{std::get_if<const Symbol *>(&dataRef.u)}) { |
| addSubscripts = (*symbol)->Rank() > 0; |
| } |
| if (addSubscripts) { |
| if (MaybeExpr subscripted{ |
| ApplySubscripts(std::move(dataRef), std::vector<Subscript>{})}) { |
| return subscripted; |
| } |
| } |
| return Designate(std::move(dataRef)); |
| } |
| |
| // Parse tree correction after a substring S(j:k) was misparsed as an |
| // array section. N.B. Fortran substrings have to have a range, not a |
| // single index. |
| static void FixMisparsedSubstring(const parser::Designator &d) { |
| auto &mutate{const_cast<parser::Designator &>(d)}; |
| if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) { |
| if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>( |
| &dataRef->u)}) { |
| parser::ArrayElement &arrElement{ae->value()}; |
| if (!arrElement.subscripts.empty()) { |
| auto iter{arrElement.subscripts.begin()}; |
| if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) { |
| if (!std::get<2>(triplet->t).has_value() /* no stride */ && |
| ++iter == arrElement.subscripts.end() /* one subscript */) { |
| if (Symbol * |
| symbol{std::visit( |
| common::visitors{ |
| [](parser::Name &n) { return n.symbol; }, |
| [](common::Indirection<parser::StructureComponent> |
| &sc) { return sc.value().component.symbol; }, |
| [](auto &) -> Symbol * { return nullptr; }, |
| }, |
| arrElement.base.u)}) { |
| const Symbol &ultimate{symbol->GetUltimate()}; |
| if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { |
| if (!ultimate.IsObjectArray() && |
| type->category() == semantics::DeclTypeSpec::Character) { |
| // The ambiguous S(j:k) was parsed as an array section |
| // reference, but it's now clear that it's a substring. |
| // Fix the parse tree in situ. |
| mutate.u = arrElement.ConvertToSubstring(); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) { |
| auto save{GetContextualMessages().SetLocation(d.source)}; |
| FixMisparsedSubstring(d); |
| // These checks have to be deferred to these "top level" data-refs where |
| // we can be sure that there are no following subscripts (yet). |
| if (MaybeExpr result{Analyze(d.u)}) { |
| if (std::optional<evaluate::DataRef> dataRef{ |
| evaluate::ExtractDataRef(std::move(result))}) { |
| return TopLevelChecks(std::move(*dataRef)); |
| } |
| return result; |
| } |
| return std::nullopt; |
| } |
| |
| // A utility subroutine to repackage optional expressions of various levels |
| // of type specificity as fully general MaybeExpr values. |
| template<typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) { |
| return std::make_optional(AsGenericExpr(std::move(x))); |
| } |
| template<typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) { |
| if (x.has_value()) { |
| return AsMaybeExpr(std::move(*x)); |
| } |
| return std::nullopt; |
| } |
| |
| // Type kind parameter values for literal constants. |
| int ExpressionAnalyzer::AnalyzeKindParam( |
| const std::optional<parser::KindParam> &kindParam, int defaultKind) { |
| if (!kindParam.has_value()) { |
| return defaultKind; |
| } |
| return std::visit( |
| common::visitors{ |
| [](std::uint64_t k) { return static_cast<int>(k); }, |
| [&](const parser::Scalar< |
| parser::Integer<parser::Constant<parser::Name>>> &n) { |
| if (MaybeExpr ie{Analyze(n)}) { |
| if (std::optional<std::int64_t> i64{ToInt64(*ie)}) { |
| int iv = *i64; |
| if (iv == *i64) { |
| return iv; |
| } |
| } |
| } |
| return defaultKind; |
| }, |
| }, |
| kindParam->u); |
| } |
| |
| // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant |
| struct IntTypeVisitor { |
| using Result = MaybeExpr; |
| using Types = IntegerTypes; |
| template<typename T> Result Test() { |
| if (T::kind >= kind) { |
| const char *p{digits.begin()}; |
| auto value{T::Scalar::Read(p, 10, true /*signed*/)}; |
| if (!value.overflow) { |
| if (T::kind > kind) { |
| if (!isDefaultKind || |
| !analyzer.context().IsEnabled( |
| parser::LanguageFeature::BigIntLiterals)) { |
| return std::nullopt; |
| } else if (analyzer.context().ShouldWarn( |
| parser::LanguageFeature::BigIntLiterals)) { |
| analyzer.Say(digits, |
| "Integer literal is too large for default INTEGER(KIND=%d); " |
| "assuming INTEGER(KIND=%d)"_en_US, |
| kind, T::kind); |
| } |
| } |
| return Expr<SomeType>{ |
| Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}}; |
| } |
| } |
| return std::nullopt; |
| } |
| ExpressionAnalyzer &analyzer; |
| parser::CharBlock digits; |
| int kind; |
| bool isDefaultKind; |
| }; |
| |
| template<typename PARSED> |
| MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) { |
| const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)}; |
| bool isDefaultKind{!kindParam.has_value()}; |
| int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))}; |
| if (CheckIntrinsicKind(TypeCategory::Integer, kind)) { |
| auto digits{std::get<parser::CharBlock>(x.t)}; |
| if (MaybeExpr result{common::SearchTypes( |
| IntTypeVisitor{*this, digits, kind, isDefaultKind})}) { |
| return result; |
| } else if (isDefaultKind) { |
| Say(digits, |
| "Integer literal is too large for any allowable " |
| "kind of INTEGER"_err_en_US); |
| } else { |
| Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US, |
| kind); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) { |
| return IntLiteralConstant(x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::SignedIntLiteralConstant &x) { |
| return IntLiteralConstant(x); |
| } |
| |
| template<typename TYPE> |
| Constant<TYPE> ReadRealLiteral( |
| parser::CharBlock source, FoldingContext &context) { |
| const char *p{source.begin()}; |
| auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())}; |
| CHECK(p == source.end()); |
| RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal"); |
| auto value{valWithFlags.value}; |
| if (context.flushSubnormalsToZero()) { |
| value = value.FlushSubnormalToZero(); |
| } |
| return {value}; |
| } |
| |
| struct RealTypeVisitor { |
| using Result = std::optional<Expr<SomeReal>>; |
| using Types = RealTypes; |
| |
| RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx) |
| : kind{k}, literal{lit}, context{ctx} {} |
| |
| template<typename T> Result Test() { |
| if (kind == T::kind) { |
| return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))}; |
| } |
| return std::nullopt; |
| } |
| |
| int kind; |
| parser::CharBlock literal; |
| FoldingContext &context; |
| }; |
| |
| // Reads a real literal constant and encodes it with the right kind. |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) { |
| // Use a local message context around the real literal for better |
| // provenance on any messages. |
| auto save{GetContextualMessages().SetLocation(x.real.source)}; |
| // If a kind parameter appears, it defines the kind of the literal and any |
| // letter used in an exponent part (e.g., the 'E' in "6.02214E+23") |
| // should agree. In the absence of an explicit kind parameter, any exponent |
| // letter determines the kind. Otherwise, defaults apply. |
| auto &defaults{context_.defaultKinds()}; |
| int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)}; |
| const char *end{x.real.source.end()}; |
| std::optional<int> letterKind; |
| for (const char *p{x.real.source.begin()}; p < end; ++p) { |
| if (parser::IsLetter(*p)) { |
| switch (*p) { |
| case 'e': letterKind = defaults.GetDefaultKind(TypeCategory::Real); break; |
| case 'd': letterKind = defaults.doublePrecisionKind(); break; |
| case 'q': letterKind = defaults.quadPrecisionKind(); break; |
| default: Say("Unknown exponent letter '%c'"_err_en_US, *p); |
| } |
| break; |
| } |
| } |
| if (letterKind.has_value()) { |
| defaultKind = *letterKind; |
| } |
| auto kind{AnalyzeKindParam(x.kind, defaultKind)}; |
| if (letterKind.has_value() && kind != *letterKind) { |
| Say("Explicit kind parameter on real constant disagrees with " |
| "exponent letter"_en_US); |
| } |
| auto result{common::SearchTypes( |
| RealTypeVisitor{kind, x.real.source, GetFoldingContext()})}; |
| if (!result.has_value()) { |
| Say("Unsupported REAL(KIND=%d)"_err_en_US, kind); |
| } |
| return AsMaybeExpr(std::move(result)); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::SignedRealLiteralConstant &x) { |
| if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) { |
| auto &realExpr{std::get<Expr<SomeReal>>(result->u)}; |
| if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) { |
| if (sign == parser::Sign::Negative) { |
| return {AsGenericExpr(-std::move(realExpr))}; |
| } |
| } |
| return result; |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) { |
| return Analyze(x.u); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) { |
| return AsMaybeExpr( |
| ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)), |
| Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real))); |
| } |
| |
| // CHARACTER literal processing. |
| MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) { |
| if (!CheckIntrinsicKind(TypeCategory::Character, kind)) { |
| return std::nullopt; |
| } |
| switch (kind) { |
| case 1: |
| return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{ |
| parser::DecodeString<std::string, parser::Encoding::LATIN_1>( |
| string, true)}); |
| case 2: |
| return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{ |
| parser::DecodeString<std::u16string, parser::Encoding::UTF_8>( |
| string, true)}); |
| case 4: |
| return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{ |
| parser::DecodeString<std::u32string, parser::Encoding::UTF_8>( |
| string, true)}); |
| default: CRASH_NO_CASE; |
| } |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) { |
| int kind{ |
| AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)}; |
| auto value{std::get<std::string>(x.t)}; |
| return AnalyzeString(std::move(value), kind); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::HollerithLiteralConstant &x) { |
| int kind{GetDefaultKind(TypeCategory::Character)}; |
| auto value{x.v}; |
| return AnalyzeString(std::move(value), kind); |
| } |
| |
| // .TRUE. and .FALSE. of various kinds |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) { |
| auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), |
| GetDefaultKind(TypeCategory::Logical))}; |
| bool value{std::get<bool>(x.t)}; |
| auto result{common::SearchTypes( |
| TypeKindVisitor<TypeCategory::Logical, Constant, bool>{ |
| kind, std::move(value)})}; |
| if (!result.has_value()) { |
| Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); |
| } |
| return result; |
| } |
| |
| // BOZ typeless literals |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) { |
| const char *p{x.v.c_str()}; |
| std::uint64_t base{16}; |
| switch (*p++) { |
| case 'b': base = 2; break; |
| case 'o': base = 8; break; |
| case 'z': break; |
| case 'x': break; |
| default: CRASH_NO_CASE; |
| } |
| CHECK(*p == '"'); |
| ++p; |
| auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)}; |
| if (*p != '"') { |
| Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p, x.v); |
| return std::nullopt; |
| } |
| if (value.overflow) { |
| Say("BOZ literal '%s' too large"_err_en_US, x.v); |
| return std::nullopt; |
| } |
| return {AsGenericExpr(std::move(value.value))}; |
| } |
| |
| // For use with SearchTypes to create a TypeParamInquiry with the |
| // right integer kind. |
| struct TypeParamInquiryVisitor { |
| using Result = std::optional<Expr<SomeInteger>>; |
| using Types = IntegerTypes; |
| TypeParamInquiryVisitor(int k, NamedEntity &&b, const Symbol ¶m) |
| : kind{k}, base{std::move(b)}, parameter{param} {} |
| TypeParamInquiryVisitor(int k, const Symbol ¶m) |
| : kind{k}, parameter{param} {} |
| template<typename T> Result Test() { |
| if (kind == T::kind) { |
| return Expr<SomeInteger>{ |
| Expr<T>{TypeParamInquiry<T::kind>{std::move(base), parameter}}}; |
| } |
| return std::nullopt; |
| } |
| int kind; |
| std::optional<NamedEntity> base; |
| const Symbol ¶meter; |
| }; |
| |
| static std::optional<Expr<SomeInteger>> MakeBareTypeParamInquiry( |
| const Symbol *symbol) { |
| if (std::optional<DynamicType> dyType{DynamicType::From(symbol)}) { |
| if (dyType->category() == TypeCategory::Integer) { |
| return common::SearchTypes( |
| TypeParamInquiryVisitor{dyType->kind(), *symbol}); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Names and named constants |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) { |
| if (std::optional<int> kind{IsAcImpliedDo(n.source)}) { |
| return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>( |
| *kind, AsExpr(ImpliedDoIndex{n.source}))); |
| } else if (!context_.HasError(n)) { |
| const Symbol &ultimate{n.symbol->GetUltimate()}; |
| if (ultimate.detailsIf<semantics::TypeParamDetails>()) { |
| // A bare reference to a derived type parameter (within a parameterized |
| // derived type definition) |
| return AsMaybeExpr(MakeBareTypeParamInquiry(&ultimate)); |
| } else { |
| return Designate(DataRef{ultimate}); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) { |
| if (MaybeExpr value{Analyze(n.v)}) { |
| Expr<SomeType> folded{Fold(GetFoldingContext(), std::move(*value))}; |
| if (IsConstantExpr(folded)) { |
| return {folded}; |
| } |
| Say(n.v.source, "must be a constant"_err_en_US); |
| } |
| return std::nullopt; |
| } |
| |
| // Substring references |
| std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound( |
| const std::optional<parser::ScalarIntExpr> &bound) { |
| if (bound.has_value()) { |
| if (MaybeExpr expr{Analyze(*bound)}) { |
| if (expr->Rank() > 1) { |
| Say("substring bound expression has rank %d"_err_en_US, expr->Rank()); |
| } |
| if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { |
| if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { |
| return {std::move(*ssIntExpr)}; |
| } |
| return {Expr<SubscriptInteger>{ |
| Convert<SubscriptInteger, TypeCategory::Integer>{ |
| std::move(*intExpr)}}}; |
| } else { |
| Say("substring bound expression is not INTEGER"_err_en_US); |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) { |
| if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) { |
| if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { |
| if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) { |
| if (std::optional<DataRef> checked{ |
| ExtractDataRef(std::move(*newBaseExpr))}) { |
| const parser::SubstringRange &range{ |
| std::get<parser::SubstringRange>(ss.t)}; |
| std::optional<Expr<SubscriptInteger>> first{ |
| GetSubstringBound(std::get<0>(range.t))}; |
| std::optional<Expr<SubscriptInteger>> last{ |
| GetSubstringBound(std::get<1>(range.t))}; |
| const Symbol &symbol{checked->GetLastSymbol()}; |
| if (std::optional<DynamicType> dynamicType{ |
| DynamicType::From(symbol)}) { |
| if (dynamicType->category() == TypeCategory::Character) { |
| return WrapperHelper<TypeCategory::Character, Designator, |
| Substring>(dynamicType->kind(), |
| Substring{std::move(checked.value()), std::move(first), |
| std::move(last)}); |
| } |
| } |
| Say("substring may apply only to CHARACTER"_err_en_US); |
| } |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // CHARACTER literal substrings |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::CharLiteralConstantSubstring &x) { |
| const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)}; |
| std::optional<Expr<SubscriptInteger>> lower{ |
| GetSubstringBound(std::get<0>(range.t))}; |
| std::optional<Expr<SubscriptInteger>> upper{ |
| GetSubstringBound(std::get<1>(range.t))}; |
| if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) { |
| if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) { |
| Expr<SubscriptInteger> length{std::visit( |
| [](const auto &ckExpr) { return ckExpr.LEN(); }, charExpr->u)}; |
| if (!lower.has_value()) { |
| lower = Expr<SubscriptInteger>{1}; |
| } |
| if (!upper.has_value()) { |
| upper = Expr<SubscriptInteger>{ |
| static_cast<std::int64_t>(ToInt64(length).value())}; |
| } |
| return std::visit( |
| [&](auto &&ckExpr) -> MaybeExpr { |
| using Result = ResultType<decltype(ckExpr)>; |
| auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)}; |
| CHECK(cp != nullptr); // the parent was parsed as a constant string |
| CHECK(cp->size() == 1); |
| StaticDataObject::Pointer staticData{StaticDataObject::Create()}; |
| staticData->set_alignment(Result::kind) |
| .set_itemBytes(Result::kind) |
| .Push(cp->GetScalarValue().value()); |
| Substring substring{std::move(staticData), std::move(lower.value()), |
| std::move(upper.value())}; |
| return AsGenericExpr(Expr<SomeCharacter>{ |
| Expr<Result>{Designator<Result>{std::move(substring)}}}); |
| }, |
| std::move(charExpr->u)); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Subscripted array references |
| std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript( |
| MaybeExpr &&expr) { |
| if (expr.has_value()) { |
| if (expr->Rank() > 1) { |
| Say("subscript expression has rank %d"_err_en_US, expr->Rank()); |
| } |
| if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) { |
| if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) { |
| return {std::move(*ssIntExpr)}; |
| } |
| return {Expr<SubscriptInteger>{ |
| Convert<SubscriptInteger, TypeCategory::Integer>{ |
| std::move(*intExpr)}}}; |
| } else { |
| Say("subscript expression is not INTEGER"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart( |
| const std::optional<parser::Subscript> &s) { |
| if (s.has_value()) { |
| return AsSubscript(Analyze(*s)); |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript( |
| const parser::SectionSubscript &ss) { |
| return std::visit( |
| common::visitors{ |
| [&](const parser::SubscriptTriplet &t) { |
| return std::make_optional(Subscript{Triplet{ |
| TripletPart(std::get<0>(t.t)), TripletPart(std::get<1>(t.t)), |
| TripletPart(std::get<2>(t.t))}}); |
| }, |
| [&](const auto &s) -> std::optional<Subscript> { |
| if (auto subscriptExpr{AsSubscript(Analyze(s))}) { |
| return {Subscript{std::move(*subscriptExpr)}}; |
| } else { |
| return std::nullopt; |
| } |
| }, |
| }, |
| ss.u); |
| } |
| |
| // Empty result means an error occurred |
| std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts( |
| const std::list<parser::SectionSubscript> &sss) { |
| bool error{false}; |
| std::vector<Subscript> subscripts; |
| for (const auto &s : sss) { |
| if (auto subscript{AnalyzeSectionSubscript(s)}) { |
| subscripts.emplace_back(std::move(*subscript)); |
| } else { |
| error = true; |
| } |
| } |
| return !error ? subscripts : std::vector<Subscript>{}; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) { |
| std::vector<Subscript> subscripts{AnalyzeSectionSubscripts(ae.subscripts)}; |
| if (MaybeExpr baseExpr{Analyze(ae.base)}) { |
| if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) { |
| if (!subscripts.empty()) { |
| return ApplySubscripts(std::move(*dataRef), std::move(subscripts)); |
| } |
| } else { |
| Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Type parameter inquiries apply to data references, but don't depend |
| // on any trailing (co)subscripts. |
| static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) { |
| return std::visit( |
| common::visitors{ |
| [](const Symbol *symbol) { return NamedEntity{*symbol}; }, |
| [](Component &&component) { |
| return NamedEntity{std::move(component)}; |
| }, |
| [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); }, |
| [](CoarrayRef &&coarrayRef) { |
| return NamedEntity{coarrayRef.GetLastSymbol()}; |
| }, |
| }, |
| std::move(designator.u)); |
| } |
| |
| // Components of parent derived types are explicitly represented as such. |
| static std::optional<Component> CreateComponent( |
| DataRef &&base, const Symbol &component, const semantics::Scope &scope) { |
| if (&component.owner() == &scope) { |
| return Component{std::move(base), component}; |
| } |
| if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) { |
| if (const Symbol * parentComponent{parentScope->GetSymbol()}) { |
| return CreateComponent( |
| DataRef{Component{std::move(base), *parentComponent}}, component, |
| *parentScope); |
| } |
| } |
| return std::nullopt; |
| } |
| |
| // Derived type component references and type parameter inquiries |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) { |
| MaybeExpr base{Analyze(sc.base)}; |
| if (!base) { |
| return std::nullopt; |
| } |
| Symbol *sym{sc.component.symbol}; |
| if (context_.HasError(sym)) { |
| return std::nullopt; |
| } |
| const auto &name{sc.component.source}; |
| if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { |
| const semantics::DerivedTypeSpec *dtSpec{nullptr}; |
| if (std::optional<DynamicType> dtDyTy{dtExpr->GetType()}) { |
| if (!dtDyTy->IsUnlimitedPolymorphic()) { |
| dtSpec = &dtDyTy->GetDerivedTypeSpec(); |
| } |
| } |
| if (sym->detailsIf<semantics::TypeParamDetails>()) { |
| if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) { |
| if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) { |
| if (dyType->category() == TypeCategory::Integer) { |
| return AsMaybeExpr( |
| common::SearchTypes(TypeParamInquiryVisitor{dyType->kind(), |
| IgnoreAnySubscripts(std::move(*designator)), *sym})); |
| } |
| } |
| Say(name, "Type parameter is not INTEGER"_err_en_US); |
| } else { |
| Say(name, |
| "A type parameter inquiry must be applied to " |
| "a designator"_err_en_US); |
| } |
| } else if (dtSpec == nullptr || dtSpec->scope() == nullptr) { |
| CHECK(context_.AnyFatalError()); |
| return std::nullopt; |
| } else if (std::optional<DataRef> dataRef{ |
| ExtractDataRef(std::move(*dtExpr))}) { |
| if (auto component{ |
| CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) { |
| return Designate(DataRef{std::move(*component)}); |
| } else { |
| Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US, |
| dtSpec->typeSymbol().name()); |
| } |
| } else { |
| Say(name, |
| "Base of component reference must be a data reference"_err_en_US); |
| } |
| } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) { |
| // special part-ref: %re, %im, %kind, %len |
| // Type errors are detected and reported in semantics. |
| using MiscKind = semantics::MiscDetails::Kind; |
| MiscKind kind{details->kind()}; |
| if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) { |
| if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) { |
| if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) { |
| Expr<SomeReal> realExpr{std::visit( |
| [&](const auto &z) { |
| using PartType = typename ResultType<decltype(z)>::Part; |
| auto part{kind == MiscKind::ComplexPartRe |
| ? ComplexPart::Part::RE |
| : ComplexPart::Part::IM}; |
| return AsCategoryExpr(Designator<PartType>{ |
| ComplexPart{std::move(*dataRef), part}}); |
| }, |
| zExpr->u)}; |
| return {AsGenericExpr(std::move(realExpr))}; |
| } |
| } |
| } else if (kind == MiscKind::KindParamInquiry || |
| kind == MiscKind::LenParamInquiry) { |
| // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x) |
| return MakeFunctionRef( |
| name, ActualArguments{ActualArgument{std::move(*base)}}); |
| } else { |
| common::die("unexpected MiscDetails::Kind"); |
| } |
| } else { |
| Say(name, "derived type required before component reference"_err_en_US); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &co) { |
| Say("TODO: CoindexedNamedObject unimplemented"_err_en_US); |
| return std::nullopt; |
| } |
| |
| int ExpressionAnalyzer::IntegerTypeSpecKind( |
| const parser::IntegerTypeSpec &spec) { |
| Expr<SubscriptInteger> value{ |
| AnalyzeKindSelector(TypeCategory::Integer, spec.v)}; |
| if (auto kind{ToInt64(value)}) { |
| return static_cast<int>(*kind); |
| } |
| SayAt(spec, "Constant INTEGER kind value required here"_err_en_US); |
| return GetDefaultKind(TypeCategory::Integer); |
| } |
| |
| // Array constructors |
| |
| class ArrayConstructorContext : private ExpressionAnalyzer { |
| public: |
| ArrayConstructorContext( |
| ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &t) |
| : ExpressionAnalyzer{c}, type_{t} {} |
| ArrayConstructorContext(ArrayConstructorContext &) = default; |
| void Push(MaybeExpr &&); |
| void Add(const parser::AcValue &); |
| std::optional<DynamicTypeWithLength> &type() const { return type_; } |
| const ArrayConstructorValues<SomeType> &values() { return values_; } |
| |
| private: |
| template<int KIND, typename A> |
| std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr( |
| const A &x) { |
| if (MaybeExpr y{Analyze(x)}) { |
| Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)}; |
| CHECK(intExpr != nullptr); |
| return ConvertToType<Type<TypeCategory::Integer, KIND>>( |
| std::move(*intExpr)); |
| } |
| return std::nullopt; |
| } |
| |
| std::optional<DynamicTypeWithLength> &type_; |
| bool explicitType_{type_.has_value()}; |
| std::optional<std::int64_t> constantLength_; |
| ArrayConstructorValues<SomeType> values_; |
| }; |
| |
| void ArrayConstructorContext::Push(MaybeExpr &&x) { |
| if (!x.has_value()) { |
| return; |
| } |
| if (auto dyType{x->GetType()}) { |
| DynamicTypeWithLength xType{*dyType}; |
| if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) { |
| CHECK(xType.category() == TypeCategory::Character); |
| xType.length = |
| std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u); |
| } |
| if (!type_.has_value()) { |
| // If there is no explicit type-spec in an array constructor, the type |
| // of the array is the declared type of all of the elements, which must |
| // be well-defined and all match. |
| // TODO: Possible language extension: use the most general type of |
| // the values as the type of a numeric constructed array, convert all |
| // of the other values to that type. Alternative: let the first value |
| // determine the type, and convert the others to that type. |
| CHECK(!explicitType_); |
| type_ = std::move(xType); |
| constantLength_ = ToInt64(type_->length); |
| values_.Push(std::move(*x)); |
| } else if (!explicitType_) { |
| if (static_cast<const DynamicType &>(*type_) == |
| static_cast<const DynamicType &>(xType)) { |
| values_.Push(std::move(*x)); |
| if (auto thisLen{ToInt64(xType.LEN())}) { |
| if (constantLength_.has_value()) { |
| if (context().warnOnNonstandardUsage() && |
| *thisLen != *constantLength_) { |
| Say("Character literal in array constructor without explicit " |
| "type has different length than earlier element"_en_US); |
| } |
| if (*thisLen > *constantLength_) { |
| // Language extension: use the longest literal to determine the |
| // length of the array constructor's character elements, not the |
| // first, when there is no explicit type. |
| *constantLength_ = *thisLen; |
| type_->length = xType.LEN(); |
| } |
| } else { |
| constantLength_ = *thisLen; |
| type_->length = xType.LEN(); |
| } |
| } |
| } else { |
| Say("Values in array constructor must have the same declared type " |
| "when no explicit type appears"_err_en_US); |
| } |
| } else { |
| if (auto cast{ConvertToType(*type_, std::move(*x))}) { |
| values_.Push(std::move(*cast)); |
| } else { |
| Say("Value in array constructor could not be converted to the type " |
| "of the array"_err_en_US); |
| } |
| } |
| } |
| } |
| |
| void ArrayConstructorContext::Add(const parser::AcValue &x) { |
| using IntType = ResultType<ImpliedDoIndex>; |
| std::visit( |
| common::visitors{ |
| [&](const parser::AcValue::Triplet &triplet) { |
| // Transform l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_' |
| std::optional<Expr<IntType>> lower{ |
| GetSpecificIntExpr<IntType::kind>(std::get<0>(triplet.t))}; |
| std::optional<Expr<IntType>> upper{ |
| GetSpecificIntExpr<IntType::kind>(std::get<1>(triplet.t))}; |
| std::optional<Expr<IntType>> stride{ |
| GetSpecificIntExpr<IntType::kind>(std::get<2>(triplet.t))}; |
| if (lower.has_value() && upper.has_value()) { |
| if (!stride.has_value()) { |
| stride = Expr<IntType>{1}; |
| } |
| if (!type_.has_value()) { |
| type_ = DynamicTypeWithLength{IntType::GetType()}; |
| } |
| ArrayConstructorContext nested{*this}; |
| parser::CharBlock name; |
| nested.Push(Expr<SomeType>{ |
| Expr<SomeInteger>{Expr<IntType>{ImpliedDoIndex{name}}}}); |
| values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), |
| std::move(*upper), std::move(*stride), |
| std::move(nested.values_)}); |
| } |
| }, |
| [&](const common::Indirection<parser::Expr> &expr) { |
| auto restorer{ |
| GetContextualMessages().SetLocation(expr.value().source)}; |
| if (MaybeExpr v{Analyze(expr.value())}) { |
| Push(std::move(*v)); |
| } |
| }, |
| [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) { |
| const auto &control{ |
| std::get<parser::AcImpliedDoControl>(impliedDo.value().t)}; |
| const auto &bounds{ |
| std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; |
| Analyze(bounds.name); |
| parser::CharBlock name{bounds.name.thing.thing.source}; |
| int kind{IntType::kind}; |
| if (auto &its{std::get<std::optional<parser::IntegerTypeSpec>>( |
| control.t)}) { |
| kind = IntegerTypeSpecKind(*its); |
| } |
| bool inserted{AddAcImpliedDo(name, kind)}; |
| if (!inserted) { |
| SayAt(name, |
| "Implied DO index is active in surrounding implied DO loop " |
| "and may not have the same name"_err_en_US); |
| } |
| std::optional<Expr<IntType>> lower{ |
| GetSpecificIntExpr<IntType::kind>(bounds.lower)}; |
| std::optional<Expr<IntType>> upper{ |
| GetSpecificIntExpr<IntType::kind>(bounds.upper)}; |
| std::optional<Expr<IntType>> stride{ |
| GetSpecificIntExpr<IntType::kind>(bounds.step)}; |
| ArrayConstructorContext nested{*this}; |
| for (const auto &value : |
| std::get<std::list<parser::AcValue>>(impliedDo.value().t)) { |
| nested.Add(value); |
| } |
| if (lower.has_value() && upper.has_value()) { |
| if (!stride.has_value()) { |
| stride = Expr<IntType>{1}; |
| } |
| values_.Push(ImpliedDo<SomeType>{name, std::move(*lower), |
| std::move(*upper), std::move(*stride), |
| std::move(nested.values_)}); |
| } |
| if (inserted) { |
| RemoveAcImpliedDo(name); |
| } |
| }, |
| }, |
| x.u); |
| } |
| |
| // Inverts a collection of generic ArrayConstructorValues<SomeType> that |
| // all happen to have the same actual type T into one ArrayConstructor<T>. |
| template<typename T> |
| ArrayConstructorValues<T> MakeSpecific( |
| ArrayConstructorValues<SomeType> &&from) { |
| ArrayConstructorValues<T> to; |
| for (ArrayConstructorValue<SomeType> &x : from) { |
| std::visit( |
| common::visitors{ |
| [&](common::CopyableIndirection<Expr<SomeType>> &&expr) { |
| auto *typed{UnwrapExpr<Expr<T>>(expr.value())}; |
| CHECK(typed != nullptr); |
| to.Push(std::move(*typed)); |
| }, |
| [&](ImpliedDo<SomeType> &&impliedDo) { |
| to.Push(ImpliedDo<T>{impliedDo.name(), |
| std::move(impliedDo.lower()), std::move(impliedDo.upper()), |
| std::move(impliedDo.stride()), |
| MakeSpecific<T>(std::move(impliedDo.values()))}); |
| }, |
| }, |
| std::move(x.u)); |
| } |
| return to; |
| } |
| |
| struct ArrayConstructorTypeVisitor { |
| using Result = MaybeExpr; |
| using Types = AllTypes; |
| template<typename T> Result Test() { |
| if (type.category() == T::category) { |
| if constexpr (T::category == TypeCategory::Derived) { |
| return AsMaybeExpr(ArrayConstructor<T>{ |
| type.GetDerivedTypeSpec(), MakeSpecific<T>(std::move(values))}); |
| } else if (type.kind() == T::kind) { |
| if constexpr (T::category == TypeCategory::Character) { |
| return AsMaybeExpr(ArrayConstructor<T>{ |
| type.LEN().value(), MakeSpecific<T>(std::move(values))}); |
| } else { |
| return AsMaybeExpr( |
| ArrayConstructor<T>{MakeSpecific<T>(std::move(values))}); |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| DynamicTypeWithLength type; |
| ArrayConstructorValues<SomeType> values; |
| }; |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) { |
| const parser::AcSpec &acSpec{array.v}; |
| std::optional<DynamicTypeWithLength> type{AnalyzeTypeSpec(acSpec.type)}; |
| ArrayConstructorContext context{*this, type}; |
| for (const parser::AcValue &value : acSpec.values) { |
| context.Add(value); |
| } |
| if (type.has_value()) { |
| ArrayConstructorTypeVisitor visitor{ |
| std::move(*type), std::move(context.values())}; |
| return common::SearchTypes(std::move(visitor)); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::StructureConstructor &structure) { |
| auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)}; |
| parser::CharBlock typeName{std::get<parser::Name>(parsedType.t).source}; |
| if (parsedType.derivedTypeSpec == nullptr) { |
| return std::nullopt; |
| } |
| const auto &spec{*parsedType.derivedTypeSpec}; |
| const Symbol &typeSymbol{spec.typeSymbol()}; |
| if (spec.scope() == nullptr || |
| !typeSymbol.has<semantics::DerivedTypeDetails>()) { |
| return std::nullopt; // error recovery |
| } |
| const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()}; |
| const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())}; |
| |
| if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796 |
| if (auto *msg{Say(typeName, |
| "ABSTRACT derived type '%s' may not be used in a " |
| "structure constructor"_err_en_US, |
| typeName)}) { |
| msg->Attach( |
| typeSymbol.name(), "Declaration of ABSTRACT derived type"_en_US); |
| } |
| } |
| |
| // This list holds all of the components in the derived type and its |
| // parents. The symbols for whole parent components appear after their |
| // own components and before the components of the types that extend them. |
| // E.g., TYPE :: A; REAL X; END TYPE |
| // TYPE, EXTENDS(A) :: B; REAL Y; END TYPE |
| // produces the component list X, A, Y. |
| // The order is important below because a structure constructor can |
| // initialize X or A by name, but not both. |
| const auto &details{typeSymbol.get<semantics::DerivedTypeDetails>()}; |
| std::list<const Symbol *> components{details.OrderComponents(*spec.scope())}; |
| auto nextAnonymous{components.begin()}; |
| |
| std::set<parser::CharBlock> unavailable; |
| bool anyKeyword{false}; |
| StructureConstructor result{spec}; |
| bool checkConflicts{true}; // until we hit one |
| |
| for (const auto &component : |
| std::get<std::list<parser::ComponentSpec>>(structure.t)) { |
| const parser::Expr &expr{ |
| std::get<parser::ComponentDataSource>(component.t).v.value()}; |
| parser::CharBlock source{expr.source}; |
| auto &messages{GetContextualMessages()}; |
| auto restorer{messages.SetLocation(source)}; |
| const Symbol *symbol{nullptr}; |
| MaybeExpr value{Analyze(expr)}; |
| std::optional<DynamicType> valueType{DynamicType::From(value)}; |
| if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { |
| anyKeyword = true; |
| source = kw->v.source; |
| symbol = kw->v.symbol; |
| if (symbol == nullptr) { |
| auto componentIter{std::find_if(components.begin(), components.end(), |
| [=](const Symbol *symbol) { return symbol->name() == source; })}; |
| if (componentIter != components.end()) { |
| symbol = *componentIter; |
| } |
| } |
| if (symbol == nullptr) { // C7101 |
| Say(source, |
| "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US, |
| source, typeName); |
| } |
| } else { |
| if (anyKeyword) { // C7100 |
| Say(source, |
| "Value in structure constructor lacks a component name"_err_en_US); |
| checkConflicts = false; // stem cascade |
| } |
| // Here's a regrettably common extension of the standard: anonymous |
| // initialization of parent components, e.g., T(PT(1)) rather than |
| // T(1) or T(PT=PT(1)). |
| if (nextAnonymous == components.begin() && parentComponent != nullptr && |
| valueType == DynamicType::From(*parentComponent) && |
| context().IsEnabled(parser::LanguageFeature::AnonymousParents)) { |
| auto iter{ |
| std::find(components.begin(), components.end(), parentComponent)}; |
| if (iter != components.end()) { |
| symbol = parentComponent; |
| nextAnonymous = ++iter; |
| if (context().ShouldWarn(parser::LanguageFeature::AnonymousParents)) { |
| Say(source, |
| "Whole parent component '%s' in structure " |
| "constructor should not be anonymous"_en_US, |
| symbol->name()); |
| } |
| } |
| } |
| while (symbol == nullptr && nextAnonymous != components.end()) { |
| const Symbol *nextSymbol{*nextAnonymous++}; |
| if (!nextSymbol->test(Symbol::Flag::ParentComp)) { |
| symbol = nextSymbol; |
| } |
| } |
| if (symbol == nullptr) { |
| Say(source, "Unexpected value in structure constructor"_err_en_US); |
| } |
| } |
| if (symbol != nullptr) { |
| if (checkConflicts) { |
| auto componentIter{ |
| std::find(components.begin(), components.end(), symbol)}; |
| if (unavailable.find(symbol->name()) != unavailable.cend()) { |
| // C797, C798 |
| Say(source, |
| "Component '%s' conflicts with another component earlier in " |
| "this structure constructor"_err_en_US, |
| symbol->name()); |
| } else if (symbol->test(Symbol::Flag::ParentComp)) { |
| // Make earlier components unavailable once a whole parent appears. |
| for (auto it{components.begin()}; it != componentIter; ++it) { |
| unavailable.insert((*it)->name()); |
| } |
| } else { |
| // Make whole parent components unavailable after any of their |
| // constituents appear. |
| for (auto it{componentIter}; it != components.end(); ++it) { |
| if ((*it)->test(Symbol::Flag::ParentComp)) { |
| unavailable.insert((*it)->name()); |
| } |
| } |
| } |
| } |
| unavailable.insert(symbol->name()); |
| if (value.has_value()) { |
| if (symbol->has<semantics::ProcEntityDetails>()) { |
| CHECK(IsPointer(*symbol)); |
| } else if (symbol->has<semantics::ObjectEntityDetails>()) { |
| // C1594(4) |
| const auto &innermost{context_.FindScope(expr.source)}; |
| if (const auto *pureFunc{ |
| semantics::FindPureFunctionContaining(&innermost)}) { |
| if (const Symbol * |
| pointer{semantics::FindPointerComponent(*symbol)}) { |
| if (const Symbol * |
| object{semantics::FindExternallyVisibleObject( |
| *value, *pureFunc)}) { |
| if (auto *msg{Say(expr.source, |
| "Externally visible object '%s' must not be " |
| "associated with pointer component '%s' in a " |
| "PURE function"_err_en_US, |
| object->name(), pointer->name())}) { |
| msg->Attach(object->name(), "Object declaration"_en_US) |
| .Attach(pointer->name(), "Pointer declaration"_en_US); |
| } |
| } |
| } |
| } |
| } else if (symbol->has<semantics::TypeParamDetails>()) { |
| Say(expr.source, |
| "Type parameter '%s' may not appear as a component " |
| "of a structure constructor"_err_en_US, |
| symbol->name()); |
| continue; |
| } else { |
| Say(expr.source, |
| "Component '%s' is neither a procedure pointer " |
| "nor a data object"_err_en_US, |
| symbol->name()); |
| continue; |
| } |
| if (IsPointer(*symbol)) { |
| CheckPointerAssignment(messages, context_.intrinsics(), *symbol, |
| *value); // C7104, C7105 |
| } else if (MaybeExpr converted{ |
| ConvertToType(*symbol, std::move(*value))}) { |
| result.Add(*symbol, std::move(*converted)); |
| } else if (auto symType{DynamicType::From(symbol)}) { |
| if (valueType.has_value()) { |
| if (auto *msg{Say(expr.source, |
| "Value in structure constructor of type %s is " |
| "incompatible with component '%s' of type %s"_err_en_US, |
| valueType->AsFortran(), symbol->name(), |
| symType->AsFortran())}) { |
| msg->Attach(symbol->name(), "Component declaration"_en_US); |
| } |
| } else { |
| if (auto *msg{Say(expr.source, |
| "Value in structure constructor is incompatible with " |
| " component '%s' of type %s"_err_en_US, |
| symbol->name(), symType->AsFortran())}) { |
| msg->Attach(symbol->name(), "Component declaration"_en_US); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Ensure that unmentioned component objects have default initializers. |
| for (const Symbol *symbol : components) { |
| if (!symbol->test(Symbol::Flag::ParentComp) && |
| unavailable.find(symbol->name()) == unavailable.cend() && |
| !IsAllocatable(*symbol)) { |
| if (const auto *details{ |
| symbol->detailsIf<semantics::ObjectEntityDetails>()}) { |
| if (details->init().has_value()) { |
| result.Add(*symbol, common::Clone(*details->init())); |
| } else { // C799 |
| if (auto *msg{Say(typeName, |
| "Structure constructor lacks a value for " |
| "component '%s'"_err_en_US, |
| symbol->name())}) { |
| msg->Attach(symbol->name(), "Absent component"_en_US); |
| } |
| } |
| } |
| } |
| } |
| |
| return AsMaybeExpr(Expr<SomeDerived>{std::move(result)}); |
| } |
| |
| std::optional<ProcedureDesignator> |
| ExpressionAnalyzer::AnalyzeProcedureComponentRef( |
| const parser::ProcComponentRef &pcr) { |
| const parser::StructureComponent &sc{pcr.v.thing}; |
| const auto &name{sc.component.source}; |
| if (MaybeExpr base{Analyze(sc.base)}) { |
| if (Symbol * sym{sc.component.symbol}) { |
| if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) { |
| const semantics::DerivedTypeSpec *dtSpec{nullptr}; |
| if (std::optional<DynamicType> dtDyTy{dtExpr->GetType()}) { |
| if (!dtDyTy->IsUnlimitedPolymorphic()) { |
| dtSpec = &dtDyTy->GetDerivedTypeSpec(); |
| } |
| } |
| if (dtSpec != nullptr && dtSpec->scope() != nullptr) { |
| if (std::optional<DataRef> dataRef{ |
| ExtractDataRef(std::move(*dtExpr))}) { |
| if (auto component{CreateComponent( |
| std::move(*dataRef), *sym, *dtSpec->scope())}) { |
| return ProcedureDesignator{std::move(*component)}; |
| } else { |
| Say(name, |
| "procedure component is not in scope of derived TYPE(%s)"_err_en_US, |
| dtSpec->typeSymbol().name()); |
| } |
| } else { |
| Say(name, |
| "base of procedure component reference must be a data reference"_err_en_US); |
| } |
| } |
| } else { |
| Say(name, |
| "base of procedure component reference is not a derived type object"_err_en_US); |
| } |
| } |
| } |
| CHECK(context_.messages().AnyFatalError()); |
| return std::nullopt; |
| } |
| |
| auto ExpressionAnalyzer::Procedure(const parser::ProcedureDesignator &pd, |
| ActualArguments &arguments) -> std::optional<CalleeAndArguments> { |
| return std::visit( |
| common::visitors{ |
| [&](const parser::Name &n) -> std::optional<CalleeAndArguments> { |
| if (context_.HasError(n.symbol)) { |
| return std::nullopt; |
| } |
| const Symbol &symbol{n.symbol->GetUltimate()}; |
| if (!symbol.HasExplicitInterface() || |
| (symbol.has<semantics::MiscDetails>() && |
| symbol.get<semantics::MiscDetails>().kind() == |
| semantics::MiscDetails::Kind::SpecificIntrinsic)) { |
| // Might be an intrinsic. |
| if (std::optional<SpecificCall> specificCall{ |
| context_.intrinsics().Probe(CallCharacteristics{n.source}, |
| arguments, GetFoldingContext())}) { |
| return CalleeAndArguments{ProcedureDesignator{std::move( |
| specificCall->specificIntrinsic)}, |
| std::move(specificCall->arguments)}; |
| } |
| } |
| if (symbol.HasExplicitInterface()) { |
| // TODO: check actual arguments vs. interface |
| } else { |
| // TODO: call with implicit interface |
| } |
| return CalleeAndArguments{ |
| ProcedureDesignator{symbol}, std::move(arguments)}; |
| }, |
| [&](const parser::ProcComponentRef &pcr) |
| -> std::optional<CalleeAndArguments> { |
| if (std::optional<ProcedureDesignator> proc{ |
| AnalyzeProcedureComponentRef(pcr)}) { |
| // TODO distinguish PCR from TBP |
| // TODO optional PASS argument for TBP |
| return CalleeAndArguments{std::move(*proc), std::move(arguments)}; |
| } else { |
| return std::nullopt; |
| } |
| }, |
| }, |
| pd.u); |
| } |
| |
| static const Symbol *AssumedTypeDummy(const parser::Expr &x) { |
| if (const auto *designator{ |
| std::get_if<common::Indirection<parser::Designator>>(&x.u)}) { |
| if (const auto *dataRef{ |
| std::get_if<parser::DataRef>(&designator->value().u)}) { |
| if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) { |
| if (const Symbol * symbol{name->symbol}) { |
| if (const auto *type{symbol->GetType()}) { |
| if (type->category() == semantics::DeclTypeSpec::TypeStar) { |
| return symbol; |
| } |
| } |
| } |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::FunctionReference &funcRef) { |
| // TODO: C1002: Allow a whole assumed-size array to appear if the dummy |
| // argument would accept it. Handle by special-casing the context |
| // ActualArg -> Variable -> Designator. |
| // TODO: Actual arguments that are procedures and procedure pointers need to |
| // be detected and represented (they're not expressions). |
| // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed. |
| auto save{GetContextualMessages().SetLocation(funcRef.v.source)}; |
| ActualArguments arguments; |
| for (const auto &arg : |
| std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t)) { |
| MaybeExpr actualArgExpr; |
| const Symbol *assumedTypeDummy{nullptr}; |
| std::visit( |
| common::visitors{ |
| [&](const common::Indirection<parser::Expr> &x) { |
| // TODO: Distinguish & handle procedure name and |
| // proc-component-ref |
| if (!(assumedTypeDummy = AssumedTypeDummy(x.value()))) { |
| actualArgExpr = Analyze(x.value()); |
| } |
| }, |
| [&](const parser::AltReturnSpec &) { |
| Say("alternate return specification may not appear on function reference"_err_en_US); |
| }, |
| [&](const parser::ActualArg::PercentRef &) { |
| Say("TODO: %REF() argument"_err_en_US); |
| }, |
| [&](const parser::ActualArg::PercentVal &) { |
| Say("TODO: %VAL() argument"_err_en_US); |
| }, |
| }, |
| std::get<parser::ActualArg>(arg.t).u); |
| if (assumedTypeDummy != nullptr) { |
| arguments.emplace_back( |
| std::make_optional(ActualArgument::AssumedType{*assumedTypeDummy})); |
| } else if (actualArgExpr.has_value()) { |
| arguments.emplace_back(std::make_optional( |
| Fold(GetFoldingContext(), std::move(*actualArgExpr)))); |
| if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) { |
| arguments.back()->keyword = argKW->v.source; |
| } |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| // TODO: map non-intrinsic generic procedure to specific procedure |
| if (std::optional<CalleeAndArguments> callee{Procedure( |
| std::get<parser::ProcedureDesignator>(funcRef.v.t), arguments)}) { |
| if (MaybeExpr funcRef{MakeFunctionRef(std::move(*callee))}) { |
| return funcRef; |
| } |
| Say("Subroutine called as if it were a function"_err_en_US); |
| } |
| return std::nullopt; |
| } |
| |
| // Unary operations |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) { |
| if (MaybeExpr operand{Analyze(x.v.value())}) { |
| if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) { |
| if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) { |
| if (semantics::IsProcedurePointer(*result)) { |
| Say("A function reference that returns a procedure " |
| "pointer may not be parenthesized."_err_en_US); // C1003 |
| } |
| } |
| } |
| return std::visit( |
| [&](auto &&x) -> MaybeExpr { |
| using xTy = std::decay_t<decltype(x)>; |
| if constexpr (common::HasMember<xTy, TypelessExpression>) { |
| return operand; // ignore parentheses around typeless |
| } else if constexpr (std::is_same_v<xTy, Expr<SomeDerived>>) { |
| return operand; // ignore parentheses around derived type |
| } else { |
| return std::visit( |
| [](auto &&y) -> MaybeExpr { |
| using Ty = ResultType<decltype(y)>; |
| return {AsGenericExpr(Parentheses<Ty>{std::move(y)})}; |
| }, |
| std::move(x.u)); |
| } |
| }, |
| std::move(operand->u)); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) { |
| MaybeExpr value{Analyze(x.v.value())}; |
| if (value.has_value()) { |
| if (!std::visit( |
| [&](const auto &y) { |
| using yTy = std::decay_t<decltype(y)>; |
| if constexpr (std::is_same_v<yTy, BOZLiteralConstant>) { |
| // allow and ignore +Z'1', it's harmless |
| return true; |
| } else if constexpr (!IsNumericCategoryExpr<yTy>()) { |
| Say("Operand of unary + must have numeric type"_err_en_US); |
| return false; |
| } else { |
| return true; |
| } |
| }, |
| value->u)) { |
| return std::nullopt; |
| } |
| } |
| return value; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) { |
| if (MaybeExpr operand{Analyze(x.v.value())}) { |
| return Negation(GetContextualMessages(), std::move(*operand)); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) { |
| if (MaybeExpr operand{Analyze(x.v.value())}) { |
| return std::visit( |
| common::visitors{ |
| [](Expr<SomeLogical> &&lx) -> MaybeExpr { |
| return {AsGenericExpr(LogicalNegation(std::move(lx)))}; |
| }, |
| [&](auto &&) -> MaybeExpr { |
| Say("Operand of .NOT. must be LOGICAL"_err_en_US); |
| return std::nullopt; |
| }, |
| }, |
| std::move(operand->u)); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &) { |
| Say("TODO: %LOC unimplemented"_err_en_US); |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &) { |
| Say("TODO: DefinedUnary unimplemented"_err_en_US); |
| return std::nullopt; |
| } |
| |
| // Binary (dyadic) operations |
| |
| // TODO: check defined operators for illegal intrinsic operator cases |
| template<template<typename> class OPR, typename PARSED> |
| MaybeExpr BinaryOperationHelper(ExpressionAnalyzer &context, const PARSED &x) { |
| if (auto both{common::AllPresent(context.Analyze(std::get<0>(x.t).value()), |
| context.Analyze(std::get<1>(x.t).value()))}) { |
| ConformabilityCheck(context.GetContextualMessages(), std::get<0>(*both), |
| std::get<1>(*both)); |
| return NumericOperation<OPR>(context.GetContextualMessages(), |
| std::get<0>(std::move(*both)), std::get<1>(std::move(*both)), |
| context.GetDefaultKind(TypeCategory::Real)); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) { |
| return BinaryOperationHelper<Power>(*this, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) { |
| return BinaryOperationHelper<Multiply>(*this, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) { |
| return BinaryOperationHelper<Divide>(*this, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) { |
| return BinaryOperationHelper<Add>(*this, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) { |
| return BinaryOperationHelper<Subtract>(*this, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze( |
| const parser::Expr::ComplexConstructor &x) { |
| auto re{Analyze(std::get<0>(x.t).value())}; |
| auto im{Analyze(std::get<1>(x.t).value())}; |
| if (re.has_value() && im.has_value()) { |
| ConformabilityCheck(GetContextualMessages(), *re, *im); |
| } |
| return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re), |
| std::move(im), GetDefaultKind(TypeCategory::Real))); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) { |
| if (auto both{common::AllPresent(Analyze(std::get<0>(x.t).value()), |
| Analyze(std::get<1>(x.t).value()))}) { |
| ConformabilityCheck( |
| GetContextualMessages(), std::get<0>(*both), std::get<1>(*both)); |
| return std::visit( |
| common::visitors{ |
| [&](Expr<SomeCharacter> &&cx, Expr<SomeCharacter> &&cy) { |
| return std::visit( |
| [&](auto &&cxk, auto &&cyk) -> MaybeExpr { |
| using Ty = ResultType<decltype(cxk)>; |
| if constexpr (std::is_same_v<Ty, |
| ResultType<decltype(cyk)>>) { |
| return {AsGenericExpr( |
| Concat<Ty::kind>{std::move(cxk), std::move(cyk)})}; |
| } else { |
| Say("Operands of // must be the same kind of CHARACTER"_err_en_US); |
| return std::nullopt; |
| } |
| }, |
| std::move(cx.u), std::move(cy.u)); |
| }, |
| [&](auto &&, auto &&) -> MaybeExpr { |
| Say("Operands of // must be CHARACTER"_err_en_US); |
| return std::nullopt; |
| }, |
| }, |
| std::move(std::get<0>(*both).u), std::move(std::get<1>(*both).u)); |
| } |
| return std::nullopt; |
| } |
| |
| // TODO: check defined operators for illegal intrinsic operator cases |
| template<typename PARSED> |
| MaybeExpr RelationHelper( |
| ExpressionAnalyzer &context, RelationalOperator opr, const PARSED &x) { |
| if (auto both{common::AllPresent(context.Analyze(std::get<0>(x.t).value()), |
| context.Analyze(std::get<1>(x.t).value()))}) { |
| ConformabilityCheck(context.GetContextualMessages(), std::get<0>(*both), |
| std::get<1>(*both)); |
| return AsMaybeExpr(Relate(context.GetContextualMessages(), opr, |
| std::get<0>(std::move(*both)), std::get<1>(std::move(*both)))); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) { |
| return RelationHelper(*this, RelationalOperator::LT, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) { |
| return RelationHelper(*this, RelationalOperator::LE, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) { |
| return RelationHelper(*this, RelationalOperator::EQ, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) { |
| return RelationHelper(*this, RelationalOperator::NE, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) { |
| return RelationHelper(*this, RelationalOperator::GE, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) { |
| return RelationHelper(*this, RelationalOperator::GT, x); |
| } |
| |
| // TODO: check defined operators for illegal intrinsic operator cases |
| template<typename PARSED> |
| MaybeExpr LogicalHelper( |
| ExpressionAnalyzer &context, LogicalOperator opr, const PARSED &x) { |
| if (auto both{common::AllPresent(context.Analyze(std::get<0>(x.t).value()), |
| context.Analyze(std::get<1>(x.t).value()))}) { |
| return std::visit( |
| common::visitors{ |
| [&](Expr<SomeLogical> &&lx, Expr<SomeLogical> &&ly) -> MaybeExpr { |
| ConformabilityCheck(context.GetContextualMessages(), lx, ly); |
| return {AsGenericExpr( |
| BinaryLogicalOperation(opr, std::move(lx), std::move(ly)))}; |
| }, |
| [&](auto &&, auto &&) -> MaybeExpr { |
| // TODO: extension: INTEGER and typeless operands |
| // ifort and PGI accept them if not overridden |
| // need to define IAND, IOR, IEOR intrinsic representation |
| context.Say( |
| "operands to LOGICAL operation must be LOGICAL"_err_en_US); |
| return {}; |
| }, |
| }, |
| std::move(std::get<0>(*both).u), std::move(std::get<1>(*both).u)); |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) { |
| return LogicalHelper(*this, LogicalOperator::And, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) { |
| return LogicalHelper(*this, LogicalOperator::Or, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) { |
| return LogicalHelper(*this, LogicalOperator::Eqv, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) { |
| return LogicalHelper(*this, LogicalOperator::Neqv, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::XOR &x) { |
| return LogicalHelper(*this, LogicalOperator::Neqv, x); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &) { |
| Say("TODO: DefinedBinary unimplemented"_err_en_US); |
| return std::nullopt; |
| } |
| |
| // Converts, if appropriate, an original misparse of ambiguous syntax like |
| // A(1) as a function reference into an array reference or a structure |
| // constructor. |
| template<typename... A> |
| static void FixMisparsedFunctionReference( |
| semantics::SemanticsContext &context, const std::variant<A...> &constU) { |
| // The parse tree is updated in situ when resolving an ambiguous parse. |
| using uType = std::decay_t<decltype(constU)>; |
| auto &u{const_cast<uType &>(constU)}; |
| if (auto *func{ |
| std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) { |
| parser::FunctionReference &funcRef{func->value()}; |
| auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)}; |
| if (Symbol * |
| origSymbol{std::visit( |
| common::visitors{ |
| [&](parser::Name &name) { return name.symbol; }, |
| [&](parser::ProcComponentRef &pcr) { |
| return pcr.v.thing.component.symbol; |
| }, |
| }, |
| proc.u)}) { |
| Symbol &symbol{origSymbol->GetUltimate()}; |
| if (symbol.has<semantics::ObjectEntityDetails>()) { |
| if constexpr (common::HasMember<common::Indirection<parser::Designator>, |
| uType>) { |
| u = common::Indirection{funcRef.ConvertToArrayElementRef()}; |
| } else { |
| common::die("can't fix misparsed function as array reference"); |
| } |
| } else if (const auto *name{std::get_if<parser::Name>(&proc.u)}) { |
| // A procedure component reference can't be a structure |
| // constructor; only check calls to bare names. |
| const Symbol *derivedType{nullptr}; |
| if (symbol.has<semantics::DerivedTypeDetails>()) { |
| derivedType = &symbol; |
| } else if (const auto *generic{ |
| symbol.detailsIf<semantics::GenericDetails>()}) { |
| derivedType = generic->derivedType(); |
| } |
| if (derivedType != nullptr) { |
| if constexpr (common::HasMember<parser::StructureConstructor, |
| uType>) { |
| CHECK(derivedType->has<semantics::DerivedTypeDetails>()); |
| auto &scope{context.FindScope(name->source)}; |
| const semantics::DeclTypeSpec &type{ |
| scope.FindOrInstantiateDerivedType( |
| semantics::DerivedTypeSpec{*derivedType}, context)}; |
| u = funcRef.ConvertToStructureConstructor(type.derivedTypeSpec()); |
| } else { |
| common::die( |
| "can't fix misparsed function as structure constructor"); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Common handling of parser::Expr and parser::Variable |
| template<typename PARSED> |
| MaybeExpr ExpressionAnalyzer::ExprOrVariable(const PARSED &x) { |
| if (!x.typedExpr) { // not yet analyzed |
| FixMisparsedFunctionReference(context_, x.u); |
| MaybeExpr result; |
| if constexpr (std::is_same_v<PARSED, parser::Expr>) { |
| // Analyze the expression in a specified source position context for |
| // better error reporting. |
| auto save{GetContextualMessages().SetLocation(x.source)}; |
| result = Analyze(x.u); |
| result = Fold(GetFoldingContext(), std::move(result)); |
| } else { |
| result = Analyze(x.u); |
| } |
| x.typedExpr.reset(new GenericExprWrapper{std::move(result)}); |
| if (!x.typedExpr->v.has_value()) { |
| if (!context_.AnyFatalError()) { |
| #if DUMP_ON_FAILURE |
| parser::DumpTree(std::cout << "Expression analysis failed on: ", x); |
| #elif CRASH_ON_FAILURE |
| common::die("Expression analysis failed without emitting an error"); |
| #endif |
| } |
| fatalErrors_ = true; |
| } |
| } |
| return x.typedExpr->v; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) { |
| return ExprOrVariable(expr); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) { |
| return ExprOrVariable(variable); |
| } |
| |
| Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector( |
| TypeCategory category, |
| const std::optional<parser::KindSelector> &selector) { |
| int defaultKind{GetDefaultKind(category)}; |
| if (!selector.has_value()) { |
| return Expr<SubscriptInteger>{defaultKind}; |
| } |
| return std::visit( |
| common::visitors{ |
| [&](const parser::ScalarIntConstantExpr &x) |
| -> Expr<SubscriptInteger> { |
| if (MaybeExpr kind{Analyze(x)}) { |
| Expr<SomeType> folded{ |
| Fold(GetFoldingContext(), std::move(*kind))}; |
| if (std::optional<std::int64_t> code{ToInt64(folded)}) { |
| if (CheckIntrinsicKind(category, *code)) { |
| return Expr<SubscriptInteger>{*code}; |
| } |
| } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(folded)}) { |
| return ConvertToType<SubscriptInteger>(std::move(*intExpr)); |
| } |
| } |
| return Expr<SubscriptInteger>{defaultKind}; |
| }, |
| [&](const parser::KindSelector::StarSize &x) |
| -> Expr<SubscriptInteger> { |
| std::intmax_t size = x.v; |
| if (!CheckIntrinsicSize(category, size)) { |
| size = defaultKind; |
| } else if (category == TypeCategory::Complex) { |
| size /= 2; |
| } |
| return Expr<SubscriptInteger>{size}; |
| }, |
| }, |
| selector->u); |
| } |
| |
| int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) { |
| return context_.GetDefaultKind(category); |
| } |
| |
| DynamicType ExpressionAnalyzer::GetDefaultKindOfType( |
| common::TypeCategory category) { |
| return {category, GetDefaultKind(category)}; |
| } |
| |
| bool ExpressionAnalyzer::CheckIntrinsicKind( |
| TypeCategory category, std::int64_t kind) { |
| if (IsValidKindOfIntrinsicType(category, kind)) { |
| return true; |
| } else { |
| Say("%s(KIND=%jd) is not a supported type"_err_en_US, |
| parser::ToUpperCaseLetters(EnumToString(category)), kind); |
| return false; |
| } |
| } |
| |
| bool ExpressionAnalyzer::CheckIntrinsicSize( |
| TypeCategory category, std::int64_t size) { |
| if (category == TypeCategory::Complex) { |
| // COMPLEX*16 == COMPLEX(KIND=8) |
| if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) { |
| return true; |
| } |
| } else if (IsValidKindOfIntrinsicType(category, size)) { |
| return true; |
| } |
| Say("%s*%jd is not a supported type"_err_en_US, |
| parser::ToUpperCaseLetters(EnumToString(category)), size); |
| return false; |
| } |
| |
| bool ExpressionAnalyzer::AddAcImpliedDo(parser::CharBlock name, int kind) { |
| return acImpliedDos_.insert(std::make_pair(name, kind)).second; |
| } |
| |
| void ExpressionAnalyzer::RemoveAcImpliedDo(parser::CharBlock name) { |
| auto iter{acImpliedDos_.find(name)}; |
| if (iter != acImpliedDos_.end()) { |
| acImpliedDos_.erase(iter); |
| } |
| } |
| |
| std::optional<int> ExpressionAnalyzer::IsAcImpliedDo( |
| parser::CharBlock name) const { |
| auto iter{acImpliedDos_.find(name)}; |
| if (iter != acImpliedDos_.cend()) { |
| return {iter->second}; |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at, |
| const MaybeExpr &result, TypeCategory category, bool defaultKind) { |
| if (result.has_value()) { |
| if (auto type{result->GetType()}) { |
| if (type->category() != category) { |
| Say(at, "Must have %s type, but is %s"_err_en_US, |
| parser::ToUpperCaseLetters(EnumToString(category)), |
| parser::ToUpperCaseLetters(type->AsFortran())); |
| return false; |
| } else if (defaultKind) { |
| int kind{context_.GetDefaultKind(category)}; |
| if (type->kind() != kind) { |
| Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US, |
| kind, parser::ToUpperCaseLetters(EnumToString(category)), |
| parser::ToUpperCaseLetters(type->AsFortran())); |
| return false; |
| } |
| } |
| } else { |
| Say(at, "Must have %s type, but is typeless"_err_en_US, |
| parser::ToUpperCaseLetters(EnumToString(category))); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::MakeFunctionRef( |
| ProcedureDesignator &&proc, ActualArguments &&arguments) { |
| if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) { |
| if (intrinsic->name == "null" && arguments.empty()) { |
| return Expr<SomeType>{NullPointer{}}; |
| } |
| } |
| if (auto chars{Characterize(proc, context_.intrinsics())}) { |
| if (chars->functionResult.has_value()) { |
| const auto &result{*chars->functionResult}; |
| if (result.IsProcedurePointer()) { |
| return Expr<SomeType>{ |
| ProcedureRef{std::move(proc), std::move(arguments)}}; |
| } else { |
| // Not a procedure pointer, so type and shape are known. |
| const auto *typeAndShape{result.GetTypeAndShape()}; |
| CHECK(typeAndShape != nullptr); |
| return TypedWrapper<FunctionRef, ProcedureRef>(typeAndShape->type(), |
| ProcedureRef{std::move(proc), std::move(arguments)}); |
| } |
| } |
| } |
| return std::nullopt; |
| } |
| |
| MaybeExpr ExpressionAnalyzer::MakeFunctionRef(CalleeAndArguments &&callee) { |
| return MakeFunctionRef( |
| std::move(callee.procedureDesignator), std::move(callee.arguments)); |
| } |
| |
| MaybeExpr ExpressionAnalyzer::MakeFunctionRef( |
| parser::CharBlock intrinsic, ActualArguments &&arguments) { |
| if (std::optional<SpecificCall> specificCall{ |
| context_.intrinsics().Probe(CallCharacteristics{intrinsic}, arguments, |
| context_.foldingContext())}) { |
| return MakeFunctionRef( |
| ProcedureDesignator{std::move(specificCall->specificIntrinsic)}, |
| std::move(specificCall->arguments)); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| std::optional<characteristics::Procedure> Characterize( |
| const ProcedureDesignator &proc, const IntrinsicProcTable &intrinsics) { |
| if (const auto *symbol{proc.GetSymbol()}) { |
| return characteristics::Procedure::Characterize( |
| symbol->GetUltimate(), intrinsics); |
| } else if (const auto *intrinsic{proc.GetSpecificIntrinsic()}) { |
| return intrinsic->characteristics.value(); |
| } else { |
| return std::nullopt; |
| } |
| } |
| |
| std::optional<characteristics::Procedure> Characterize( |
| const ProcedureRef &ref, const IntrinsicProcTable &intrinsics) { |
| return Characterize(ref.proc(), intrinsics); |
| } |
| } |
| |
| namespace Fortran::semantics { |
| evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector( |
| SemanticsContext &context, common::TypeCategory category, |
| const std::optional<parser::KindSelector> &selector) { |
| evaluate::ExpressionAnalyzer analyzer{context}; |
| auto save{analyzer.GetContextualMessages().SetLocation(*context.location())}; |
| return analyzer.AnalyzeKindSelector(category, selector); |
| } |
| |
| bool ExprChecker::Walk(const parser::Program &program) { |
| parser::Walk(program, *this); |
| return !context_.AnyFatalError(); |
| } |
| } |