| //===- Operation.cpp - Operation support code -----------------------------===// |
| // |
| // Copyright 2019 The MLIR Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // ============================================================================= |
| |
| #include "mlir/IR/Operation.h" |
| #include "mlir/IR/BlockAndValueMapping.h" |
| #include "mlir/IR/Diagnostics.h" |
| #include "mlir/IR/Dialect.h" |
| #include "mlir/IR/Function.h" |
| #include "mlir/IR/MLIRContext.h" |
| #include "mlir/IR/OpDefinition.h" |
| #include "mlir/IR/OpImplementation.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/StandardTypes.h" |
| #include <numeric> |
| using namespace mlir; |
| |
| /// Form the OperationName for an op with the specified string. This either is |
| /// a reference to an AbstractOperation if one is known, or a uniqued Identifier |
| /// if not. |
| OperationName::OperationName(StringRef name, MLIRContext *context) { |
| if (auto *op = AbstractOperation::lookup(name, context)) |
| representation = op; |
| else |
| representation = Identifier::get(name, context); |
| } |
| |
| /// Return the name of the dialect this operation is registered to. |
| StringRef OperationName::getDialect() const { |
| return getStringRef().split('.').first; |
| } |
| |
| /// Return the name of this operation. This always succeeds. |
| StringRef OperationName::getStringRef() const { |
| if (auto *op = representation.dyn_cast<const AbstractOperation *>()) |
| return op->name; |
| return representation.get<Identifier>().strref(); |
| } |
| |
| const AbstractOperation *OperationName::getAbstractOperation() const { |
| return representation.dyn_cast<const AbstractOperation *>(); |
| } |
| |
| OperationName OperationName::getFromOpaquePointer(void *pointer) { |
| return OperationName(RepresentationUnion::getFromOpaqueValue(pointer)); |
| } |
| |
| OpAsmParser::~OpAsmParser() {} |
| |
| //===----------------------------------------------------------------------===// |
| // OpResult |
| //===----------------------------------------------------------------------===// |
| |
| /// Return the result number of this result. |
| unsigned OpResult::getResultNumber() { |
| // Results are always stored consecutively, so use pointer subtraction to |
| // figure out what number this is. |
| return this - &getOwner()->getOpResults()[0]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // OpOperand |
| //===----------------------------------------------------------------------===// |
| |
| // TODO: This namespace is only required because of a bug in GCC<7.0. |
| namespace mlir { |
| /// Return which operand this is in the operand list. |
| template <> unsigned OpOperand::getOperandNumber() { |
| return this - &getOwner()->getOpOperands()[0]; |
| } |
| } // end namespace mlir |
| |
| //===----------------------------------------------------------------------===// |
| // BlockOperand |
| //===----------------------------------------------------------------------===// |
| |
| // TODO: This namespace is only required because of a bug in GCC<7.0. |
| namespace mlir { |
| /// Return which operand this is in the operand list. |
| template <> unsigned BlockOperand::getOperandNumber() { |
| return this - &getOwner()->getBlockOperands()[0]; |
| } |
| } // end namespace mlir |
| |
| //===----------------------------------------------------------------------===// |
| // Operation |
| //===----------------------------------------------------------------------===// |
| |
| /// Create a new Operation with the specific fields. |
| Operation *Operation::create(Location location, OperationName name, |
| ArrayRef<Value *> operands, |
| ArrayRef<Type> resultTypes, |
| ArrayRef<NamedAttribute> attributes, |
| ArrayRef<Block *> successors, unsigned numRegions, |
| bool resizableOperandList, MLIRContext *context) { |
| return create(location, name, operands, resultTypes, |
| NamedAttributeList(attributes), successors, numRegions, |
| resizableOperandList, context); |
| } |
| |
| /// Create a new Operation from operation state. |
| Operation *Operation::create(const OperationState &state) { |
| unsigned numRegions = state.regions.size(); |
| Operation *op = create(state.location, state.name, state.operands, |
| state.types, state.attributes, state.successors, |
| numRegions, state.resizableOperandList, state.context); |
| for (unsigned i = 0; i < numRegions; ++i) |
| if (state.regions[i]) |
| op->getRegion(i).takeBody(*state.regions[i]); |
| return op; |
| } |
| |
| /// Overload of create that takes an existing NamedAttributeList to avoid |
| /// unnecessarily uniquing a list of attributes. |
| Operation *Operation::create(Location location, OperationName name, |
| ArrayRef<Value *> operands, |
| ArrayRef<Type> resultTypes, |
| const NamedAttributeList &attributes, |
| ArrayRef<Block *> successors, unsigned numRegions, |
| bool resizableOperandList, MLIRContext *context) { |
| unsigned numSuccessors = successors.size(); |
| |
| // Input operands are nullptr-separated for each successor, the null operands |
| // aren't actually stored. |
| unsigned numOperands = operands.size() - numSuccessors; |
| |
| // Compute the byte size for the operation and the operand storage. |
| auto byteSize = totalSizeToAlloc<OpResult, BlockOperand, unsigned, Region, |
| detail::OperandStorage>( |
| resultTypes.size(), numSuccessors, numSuccessors, numRegions, |
| /*detail::OperandStorage*/ 1); |
| byteSize += llvm::alignTo(detail::OperandStorage::additionalAllocSize( |
| numOperands, resizableOperandList), |
| alignof(Operation)); |
| void *rawMem = malloc(byteSize); |
| |
| // Create the new Operation. |
| auto op = |
| ::new (rawMem) Operation(location, name, resultTypes.size(), |
| numSuccessors, numRegions, attributes, context); |
| |
| assert((numSuccessors == 0 || !op->isKnownNonTerminator()) && |
| "unexpected successors in a non-terminator operation"); |
| |
| // Initialize the regions. |
| for (unsigned i = 0; i != numRegions; ++i) |
| new (&op->getRegion(i)) Region(op); |
| |
| // Initialize the results and operands. |
| new (&op->getOperandStorage()) |
| detail::OperandStorage(numOperands, resizableOperandList); |
| |
| auto instResults = op->getOpResults(); |
| for (unsigned i = 0, e = resultTypes.size(); i != e; ++i) |
| new (&instResults[i]) OpResult(resultTypes[i], op); |
| |
| auto opOperands = op->getOpOperands(); |
| |
| // Initialize normal operands. |
| unsigned operandIt = 0, operandE = operands.size(); |
| unsigned nextOperand = 0; |
| for (; operandIt != operandE; ++operandIt) { |
| // Null operands are used as sentinels between successor operand lists. If |
| // we encounter one here, break and handle the successor operands lists |
| // separately below. |
| if (!operands[operandIt]) |
| break; |
| new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]); |
| } |
| |
| unsigned currentSuccNum = 0; |
| if (operandIt == operandE) { |
| // Verify that the amount of sentinel operands is equivalent to the number |
| // of successors. |
| assert(currentSuccNum == numSuccessors); |
| return op; |
| } |
| |
| assert(!op->isKnownNonTerminator() && |
| "Unexpected nullptr in operand list when creating non-terminator."); |
| auto instBlockOperands = op->getBlockOperands(); |
| unsigned *succOperandCountIt = op->getTrailingObjects<unsigned>(); |
| unsigned *succOperandCountE = succOperandCountIt + numSuccessors; |
| (void)succOperandCountE; |
| |
| for (; operandIt != operandE; ++operandIt) { |
| // If we encounter a sentinel branch to the next operand update the count |
| // variable. |
| if (!operands[operandIt]) { |
| assert(currentSuccNum < numSuccessors); |
| |
| // After the first iteration update the successor operand count |
| // variable. |
| if (currentSuccNum != 0) { |
| ++succOperandCountIt; |
| assert(succOperandCountIt != succOperandCountE && |
| "More sentinel operands than successors."); |
| } |
| |
| new (&instBlockOperands[currentSuccNum]) |
| BlockOperand(op, successors[currentSuccNum]); |
| *succOperandCountIt = 0; |
| ++currentSuccNum; |
| continue; |
| } |
| new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]); |
| ++(*succOperandCountIt); |
| } |
| |
| // Verify that the amount of sentinel operands is equivalent to the number of |
| // successors. |
| assert(currentSuccNum == numSuccessors); |
| |
| return op; |
| } |
| |
| Operation::Operation(Location location, OperationName name, unsigned numResults, |
| unsigned numSuccessors, unsigned numRegions, |
| const NamedAttributeList &attributes, MLIRContext *context) |
| : location(location), numResults(numResults), numSuccs(numSuccessors), |
| numRegions(numRegions), name(name), attrs(attributes) {} |
| |
| // Operations are deleted through the destroy() member because they are |
| // allocated via malloc. |
| Operation::~Operation() { |
| assert(block == nullptr && "operation destroyed but still in a block"); |
| |
| // Explicitly run the destructors for the operands and results. |
| getOperandStorage().~OperandStorage(); |
| |
| for (auto &result : getOpResults()) |
| result.~OpResult(); |
| |
| // Explicitly run the destructors for the successors. |
| for (auto &successor : getBlockOperands()) |
| successor.~BlockOperand(); |
| |
| // Explicitly destroy the regions. |
| for (auto ®ion : getRegions()) |
| region.~Region(); |
| } |
| |
| /// Destroy this operation or one of its subclasses. |
| void Operation::destroy() { |
| this->~Operation(); |
| free(this); |
| } |
| |
| /// Return the context this operation is associated with. |
| MLIRContext *Operation::getContext() { |
| // If we have a result or operand type, that is a constant time way to get |
| // to the context. |
| if (getNumResults()) |
| return getResult(0)->getType().getContext(); |
| if (getNumOperands()) |
| return getOperand(0)->getType().getContext(); |
| |
| // In the very odd case where we have no operands or results, fall back to |
| // doing a find. |
| return getFunction()->getContext(); |
| } |
| |
| /// Return the dialact this operation is associated with, or nullptr if the |
| /// associated dialect is not registered. |
| Dialect *Operation::getDialect() { |
| if (auto *abstractOp = getAbstractOperation()) |
| return &abstractOp->dialect; |
| |
| // If this operation hasn't been registered or doesn't have abstract |
| // operation, try looking up the dialect name in the context. |
| return getContext()->getRegisteredDialect(getName().getDialect()); |
| } |
| |
| Region *Operation::getContainingRegion() const { |
| return block ? block->getParent() : nullptr; |
| } |
| |
| Operation *Operation::getParentOp() { |
| return block ? block->getContainingOp() : nullptr; |
| } |
| |
| Function *Operation::getFunction() { |
| return block ? block->getFunction() : nullptr; |
| } |
| |
| /// Replace any uses of 'from' with 'to' within this operation. |
| void Operation::replaceUsesOfWith(Value *from, Value *to) { |
| if (from == to) |
| return; |
| for (auto &operand : getOpOperands()) |
| if (operand.get() == from) |
| operand.set(to); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Operation Walkers |
| //===----------------------------------------------------------------------===// |
| |
| void Operation::walk(const std::function<void(Operation *)> &callback) { |
| // Visit any internal operations. |
| for (auto ®ion : getRegions()) |
| region.walk(callback); |
| |
| // Visit the current operation. |
| callback(this); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other |
| //===----------------------------------------------------------------------===// |
| |
| /// Emit an error about fatal conditions with this operation, reporting up to |
| /// any diagnostic handlers that may be listening. |
| InFlightDiagnostic Operation::emitError(const Twine &message) { |
| return getContext()->emitError(getLoc(), message); |
| } |
| |
| /// Emit a warning about this operation, reporting up to any diagnostic |
| /// handlers that may be listening. |
| InFlightDiagnostic Operation::emitWarning(const Twine &message) { |
| return getContext()->emitWarning(getLoc(), message); |
| } |
| |
| /// Emit a remark about this operation, reporting up to any diagnostic |
| /// handlers that may be listening. |
| InFlightDiagnostic Operation::emitRemark(const Twine &message) { |
| return getContext()->emitRemark(getLoc(), message); |
| } |
| |
| /// Given an operation 'other' that is within the same parent block, return |
| /// whether the current operation is before 'other' in the operation list |
| /// of the parent block. |
| /// Note: This function has an average complexity of O(1), but worst case may |
| /// take O(N) where N is the number of operations within the parent block. |
| bool Operation::isBeforeInBlock(Operation *other) { |
| assert(block && "Operations without parent blocks have no order."); |
| assert(other && other->block == block && |
| "Expected other operation to have the same parent block."); |
| // Recompute the parent ordering if necessary. |
| if (!block->isInstOrderValid()) |
| block->recomputeInstOrder(); |
| return orderIndex < other->orderIndex; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ilist_traits for Operation |
| //===----------------------------------------------------------------------===// |
| |
| auto llvm::ilist_detail::SpecificNodeAccess< |
| typename llvm::ilist_detail::compute_node_options< |
| ::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * { |
| return NodeAccess::getNodePtr<OptionsT>(N); |
| } |
| |
| auto llvm::ilist_detail::SpecificNodeAccess< |
| typename llvm::ilist_detail::compute_node_options< |
| ::mlir::Operation>::type>::getNodePtr(const_pointer N) |
| -> const node_type * { |
| return NodeAccess::getNodePtr<OptionsT>(N); |
| } |
| |
| auto llvm::ilist_detail::SpecificNodeAccess< |
| typename llvm::ilist_detail::compute_node_options< |
| ::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer { |
| return NodeAccess::getValuePtr<OptionsT>(N); |
| } |
| |
| auto llvm::ilist_detail::SpecificNodeAccess< |
| typename llvm::ilist_detail::compute_node_options< |
| ::mlir::Operation>::type>::getValuePtr(const node_type *N) |
| -> const_pointer { |
| return NodeAccess::getValuePtr<OptionsT>(N); |
| } |
| |
| void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) { |
| op->destroy(); |
| } |
| |
| Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() { |
| size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr)))); |
| iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this)); |
| return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset); |
| } |
| |
| /// This is a trait method invoked when a operation is added to a block. We |
| /// keep the block pointer up to date. |
| void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) { |
| assert(!op->getBlock() && "already in a operation block!"); |
| op->block = getContainingBlock(); |
| |
| // Invalidate the block ordering. |
| op->block->invalidateInstOrder(); |
| } |
| |
| /// This is a trait method invoked when a operation is removed from a block. |
| /// We keep the block pointer up to date. |
| void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) { |
| assert(op->block && "not already in a operation block!"); |
| op->block = nullptr; |
| } |
| |
| /// This is a trait method invoked when a operation is moved from one block |
| /// to another. We keep the block pointer up to date. |
| void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList( |
| ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) { |
| Block *curParent = getContainingBlock(); |
| |
| // Invalidate the ordering of the parent block. |
| curParent->invalidateInstOrder(); |
| |
| // If we are transferring operations within the same block, the block |
| // pointer doesn't need to be updated. |
| if (curParent == otherList.getContainingBlock()) |
| return; |
| |
| // Update the 'block' member of each operation. |
| for (; first != last; ++first) |
| first->block = curParent; |
| } |
| |
| /// Remove this operation (and its descendants) from its Block and delete |
| /// all of them. |
| void Operation::erase() { |
| assert(getBlock() && "Operation has no block"); |
| getBlock()->getOperations().erase(this); |
| } |
| |
| /// Unlink this operation from its current block and insert it right before |
| /// `existingInst` which may be in the same or another block in the same |
| /// function. |
| void Operation::moveBefore(Operation *existingInst) { |
| moveBefore(existingInst->getBlock(), existingInst->getIterator()); |
| } |
| |
| /// Unlink this operation from its current basic block and insert it right |
| /// before `iterator` in the specified basic block. |
| void Operation::moveBefore(Block *block, |
| llvm::iplist<Operation>::iterator iterator) { |
| block->getOperations().splice(iterator, getBlock()->getOperations(), |
| getIterator()); |
| } |
| |
| /// This drops all operand uses from this operation, which is an essential |
| /// step in breaking cyclic dependences between references when they are to |
| /// be deleted. |
| void Operation::dropAllReferences() { |
| for (auto &op : getOpOperands()) |
| op.drop(); |
| |
| for (auto ®ion : getRegions()) |
| for (Block &block : region) |
| block.dropAllReferences(); |
| |
| for (auto &dest : getBlockOperands()) |
| dest.drop(); |
| } |
| |
| /// This drops all uses of any values defined by this operation or its nested |
| /// regions, wherever they are located. |
| void Operation::dropAllDefinedValueUses() { |
| for (auto &val : getOpResults()) |
| val.dropAllUses(); |
| |
| for (auto ®ion : getRegions()) |
| for (auto &block : region) |
| block.dropAllDefinedValueUses(); |
| } |
| |
| /// Return true if there are no users of any results of this operation. |
| bool Operation::use_empty() { |
| for (auto *result : getResults()) |
| if (!result->use_empty()) |
| return false; |
| return true; |
| } |
| |
| void Operation::setSuccessor(Block *block, unsigned index) { |
| assert(index < getNumSuccessors()); |
| getBlockOperands()[index].set(block); |
| } |
| |
| auto Operation::getNonSuccessorOperands() -> operand_range { |
| return {operand_iterator(this, 0), |
| operand_iterator(this, getSuccessorOperandIndex(0))}; |
| } |
| |
| /// Get the index of the first operand of the successor at the provided |
| /// index. |
| unsigned Operation::getSuccessorOperandIndex(unsigned index) { |
| assert(!isKnownNonTerminator() && "only terminators may have successors"); |
| assert(index < getNumSuccessors()); |
| |
| // Count the number of operands for each of the successors after, and |
| // including, the one at 'index'. This is based upon the assumption that all |
| // non successor operands are placed at the beginning of the operand list. |
| auto *successorOpCountBegin = getTrailingObjects<unsigned>(); |
| unsigned postSuccessorOpCount = |
| std::accumulate(successorOpCountBegin + index, |
| successorOpCountBegin + getNumSuccessors(), 0u); |
| return getNumOperands() - postSuccessorOpCount; |
| } |
| |
| auto Operation::getSuccessorOperands(unsigned index) -> operand_range { |
| unsigned succOperandIndex = getSuccessorOperandIndex(index); |
| return {operand_iterator(this, succOperandIndex), |
| operand_iterator(this, |
| succOperandIndex + getNumSuccessorOperands(index))}; |
| } |
| |
| /// Attempt to fold this operation using the Op's registered foldHook. |
| LogicalResult Operation::fold(ArrayRef<Attribute> operands, |
| SmallVectorImpl<OpFoldResult> &results) { |
| // If we have a registered operation definition matching this one, use it to |
| // try to constant fold the operation. |
| auto *abstractOp = getAbstractOperation(); |
| if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results))) |
| return success(); |
| |
| // Otherwise, fall back on the dialect hook to handle it. |
| Dialect *dialect = getDialect(); |
| if (!dialect) |
| return failure(); |
| |
| SmallVector<Attribute, 8> constants; |
| if (failed(dialect->constantFoldHook(this, operands, constants))) |
| return failure(); |
| results.assign(constants.begin(), constants.end()); |
| return success(); |
| } |
| |
| /// Emit an error with the op name prefixed, like "'dim' op " which is |
| /// convenient for verifiers. |
| InFlightDiagnostic Operation::emitOpError(const Twine &message) { |
| return emitError() << "'" << getName() << "' op " << message; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Operation Cloning |
| //===----------------------------------------------------------------------===// |
| |
| /// Create a deep copy of this operation but keep the operation regions empty. |
| /// Operands are remapped using `mapper` (if present), and `mapper` is updated |
| /// to contain the results. |
| Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper, |
| MLIRContext *context) { |
| SmallVector<Value *, 8> operands; |
| SmallVector<Block *, 2> successors; |
| |
| operands.reserve(getNumOperands() + getNumSuccessors()); |
| |
| if (getNumSuccessors() == 0) { |
| // Non-branching operations can just add all the operands. |
| for (auto *opValue : getOperands()) |
| operands.push_back(mapper.lookupOrDefault(opValue)); |
| } else { |
| // We add the operands separated by nullptr's for each successor. |
| unsigned firstSuccOperand = |
| getNumSuccessors() ? getSuccessorOperandIndex(0) : getNumOperands(); |
| auto opOperands = getOpOperands(); |
| |
| unsigned i = 0; |
| for (; i != firstSuccOperand; ++i) |
| operands.push_back(mapper.lookupOrDefault(opOperands[i].get())); |
| |
| successors.reserve(getNumSuccessors()); |
| for (unsigned succ = 0, e = getNumSuccessors(); succ != e; ++succ) { |
| successors.push_back(mapper.lookupOrDefault(getSuccessor(succ))); |
| |
| // Add sentinel to delineate successor operands. |
| operands.push_back(nullptr); |
| |
| // Remap the successors operands. |
| for (auto *operand : getSuccessorOperands(succ)) |
| operands.push_back(mapper.lookupOrDefault(operand)); |
| } |
| } |
| |
| SmallVector<Type, 8> resultTypes(getResultTypes()); |
| unsigned numRegions = getNumRegions(); |
| auto *newOp = Operation::create(getLoc(), getName(), operands, resultTypes, |
| attrs, successors, numRegions, |
| hasResizableOperandsList(), context); |
| |
| // Remember the mapping of any results. |
| for (unsigned i = 0, e = getNumResults(); i != e; ++i) |
| mapper.map(getResult(i), newOp->getResult(i)); |
| |
| return newOp; |
| } |
| |
| Operation *Operation::cloneWithoutRegions(MLIRContext *context) { |
| BlockAndValueMapping mapper; |
| return cloneWithoutRegions(mapper, context); |
| } |
| |
| /// Create a deep copy of this operation, remapping any operands that use |
| /// values outside of the operation using the map that is provided (leaving |
| /// them alone if no entry is present). Replaces references to cloned |
| /// sub-operations to the corresponding operation that is copied, and adds |
| /// those mappings to the map. |
| Operation *Operation::clone(BlockAndValueMapping &mapper, |
| MLIRContext *context) { |
| auto *newOp = cloneWithoutRegions(mapper, context); |
| |
| // Clone the regions. |
| for (unsigned i = 0; i != numRegions; ++i) |
| getRegion(i).cloneInto(&newOp->getRegion(i), mapper, context); |
| |
| return newOp; |
| } |
| |
| Operation *Operation::clone(MLIRContext *context) { |
| BlockAndValueMapping mapper; |
| return clone(mapper, context); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // OpState trait class. |
| //===----------------------------------------------------------------------===// |
| |
| // The fallback for the parser is to reject the custom assembly form. |
| ParseResult OpState::parse(OpAsmParser *parser, OperationState *result) { |
| return parser->emitError(parser->getNameLoc(), "has no custom assembly form"); |
| } |
| |
| // The fallback for the printer is to print in the generic assembly form. |
| void OpState::print(OpAsmPrinter *p) { p->printGenericOp(getOperation()); } |
| |
| /// Emit an error about fatal conditions with this operation, reporting up to |
| /// any diagnostic handlers that may be listening. |
| InFlightDiagnostic OpState::emitError(const Twine &message) { |
| return getOperation()->emitError(message); |
| } |
| |
| /// Emit an error with the op name prefixed, like "'dim' op " which is |
| /// convenient for verifiers. |
| InFlightDiagnostic OpState::emitOpError(const Twine &message) { |
| return getOperation()->emitOpError(message); |
| } |
| |
| /// Emit a warning about this operation, reporting up to any diagnostic |
| /// handlers that may be listening. |
| InFlightDiagnostic OpState::emitWarning(const Twine &message) { |
| return getOperation()->emitWarning(message); |
| } |
| |
| /// Emit a remark about this operation, reporting up to any diagnostic |
| /// handlers that may be listening. |
| InFlightDiagnostic OpState::emitRemark(const Twine &message) { |
| return getOperation()->emitRemark(message); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Op Trait implementations |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) { |
| if (op->getNumOperands() != 0) |
| return op->emitOpError() << "requires zero operands"; |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) { |
| if (op->getNumOperands() != 1) |
| return op->emitOpError() << "requires a single operand"; |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyNOperands(Operation *op, |
| unsigned numOperands) { |
| if (op->getNumOperands() != numOperands) { |
| return op->emitOpError() << "expected " << numOperands |
| << " operands, but found " << op->getNumOperands(); |
| } |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op, |
| unsigned numOperands) { |
| if (op->getNumOperands() < numOperands) |
| return op->emitOpError() |
| << "expected " << numOperands << " or more operands"; |
| return success(); |
| } |
| |
| /// If this is a vector type, or a tensor type, return the scalar element type |
| /// that it is built around, otherwise return the type unmodified. |
| static Type getTensorOrVectorElementType(Type type) { |
| if (auto vec = type.dyn_cast<VectorType>()) |
| return vec.getElementType(); |
| |
| // Look through tensor<vector<...>> to find the underlying element type. |
| if (auto tensor = type.dyn_cast<TensorType>()) |
| return getTensorOrVectorElementType(tensor.getElementType()); |
| return type; |
| } |
| |
| LogicalResult OpTrait::impl::verifyOperandsAreIntegerLike(Operation *op) { |
| for (auto opType : op->getOperandTypes()) { |
| auto type = getTensorOrVectorElementType(opType); |
| if (!type.isIntOrIndex()) |
| return op->emitOpError() << "requires an integer or index type"; |
| } |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) { |
| for (auto opType : op->getOperandTypes()) { |
| auto type = getTensorOrVectorElementType(opType); |
| if (!type.isa<FloatType>()) |
| return op->emitOpError("requires a float type"); |
| } |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) { |
| // Zero or one operand always have the "same" type. |
| unsigned nOperands = op->getNumOperands(); |
| if (nOperands < 2) |
| return success(); |
| |
| auto type = op->getOperand(0)->getType(); |
| for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) |
| if (opType != type) |
| return op->emitOpError() << "requires all operands to have the same type"; |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) { |
| if (op->getNumResults() != 0) |
| return op->emitOpError() << "requires zero results"; |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyOneResult(Operation *op) { |
| if (op->getNumResults() != 1) |
| return op->emitOpError() << "requires one result"; |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyNResults(Operation *op, |
| unsigned numOperands) { |
| if (op->getNumResults() != numOperands) |
| return op->emitOpError() << "expected " << numOperands << " results"; |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op, |
| unsigned numOperands) { |
| if (op->getNumResults() < numOperands) |
| return op->emitOpError() |
| << "expected " << numOperands << " or more results"; |
| return success(); |
| } |
| |
| /// Returns success if the given two types have the same shape. That is, |
| /// they are both scalars (not shaped), or they are both shaped types and at |
| /// least one is unranked or they have the same shape. The element type does not |
| /// matter. |
| static LogicalResult verifyShapeMatch(Type type1, Type type2) { |
| auto sType1 = type1.dyn_cast<ShapedType>(); |
| auto sType2 = type2.dyn_cast<ShapedType>(); |
| |
| // Either both or neither type should be shaped. |
| if (!sType1) |
| return success(!sType2); |
| if (!sType2) |
| return failure(); |
| |
| if (!sType1.hasRank() || !sType2.hasRank()) |
| return success(); |
| |
| return success(sType1.getShape() == sType2.getShape()); |
| } |
| |
| LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) { |
| if (op->getNumOperands() == 0 || op->getNumResults() == 0) |
| return failure(); |
| |
| auto type = op->getOperand(0)->getType(); |
| for (auto resultType : op->getResultTypes()) { |
| if (failed(verifyShapeMatch(resultType, type))) |
| return op->emitOpError() |
| << "requires the same shape for all operands and results"; |
| } |
| for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) { |
| if (failed(verifyShapeMatch(opType, type))) |
| return op->emitOpError() |
| << "requires the same shape for all operands and results"; |
| } |
| return success(); |
| } |
| |
| LogicalResult |
| OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) { |
| if (op->getNumOperands() == 0 || op->getNumResults() == 0) |
| return failure(); |
| |
| auto type = op->getResult(0)->getType().dyn_cast<ShapedType>(); |
| if (!type) |
| return op->emitOpError("requires shaped type results"); |
| auto elementType = type.getElementType(); |
| |
| // Verify result element type matches first result's element type. |
| for (auto result : drop_begin(op->getResults(), 1)) { |
| auto resultType = result->getType().dyn_cast<ShapedType>(); |
| if (!resultType) |
| return op->emitOpError("requires shaped type results"); |
| if (resultType.getElementType() != elementType) |
| return op->emitOpError( |
| "requires the same element type for all operands and results"); |
| } |
| |
| // Verify operand's element type matches first result's element type. |
| for (auto operand : op->getOperands()) { |
| auto operandType = operand->getType().dyn_cast<ShapedType>(); |
| if (!operandType) |
| return op->emitOpError("requires shaped type operands"); |
| if (operandType.getElementType() != elementType) |
| return op->emitOpError( |
| "requires the same element type for all operands and results"); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) { |
| if (op->getNumOperands() == 0 || op->getNumResults() == 0) |
| return failure(); |
| |
| auto type = op->getResult(0)->getType(); |
| for (auto resultType : llvm::drop_begin(op->getResultTypes(), 1)) { |
| if (resultType != type) |
| return op->emitOpError() |
| << "requires the same type for all operands and results"; |
| } |
| for (auto opType : op->getOperandTypes()) { |
| if (opType != type) |
| return op->emitOpError() |
| << "requires the same type for all operands and results"; |
| } |
| return success(); |
| } |
| |
| static LogicalResult verifyBBArguments(Operation::operand_range operands, |
| Block *destBB, Operation *op) { |
| unsigned operandCount = std::distance(operands.begin(), operands.end()); |
| if (operandCount != destBB->getNumArguments()) |
| return op->emitError() << "branch has " << operandCount |
| << " operands, but target block has " |
| << destBB->getNumArguments(); |
| |
| auto operandIt = operands.begin(); |
| for (unsigned i = 0, e = operandCount; i != e; ++i, ++operandIt) { |
| if ((*operandIt)->getType() != destBB->getArgument(i)->getType()) |
| return op->emitError() << "type mismatch in bb argument #" << i; |
| } |
| |
| return success(); |
| } |
| |
| static LogicalResult verifyTerminatorSuccessors(Operation *op) { |
| // Verify that the operands lines up with the BB arguments in the successor. |
| Function *fn = op->getFunction(); |
| for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) { |
| auto *succ = op->getSuccessor(i); |
| if (succ->getFunction() != fn) |
| return op->emitError("reference to block defined in another function"); |
| if (failed(verifyBBArguments(op->getSuccessorOperands(i), succ, op))) |
| return failure(); |
| } |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) { |
| Block *block = op->getBlock(); |
| // Verify that the operation is at the end of the respective parent block. |
| if (!block || &block->back() != op) |
| return op->emitOpError("must be the last operation in the parent block"); |
| |
| // Verify the state of the successor blocks. |
| if (op->getNumSuccessors() != 0 && failed(verifyTerminatorSuccessors(op))) |
| return failure(); |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) { |
| for (auto resultType : op->getResultTypes()) { |
| auto elementType = getTensorOrVectorElementType(resultType); |
| bool isBoolType = elementType.isInteger(1); |
| if (!isBoolType) |
| return op->emitOpError() << "requires a bool result type"; |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) { |
| for (auto resultType : op->getResultTypes()) |
| if (!getTensorOrVectorElementType(resultType).isa<FloatType>()) |
| return op->emitOpError() << "requires a floating point type"; |
| |
| return success(); |
| } |
| |
| LogicalResult OpTrait::impl::verifyResultsAreIntegerLike(Operation *op) { |
| for (auto resultType : op->getResultTypes()) |
| if (!getTensorOrVectorElementType(resultType).isIntOrIndex()) |
| return op->emitOpError() << "requires an integer or index type"; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BinaryOp implementation |
| //===----------------------------------------------------------------------===// |
| |
| // These functions are out-of-line implementations of the methods in BinaryOp, |
| // which avoids them being template instantiated/duplicated. |
| |
| void impl::buildBinaryOp(Builder *builder, OperationState *result, Value *lhs, |
| Value *rhs) { |
| assert(lhs->getType() == rhs->getType()); |
| result->addOperands({lhs, rhs}); |
| result->types.push_back(lhs->getType()); |
| } |
| |
| ParseResult impl::parseBinaryOp(OpAsmParser *parser, OperationState *result) { |
| SmallVector<OpAsmParser::OperandType, 2> ops; |
| Type type; |
| return failure(parser->parseOperandList(ops, 2) || |
| parser->parseOptionalAttributeDict(result->attributes) || |
| parser->parseColonType(type) || |
| parser->resolveOperands(ops, type, result->operands) || |
| parser->addTypeToList(type, result->types)); |
| } |
| |
| void impl::printBinaryOp(Operation *op, OpAsmPrinter *p) { |
| assert(op->getNumOperands() == 2 && "binary op should have two operands"); |
| assert(op->getNumResults() == 1 && "binary op should have one result"); |
| |
| // If not all the operand and result types are the same, just use the |
| // generic assembly form to avoid omitting information in printing. |
| auto resultType = op->getResult(0)->getType(); |
| if (op->getOperand(0)->getType() != resultType || |
| op->getOperand(1)->getType() != resultType) { |
| p->printGenericOp(op); |
| return; |
| } |
| |
| *p << op->getName() << ' ' << *op->getOperand(0) << ", " |
| << *op->getOperand(1); |
| p->printOptionalAttrDict(op->getAttrs()); |
| // Now we can output only one type for all operands and the result. |
| *p << " : " << op->getResult(0)->getType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CastOp implementation |
| //===----------------------------------------------------------------------===// |
| |
| void impl::buildCastOp(Builder *builder, OperationState *result, Value *source, |
| Type destType) { |
| result->addOperands(source); |
| result->addTypes(destType); |
| } |
| |
| ParseResult impl::parseCastOp(OpAsmParser *parser, OperationState *result) { |
| OpAsmParser::OperandType srcInfo; |
| Type srcType, dstType; |
| return failure(parser->parseOperand(srcInfo) || |
| parser->parseOptionalAttributeDict(result->attributes) || |
| parser->parseColonType(srcType) || |
| parser->resolveOperand(srcInfo, srcType, result->operands) || |
| parser->parseKeywordType("to", dstType) || |
| parser->addTypeToList(dstType, result->types)); |
| } |
| |
| void impl::printCastOp(Operation *op, OpAsmPrinter *p) { |
| *p << op->getName() << ' ' << *op->getOperand(0); |
| p->printOptionalAttrDict(op->getAttrs()); |
| *p << " : " << op->getOperand(0)->getType() << " to " |
| << op->getResult(0)->getType(); |
| } |
| |
| Value *impl::foldCastOp(Operation *op) { |
| // Identity cast |
| if (op->getOperand(0)->getType() == op->getResult(0)->getType()) |
| return op->getOperand(0); |
| return nullptr; |
| } |