blob: 523d234f27b06a7a11ab3472492ed1db502ab9e3 [file] [log] [blame]
Alex Zinenko4ead2cf2020-05-14 12:41:351//===- SCFToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
Alex Zinenko80e28712019-07-09 12:26:182//
Mehdi Amini30857102020-01-26 03:58:303// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
Mehdi Amini56222a02019-12-23 17:35:364// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Alex Zinenko80e28712019-07-09 12:26:186//
Mehdi Amini56222a02019-12-23 17:35:367//===----------------------------------------------------------------------===//
Alex Zinenko80e28712019-07-09 12:26:188//
9// This implements a straightforward conversion of an loop nest into a GPU
10// kernel. The caller is expected to guarantee that the conversion is correct
11// or to further transform the kernel to ensure correctness.
12//
13//===----------------------------------------------------------------------===//
14
Alex Zinenko4ead2cf2020-05-14 12:41:3515#include "mlir/Conversion/SCFToGPU/SCFToGPU.h"
Mahesh Ravishankar9cbbd8f2019-11-01 17:51:3316
Alex Zinenko971b8dd2019-11-14 18:34:4617#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
Rob Sudermane7084712020-03-20 21:18:4718#include "mlir/Dialect/Affine/IR/AffineOps.h"
Mogballa54f4ea2021-10-12 23:14:5719#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
River Riddle23aa5a72022-02-26 22:49:5420#include "mlir/Dialect/Func/IR/FuncOps.h"
Alex Zinenko60965b42019-07-25 07:40:4821#include "mlir/Dialect/GPU/GPUDialect.h"
Stephan Herhut7a7eacc2020-02-21 15:18:2222#include "mlir/Dialect/GPU/ParallelLoopMapper.h"
Julian Grosse2310702021-02-10 12:53:1123#include "mlir/Dialect/MemRef/IR/MemRef.h"
Alex Zinenkoc25b20c2020-05-11 13:00:4824#include "mlir/Dialect/SCF/SCF.h"
Alex Zinenko80e28712019-07-09 12:26:1825#include "mlir/IR/AffineExpr.h"
Stephan Herhut715783d2020-02-07 12:22:1026#include "mlir/IR/BlockAndValueMapping.h"
Alex Zinenko80e28712019-07-09 12:26:1827#include "mlir/IR/Builders.h"
Stephan Herhut715783d2020-02-07 12:22:1028#include "mlir/Pass/Pass.h"
29#include "mlir/Transforms/DialectConversion.h"
Stephan Herhut715783d2020-02-07 12:22:1030#include "mlir/Transforms/Passes.h"
Alex Zinenko80e28712019-07-09 12:26:1831#include "mlir/Transforms/RegionUtils.h"
Mahesh Ravishankar9cbbd8f2019-11-01 17:51:3332#include "llvm/ADT/Sequence.h"
Alex Zinenko80e28712019-07-09 12:26:1833#include "llvm/Support/Debug.h"
34
35#define DEBUG_TYPE "loops-to-gpu"
36
37using namespace mlir;
Alex Zinenkoc25b20c2020-05-11 13:00:4838using namespace mlir::scf;
Alex Zinenko80e28712019-07-09 12:26:1839
Vladislav Vinogradovec03bbe2021-08-20 11:25:4240// Name of internal attribute to mark visited operations during conversion.
41//
42// NOTE: The conversion originally used the following legality criteria:
43// `!parallelOp->hasAttr(gpu::getMappingAttrName())`
44// But the provided pattern might reject some cases based on more detailed
45// analysis of the `mapping` attribute.
46// To avoid dialect conversion failure due to non-converted illegal operation
47// we use this extra Unit attribute as a marker, that the operation was checked
48// by the pattern and is should be considered as legal in the following legality
49// checks. The `finalizeParallelLoopToGPUConversion` function performs clean up
50// of this extra attributes ans is supposed to be called after the dialect
51// conversion.
52//
53// TODO: Implement a cleaner solution, factoring out the "matching" logic
54// from the pattern and its callees into a separate function that can be called
55// from both the pattern and the op legality check.
56static constexpr StringLiteral kVisitedAttrName = "SCFToGPU_visited";
57
Alex Zinenko80e28712019-07-09 12:26:1858// Extract an indexed value from KernelDim3.
River Riddlee62a6952019-12-23 22:45:0159static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
Alex Zinenko80e28712019-07-09 12:26:1860 switch (pos) {
61 case 0:
62 return dim3.x;
63 case 1:
64 return dim3.y;
65 case 2:
66 return dim3.z;
67 default:
68 llvm_unreachable("dim3 position out of bounds");
69 }
70 return nullptr;
71}
72
73// Get the lower bound-related operands of a loop operation.
74static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
75 return forOp.getLowerBoundOperands();
76}
Alex Zinenko80e28712019-07-09 12:26:1877
78// Get the upper bound-related operands of a loop operation.
79static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
80 return forOp.getUpperBoundOperands();
81}
Alex Zinenko80e28712019-07-09 12:26:1882
83// Get a Value that corresponds to the loop step. If the step is an attribute,
84// materialize a corresponding constant using builder.
River Riddlee62a6952019-12-23 22:45:0185static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
Mogballa54f4ea2021-10-12 23:14:5786 return builder.create<arith::ConstantIndexOp>(forOp.getLoc(),
87 forOp.getStep());
Alex Zinenko80e28712019-07-09 12:26:1888}
Alex Zinenko80e28712019-07-09 12:26:1889
90// Get a Value for the loop lower bound. If the value requires computation,
91// materialize the instructions using builder.
River Riddlee62a6952019-12-23 22:45:0192static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
Alex Zinenko80e28712019-07-09 12:26:1893 return lowerAffineLowerBound(forOp, builder);
94}
Alex Zinenko80e28712019-07-09 12:26:1895
96// Get a Value for the loop upper bound. If the value requires computation,
97// materialize the instructions using builder.
River Riddlee62a6952019-12-23 22:45:0198static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
Alex Zinenko80e28712019-07-09 12:26:1899 return lowerAffineUpperBound(forOp, builder);
100}
Alex Zinenko80e28712019-07-09 12:26:18101
102// Check the structure of the loop nest:
Mahesh Ravishankar9cbbd8f2019-11-01 17:51:33103// - there are enough loops to map to numDims;
Alex Zinenko80e28712019-07-09 12:26:18104// - the loops are perfectly nested;
105// - the loop bounds can be computed above the outermost loop.
106// This roughly corresponds to the "matcher" part of the pattern-based
107// rewriting infrastructure.
MaheshRavishankar2bcd1922020-06-02 05:42:33108static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp,
109 unsigned numDims) {
Mahesh Ravishankar9cbbd8f2019-11-01 17:51:33110 Region &limit = forOp.region();
111 for (unsigned i = 0, e = numDims; i < e; ++i) {
112 Operation *nested = &forOp.getBody()->front();
113 if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
114 !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
115 return forOp.emitError(
116 "loops with bounds depending on other mapped loops "
117 "are not supported");
118
119 // The innermost loop can have an arbitrary body, skip the perfect nesting
120 // check for it.
121 if (i == e - 1)
122 break;
123
124 auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
125 if (forOp.getBody()->empty() || std::next(begin, 2) != end)
126 return forOp.emitError("expected perfectly nested loops in the body");
127
MaheshRavishankar2bcd1922020-06-02 05:42:33128 if (!(forOp = dyn_cast<AffineForOp>(nested)))
Mahesh Ravishankar9cbbd8f2019-11-01 17:51:33129 return nested->emitError("expected a nested loop");
130 }
131 return success();
132}
133
MaheshRavishankar2bcd1922020-06-02 05:42:33134static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp,
135 unsigned numBlockDims,
136 unsigned numThreadDims) {
Alex Zinenko80e28712019-07-09 12:26:18137 if (numBlockDims < 1 || numThreadDims < 1) {
138 LLVM_DEBUG(llvm::dbgs() << "nothing to map");
139 return success();
140 }
141
Alex Zinenko80e28712019-07-09 12:26:18142 if (numBlockDims > 3) {
Mahesh Ravishankar9cbbd8f2019-11-01 17:51:33143 return forOp.emitError("cannot map to more than 3 block dimensions");
Alex Zinenko80e28712019-07-09 12:26:18144 }
145 if (numThreadDims > 3) {
Mahesh Ravishankar9cbbd8f2019-11-01 17:51:33146 return forOp.emitError("cannot map to more than 3 thread dimensions");
147 }
MaheshRavishankar2bcd1922020-06-02 05:42:33148 return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
Alex Zinenko80e28712019-07-09 12:26:18149}
150
151namespace {
152// Helper structure that holds common state of the loop to GPU kernel
153// conversion.
MaheshRavishankar2bcd1922020-06-02 05:42:33154struct AffineLoopToGpuConverter {
155 Optional<AffineForOp> collectBounds(AffineForOp forOp, unsigned numLoops);
Alex Zinenko80e28712019-07-09 12:26:18156
MaheshRavishankar2bcd1922020-06-02 05:42:33157 void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp,
158 unsigned numBlockDims, unsigned numThreadDims);
Alex Zinenko80e28712019-07-09 12:26:18159
160 // Ranges of the loops mapped to blocks or threads.
River Riddlee62a6952019-12-23 22:45:01161 SmallVector<Value, 6> dims;
Alex Zinenko80e28712019-07-09 12:26:18162 // Lower bounds of the loops mapped to blocks or threads.
River Riddlee62a6952019-12-23 22:45:01163 SmallVector<Value, 6> lbs;
Alex Zinenko80e28712019-07-09 12:26:18164 // Induction variables of the loops mapped to blocks or threads.
River Riddlee62a6952019-12-23 22:45:01165 SmallVector<Value, 6> ivs;
Alex Zinenko80e28712019-07-09 12:26:18166 // Steps of the loops mapped to blocks or threads.
River Riddlee62a6952019-12-23 22:45:01167 SmallVector<Value, 6> steps;
Alex Zinenko80e28712019-07-09 12:26:18168};
169} // namespace
170
171// Return true if the value is obviously a constant "one".
River Riddlee62a6952019-12-23 22:45:01172static bool isConstantOne(Value value) {
Mogballa54f4ea2021-10-12 23:14:57173 if (auto def = value.getDefiningOp<arith::ConstantIndexOp>())
174 return def.value() == 1;
Alex Zinenko80e28712019-07-09 12:26:18175 return false;
176}
177
178// Collect ranges, bounds, steps and induction variables in preparation for
179// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
180// This may fail if the IR for computing loop bounds cannot be constructed, for
181// example if an affine loop uses semi-affine maps. Return the last loop to be
182// mapped on success, llvm::None on failure.
MaheshRavishankar2bcd1922020-06-02 05:42:33183Optional<AffineForOp>
184AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) {
Alex Zinenko80e28712019-07-09 12:26:18185 OpBuilder builder(forOp.getOperation());
186 dims.reserve(numLoops);
187 lbs.reserve(numLoops);
188 ivs.reserve(numLoops);
189 steps.reserve(numLoops);
MaheshRavishankar2bcd1922020-06-02 05:42:33190 AffineForOp currentLoop = forOp;
Alex Zinenko80e28712019-07-09 12:26:18191 for (unsigned i = 0; i < numLoops; ++i) {
River Riddlee62a6952019-12-23 22:45:01192 Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
193 Value upperBound = getOrEmitUpperBound(currentLoop, builder);
Alex Zinenko80e28712019-07-09 12:26:18194 if (!lowerBound || !upperBound) {
195 return llvm::None;
196 }
197
Mogballa54f4ea2021-10-12 23:14:57198 Value range = builder.create<arith::SubIOp>(currentLoop.getLoc(),
199 upperBound, lowerBound);
River Riddlee62a6952019-12-23 22:45:01200 Value step = getOrCreateStep(currentLoop, builder);
Alex Zinenko80e28712019-07-09 12:26:18201 if (!isConstantOne(step))
Mogballa54f4ea2021-10-12 23:14:57202 range = builder.create<arith::DivSIOp>(currentLoop.getLoc(), range, step);
Alex Zinenko80e28712019-07-09 12:26:18203 dims.push_back(range);
204
205 lbs.push_back(lowerBound);
206 ivs.push_back(currentLoop.getInductionVar());
207 steps.push_back(step);
208
209 if (i != numLoops - 1)
MaheshRavishankar2bcd1922020-06-02 05:42:33210 currentLoop = cast<AffineForOp>(&currentLoop.getBody()->front());
Alex Zinenko80e28712019-07-09 12:26:18211 }
212 return currentLoop;
213}
214
215// Replace the rooted at "rootForOp" with a GPU launch operation. This expects
216// "innermostForOp" to point to the last loop to be transformed to the kernel,
217// and to have (numBlockDims + numThreadDims) perfectly nested loops between
218// "rootForOp" and "innermostForOp".
MaheshRavishankar2bcd1922020-06-02 05:42:33219void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp,
220 AffineForOp innermostForOp,
221 unsigned numBlockDims,
222 unsigned numThreadDims) {
Alex Zinenko80e28712019-07-09 12:26:18223 OpBuilder builder(rootForOp.getOperation());
224 // Prepare the grid and block sizes for the launch operation. If there is
225 // no loop mapped to a specific dimension, use constant "1" as its size.
Mogballa54f4ea2021-10-12 23:14:57226 Value constOne =
227 (numBlockDims < 3 || numThreadDims < 3)
228 ? builder.create<arith::ConstantIndexOp>(rootForOp.getLoc(), 1)
229 : nullptr;
Stephan Herhut84695dd2020-01-30 10:27:17230 Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne;
River Riddlee62a6952019-12-23 22:45:01231 Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
232 Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
Stephan Herhut84695dd2020-01-30 10:27:17233 Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne;
River Riddlee62a6952019-12-23 22:45:01234 Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
235 Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
Alex Zinenko80e28712019-07-09 12:26:18236
237 // Create a launch op and move the body region of the innermost loop to the
Stephan Herhut283b5e72020-01-31 09:29:29238 // launch op.
Alex Zinenko80e28712019-07-09 12:26:18239 auto launchOp = builder.create<gpu::LaunchOp>(
240 rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
Stephan Herhut283b5e72020-01-31 09:29:29241 blockSizeY, blockSizeZ);
Alex Zinenko80e28712019-07-09 12:26:18242
243 // Replace the loop terminator (loops contain only a single block) with the
Stephan Herhut283b5e72020-01-31 09:29:29244 // gpu terminator and move the operations from the loop body block to the gpu
Alex Zinenko80e28712019-07-09 12:26:18245 // launch body block. Do not move the entire block because of the difference
246 // in block arguments.
Nicolas Vasilache0002e292019-07-16 19:20:15247 Operation &terminator = innermostForOp.getBody()->back();
Alex Zinenko80e28712019-07-09 12:26:18248 Location terminatorLoc = terminator.getLoc();
249 terminator.erase();
Nicolas Vasilache0002e292019-07-16 19:20:15250 builder.setInsertionPointToEnd(innermostForOp.getBody());
Stephan Herhut26927512020-01-29 12:59:36251 builder.create<gpu::TerminatorOp>(terminatorLoc, llvm::None);
Alex Zinenkoe96150e2019-12-06 22:28:54252 launchOp.body().front().getOperations().splice(
253 launchOp.body().front().begin(),
Nicolas Vasilache0002e292019-07-16 19:20:15254 innermostForOp.getBody()->getOperations());
Alex Zinenko80e28712019-07-09 12:26:18255
256 // Remap the loop iterators to use block/thread identifiers instead. Loops
257 // may iterate from LB with step S whereas GPU thread/block ids always iterate
258 // from 0 to N with step 1. Therefore, loop induction variables are replaced
259 // with (gpu-thread/block-id * S) + LB.
Alex Zinenkoe96150e2019-12-06 22:28:54260 builder.setInsertionPointToStart(&launchOp.body().front());
Mehdi Amini02b6fb22021-12-20 19:45:05261 auto *lbArgumentIt = lbs.begin();
262 auto *stepArgumentIt = steps.begin();
Mehdi Aminie4853be2022-01-02 22:02:14263 for (const auto &en : llvm::enumerate(ivs)) {
River Riddlee62a6952019-12-23 22:45:01264 Value id =
Alex Zinenko80e28712019-07-09 12:26:18265 en.index() < numBlockDims
266 ? getDim3Value(launchOp.getBlockIds(), en.index())
267 : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
River Riddlee62a6952019-12-23 22:45:01268 Value step = steps[en.index()];
Alex Zinenko80e28712019-07-09 12:26:18269 if (!isConstantOne(step))
Mogballa54f4ea2021-10-12 23:14:57270 id = builder.create<arith::MulIOp>(rootForOp.getLoc(), step, id);
Alex Zinenko80e28712019-07-09 12:26:18271
River Riddlee62a6952019-12-23 22:45:01272 Value ivReplacement =
Mogballa54f4ea2021-10-12 23:14:57273 builder.create<arith::AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
River Riddle2bdf33c2020-01-11 16:54:04274 en.value().replaceAllUsesWith(ivReplacement);
Alex Zinenko80e28712019-07-09 12:26:18275 std::advance(lbArgumentIt, 1);
276 std::advance(stepArgumentIt, 1);
277 }
278
Alex Zinenko80e28712019-07-09 12:26:18279 // We are done and can erase the original outermost loop.
280 rootForOp.erase();
281}
282
283// Generic loop to GPU kernel conversion function.
MaheshRavishankar2bcd1922020-06-02 05:42:33284static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp,
285 unsigned numBlockDims,
286 unsigned numThreadDims) {
287 if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims)))
Alex Zinenko80e28712019-07-09 12:26:18288 return failure();
289
MaheshRavishankar2bcd1922020-06-02 05:42:33290 AffineLoopToGpuConverter converter;
Alex Zinenko80e28712019-07-09 12:26:18291 auto maybeInnerLoop =
292 converter.collectBounds(forOp, numBlockDims + numThreadDims);
293 if (!maybeInnerLoop)
294 return failure();
295 converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
296
297 return success();
298}
299
300LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
301 unsigned numBlockDims,
302 unsigned numThreadDims) {
MaheshRavishankar2bcd1922020-06-02 05:42:33303 return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
Mahesh Ravishankar9cbbd8f2019-11-01 17:51:33304}
Stephan Herhut715783d2020-02-07 12:22:10305
306namespace {
307struct ParallelToGpuLaunchLowering : public OpRewritePattern<ParallelOp> {
308 using OpRewritePattern<ParallelOp>::OpRewritePattern;
309
River Riddle31454272020-03-18 03:07:55310 LogicalResult matchAndRewrite(ParallelOp parallelOp,
311 PatternRewriter &rewriter) const override;
Stephan Herhut715783d2020-02-07 12:22:10312};
Stephan Herhut715783d2020-02-07 12:22:10313} // namespace
314
Stephan Herhut715783d2020-02-07 12:22:10315/// Tries to derive a static upper bound from the defining operation of
316/// `upperBound`.
Stephan Herhut5e6d7242020-02-24 15:02:50317static Value deriveStaticUpperBound(Value upperBound,
318 PatternRewriter &rewriter) {
Mogballa54f4ea2021-10-12 23:14:57319 if (auto op = upperBound.getDefiningOp<arith::ConstantIndexOp>()) {
Tres Popp58516712020-04-07 12:12:04320 return op;
321 }
322
Sean Silva98eead82020-05-10 00:52:35323 if (auto minOp = upperBound.getDefiningOp<AffineMinOp>()) {
Stephan Herhut5e6d7242020-02-24 15:02:50324 for (const AffineExpr &result : minOp.map().getResults()) {
Tres Popp58516712020-04-07 12:12:04325 if (auto constExpr = result.dyn_cast<AffineConstantExpr>()) {
Mogballa54f4ea2021-10-12 23:14:57326 return rewriter.create<arith::ConstantIndexOp>(minOp.getLoc(),
327 constExpr.getValue());
Stephan Herhut715783d2020-02-07 12:22:10328 }
329 }
330 }
Tres Popp58516712020-04-07 12:12:04331
Mogballa54f4ea2021-10-12 23:14:57332 if (auto multiplyOp = upperBound.getDefiningOp<arith::MulIOp>()) {
333 if (auto lhs = dyn_cast_or_null<arith::ConstantIndexOp>(
Tres Popp58516712020-04-07 12:12:04334 deriveStaticUpperBound(multiplyOp.getOperand(0), rewriter)
335 .getDefiningOp()))
Mogballa54f4ea2021-10-12 23:14:57336 if (auto rhs = dyn_cast_or_null<arith::ConstantIndexOp>(
Tres Popp58516712020-04-07 12:12:04337 deriveStaticUpperBound(multiplyOp.getOperand(1), rewriter)
338 .getDefiningOp())) {
339 // Assumptions about the upper bound of minimum computations no longer
340 // work if multiplied by a negative value, so abort in this case.
Mogballa54f4ea2021-10-12 23:14:57341 if (lhs.value() < 0 || rhs.value() < 0)
Tres Popp58516712020-04-07 12:12:04342 return {};
343
Mogballa54f4ea2021-10-12 23:14:57344 return rewriter.create<arith::ConstantIndexOp>(
345 multiplyOp.getLoc(), lhs.value() * rhs.value());
Tres Popp58516712020-04-07 12:12:04346 }
347 }
348
Stephan Herhut5e6d7242020-02-24 15:02:50349 return {};
Stephan Herhut715783d2020-02-07 12:22:10350}
351
MaheshRavishankar46bb6612020-03-24 22:55:36352static bool isMappedToProcessor(gpu::Processor processor) {
353 return processor != gpu::Processor::Sequential;
354}
355
356static unsigned getLaunchOpArgumentNum(gpu::Processor processor) {
357 switch (processor) {
358 case gpu::Processor::BlockX:
359 return 0;
360 case gpu::Processor::BlockY:
361 return 1;
362 case gpu::Processor::BlockZ:
363 return 2;
364 case gpu::Processor::ThreadX:
365 return 3;
366 case gpu::Processor::ThreadY:
367 return 4;
368 case gpu::Processor::ThreadZ:
369 return 5;
370 default:;
371 }
372 llvm_unreachable(
373 "invalid processor type while retrieving launch op argument number");
374}
375
Stephan Herhut715783d2020-02-07 12:22:10376/// Modifies the current transformation state to capture the effect of the given
Alex Zinenko60f443b2020-05-13 10:12:30377/// `scf.parallel` operation on index substitutions and the operations to be
Stephan Herhut715783d2020-02-07 12:22:10378/// inserted.
379/// Specifically, if a dimension of a parallel loop is mapped to a hardware id,
380/// this function will
381/// - compute the loop index based on the hardware id and affine map from the
382/// mapping and update `cloningMap` to substitute all uses.
383/// - derive a new upper bound for the hardware id and augment the provided
384/// `gpu.launch operation` accordingly.
385/// - if the upper bound is imprecise, insert a conditional in the `gpu.launch`
386/// and update the rewriter to insert into the conditional's body.
387/// If the dimension is mapped to sequential,
388/// - insert a for loop into the body and update the rewriter to insert into
389/// the for loop's body.
390/// - update the `cloningMap` to replace uses of the index with the index of
391/// the new for loop.
392/// In either case,
393/// - append the instructions from the loops body to worklist, in reverse order.
394/// To note the end of the current scope in case a loop or conditional was
395/// inserted, a sentinel (the `gpu.launch` operation) is inserted into the
396/// worklist. This signals the processor of the worklist to pop the rewriter
397/// one scope-level up.
MaheshRavishankar46bb6612020-03-24 22:55:36398static LogicalResult processParallelLoop(
399 ParallelOp parallelOp, gpu::LaunchOp launchOp,
400 BlockAndValueMapping &cloningMap, SmallVectorImpl<Operation *> &worklist,
401 DenseMap<gpu::Processor, Value> &bounds, PatternRewriter &rewriter) {
River Riddle9db53a12020-07-07 08:35:23402 // TODO: Verify that this is a valid GPU mapping.
Stephan Herhut715783d2020-02-07 12:22:10403 // processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential
Stephan Herhut7a7eacc2020-02-21 15:18:22404 ArrayAttr mapping =
Christian Sigg0bf4a822020-12-09 10:50:18405 parallelOp->getAttrOfType<ArrayAttr>(gpu::getMappingAttrName());
Stephan Herhut715783d2020-02-07 12:22:10406
River Riddle9db53a12020-07-07 08:35:23407 // TODO: Support reductions.
Stephan Herhut715783d2020-02-07 12:22:10408 if (!mapping || parallelOp.getNumResults() != 0)
409 return failure();
410
411 Location loc = parallelOp.getLoc();
412
413 auto launchIndependent = [&launchOp](Value val) {
Christian Sigg0bf4a822020-12-09 10:50:18414 return val.getParentRegion()->isAncestor(launchOp->getParentRegion());
Stephan Herhut715783d2020-02-07 12:22:10415 };
416
Eric Christopherf3b93322020-02-14 01:18:53417 auto ensureLaunchIndependent = [&rewriter,
Stephan Herhut715783d2020-02-07 12:22:10418 launchIndependent](Value val) -> Value {
419 if (launchIndependent(val))
420 return val;
Mogballa54f4ea2021-10-12 23:14:57421 if (auto constOp = val.getDefiningOp<arith::ConstantOp>())
422 return rewriter.create<arith::ConstantOp>(constOp.getLoc(),
Jacques Pienaarcfb72fd32021-10-25 01:36:33423 constOp.getValue());
Stephan Herhut715783d2020-02-07 12:22:10424 return {};
425 };
426
Jacques Pienaarc0342a22021-12-20 16:03:43427 for (auto config : llvm::zip(
428 mapping, parallelOp.getInductionVars(), parallelOp.getLowerBound(),
429 parallelOp.getUpperBound(), parallelOp.getStep())) {
Stephan Herhut715783d2020-02-07 12:22:10430 Attribute mappingAttribute;
431 Value iv, lowerBound, upperBound, step;
432 std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config;
MaheshRavishankar46bb6612020-03-24 22:55:36433 auto annotation = mappingAttribute.dyn_cast<gpu::ParallelLoopDimMapping>();
434 if (!annotation)
435 return parallelOp.emitOpError()
436 << "expected mapping attribute for lowering to GPU";
Stephan Herhut715783d2020-02-07 12:22:10437 Value newIndex;
MaheshRavishankar46bb6612020-03-24 22:55:36438 gpu::Processor processor = gpu::getProcessor(annotation);
Stephan Herhut715783d2020-02-07 12:22:10439
MaheshRavishankar46bb6612020-03-24 22:55:36440 if (isMappedToProcessor(processor)) {
Stephan Herhut715783d2020-02-07 12:22:10441 // Use the corresponding thread/grid index as replacement for the loop iv.
Rahul Joshie2b71612020-07-11 00:07:29442 Value operand =
443 launchOp.body().getArgument(getLaunchOpArgumentNum(processor));
Stephan Herhut5e6d7242020-02-24 15:02:50444 // Take the indexmap and add the lower bound and step computations in.
445 // This computes operand * step + lowerBound.
446 // Use an affine map here so that it composes nicely with the provided
447 // annotation.
448 AffineMap lowerAndStep = AffineMap::get(
449 1, 2,
450 rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) +
451 rewriter.getAffineSymbolExpr(1));
452 newIndex = rewriter.create<AffineApplyOp>(
MaheshRavishankar46bb6612020-03-24 22:55:36453 loc, annotation.map().getValue().compose(lowerAndStep),
Stephan Herhut5e6d7242020-02-24 15:02:50454 ValueRange{operand, step, lowerBound});
Stephan Herhut715783d2020-02-07 12:22:10455 // If there was also a bound, insert that, too.
River Riddle9db53a12020-07-07 08:35:23456 // TODO: Check that we do not assign bounds twice.
MaheshRavishankar46bb6612020-03-24 22:55:36457 if (annotation.bound().getValue()) {
Kazuaki Ishizakie5a85122020-03-26 18:51:37458 // We pass as the single operand to the bound-map the number of
Stephan Herhut5e6d7242020-02-24 15:02:50459 // iterations, which is (upperBound - lowerBound) ceilDiv step. To
460 // support inner loops with dynamic upper bounds (as generated by e.g.
461 // tiling), try to derive a max for the bounds. If the used bound for
462 // the hardware id is imprecise, wrap the contained code into a
463 // conditional. If the lower-bound is constant or defined before the
464 // launch, we can use it in the launch bounds. Otherwise fail.
Stephan Herhut715783d2020-02-07 12:22:10465 if (!launchIndependent(lowerBound) &&
Mogballa54f4ea2021-10-12 23:14:57466 !isa_and_nonnull<arith::ConstantOp>(lowerBound.getDefiningOp()))
Stephan Herhut715783d2020-02-07 12:22:10467 return failure();
Stephan Herhut5e6d7242020-02-24 15:02:50468 // The step must also be constant or defined outside of the loop nest.
Stephan Herhut10ec1862020-03-02 17:05:42469 if (!launchIndependent(step) &&
Mogballa54f4ea2021-10-12 23:14:57470 !isa_and_nonnull<arith::ConstantOp>(step.getDefiningOp()))
Stephan Herhut5e6d7242020-02-24 15:02:50471 return failure();
Stephan Herhut715783d2020-02-07 12:22:10472 // If the upper-bound is constant or defined before the launch, we can
473 // use it in the launch bounds directly. Otherwise try derive a bound.
Stephan Herhut10ec1862020-03-02 17:05:42474 bool boundIsPrecise =
475 launchIndependent(upperBound) ||
Mogballa54f4ea2021-10-12 23:14:57476 isa_and_nonnull<arith::ConstantOp>(upperBound.getDefiningOp());
Stephan Herhut715783d2020-02-07 12:22:10477 {
478 PatternRewriter::InsertionGuard guard(rewriter);
479 rewriter.setInsertionPoint(launchOp);
Stephan Herhut5e6d7242020-02-24 15:02:50480 if (!boundIsPrecise) {
481 upperBound = deriveStaticUpperBound(upperBound, rewriter);
Stephan Herhut10ec1862020-03-02 17:05:42482 if (!upperBound) {
Stephan Herhut5da24232020-11-12 17:36:14483 return rewriter.notifyMatchFailure(
484 parallelOp,
485 "cannot derive loop-invariant upper bound for number of"
486 "iterations");
Stephan Herhut10ec1862020-03-02 17:05:42487 }
Stephan Herhut5e6d7242020-02-24 15:02:50488 }
489 // Compute the number of iterations needed. We compute this as an
490 // affine expression ceilDiv (upperBound - lowerBound) step. We use
491 // affine.apply here so that it composes nicely with the provided map.
Tres Popp72d5ac92020-10-20 09:32:48492 AffineMap stepMap = AffineMap::get(
493 1, 2,
494 ((rewriter.getAffineDimExpr(0) - rewriter.getAffineSymbolExpr(0))
495 .ceilDiv(rewriter.getAffineSymbolExpr(1))));
Stephan Herhut715783d2020-02-07 12:22:10496 Value launchBound = rewriter.create<AffineApplyOp>(
MaheshRavishankar46bb6612020-03-24 22:55:36497 loc, annotation.bound().getValue().compose(stepMap),
Stephan Herhut5e6d7242020-02-24 15:02:50498 ValueRange{
499 ensureLaunchIndependent(
500 cloningMap.lookupOrDefault(upperBound)),
501 ensureLaunchIndependent(
502 cloningMap.lookupOrDefault(lowerBound)),
503 ensureLaunchIndependent(cloningMap.lookupOrDefault(step))});
MaheshRavishankar46bb6612020-03-24 22:55:36504 // todo(herhut,ravishankarm): Update the behavior of setMappingAttr
505 // when this condition is relaxed.
506 if (bounds.find(processor) != bounds.end()) {
Stephan Herhut5da24232020-11-12 17:36:14507 return rewriter.notifyMatchFailure(
508 parallelOp, "cannot redefine the bound for processor " +
509 Twine(static_cast<int64_t>(processor)));
Stephan Herhut10ec1862020-03-02 17:05:42510 }
MaheshRavishankar46bb6612020-03-24 22:55:36511 bounds[processor] = launchBound;
Stephan Herhut715783d2020-02-07 12:22:10512 }
513 if (!boundIsPrecise) {
514 // We are using an approximation, create a surrounding conditional.
515 Value originalBound = std::get<3>(config);
Mogballa54f4ea2021-10-12 23:14:57516 arith::CmpIOp pred = rewriter.create<arith::CmpIOp>(
517 loc, arith::CmpIPredicate::slt, newIndex,
Stephan Herhut715783d2020-02-07 12:22:10518 cloningMap.lookupOrDefault(originalBound));
Alex Zinenkoc25b20c2020-05-11 13:00:48519 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, pred, false);
Jacques Pienaarc0342a22021-12-20 16:03:43520 rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
Stephan Herhut715783d2020-02-07 12:22:10521 // Put a sentinel into the worklist so we know when to pop out of the
522 // if body again. We use the launchOp here, as that cannot be part of
523 // the bodies instruction.
524 worklist.push_back(launchOp.getOperation());
525 }
526 }
527 } else {
528 // Create a sequential for loop.
Alex Zinenkoc25b20c2020-05-11 13:00:48529 auto loopOp = rewriter.create<scf::ForOp>(
Stephan Herhut715783d2020-02-07 12:22:10530 loc, cloningMap.lookupOrDefault(lowerBound),
531 cloningMap.lookupOrDefault(upperBound),
532 cloningMap.lookupOrDefault(step));
533 newIndex = loopOp.getInductionVar();
534 rewriter.setInsertionPointToStart(loopOp.getBody());
535 // Put a sentinel into the worklist so we know when to pop out of the loop
536 // body again. We use the launchOp here, as that cannot be part of the
537 // bodies instruction.
538 worklist.push_back(launchOp.getOperation());
539 }
540 cloningMap.map(iv, newIndex);
541 }
Artur Bialas396e7f42020-09-25 07:21:16542
543 // Propagate custom user defined optional attributes, that can be used at
544 // later stage, such as extension data for GPU kernel dispatch
Marius Brehler56774bd2021-02-26 13:28:32545 for (const auto &namedAttr : parallelOp->getAttrs()) {
River Riddle0c7890c2021-11-18 05:23:32546 if (namedAttr.getName() == gpu::getMappingAttrName() ||
547 namedAttr.getName() == ParallelOp::getOperandSegmentSizeAttr())
Artur Bialas396e7f42020-09-25 07:21:16548 continue;
River Riddle0c7890c2021-11-18 05:23:32549 launchOp->setAttr(namedAttr.getName(), namedAttr.getValue());
Artur Bialas396e7f42020-09-25 07:21:16550 }
551
Stephan Herhut715783d2020-02-07 12:22:10552 Block *body = parallelOp.getBody();
553 worklist.reserve(worklist.size() + body->getOperations().size());
554 for (Operation &op : llvm::reverse(body->without_terminator()))
555 worklist.push_back(&op);
556 return success();
557}
558
Alex Zinenko60f443b2020-05-13 10:12:30559/// Lower a `scf.parallel` operation into a corresponding `gpu.launch`
Stephan Herhut715783d2020-02-07 12:22:10560/// operation.
561///
562/// This essentially transforms a loop nest into a corresponding SIMT function.
Alex Zinenko60f443b2020-05-13 10:12:30563/// The conversion is driven by mapping annotations on the `scf.parallel`
Stephan Herhut715783d2020-02-07 12:22:10564/// operations. The mapping is provided via a `DictionaryAttribute` named
565/// `mapping`, which has three entries:
566/// - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are
567/// thread dimensions and 6 is sequential.
568/// - map : An affine map that is used to pre-process hardware ids before
569/// substitution.
570/// - bound : An affine map that is used to compute the bound of the hardware
571/// id based on an upper bound of the number of iterations.
Alex Zinenko60f443b2020-05-13 10:12:30572/// If the `scf.parallel` contains nested `scf.parallel` operations, those
Stephan Herhut715783d2020-02-07 12:22:10573/// need to be annotated, as well. Structurally, the transformation works by
Alex Zinenko60f443b2020-05-13 10:12:30574/// splicing all operations from nested `scf.parallel` operations into a single
Stephan Herhut715783d2020-02-07 12:22:10575/// sequence. Indices mapped to hardware ids are substituted with those ids,
576/// wheras sequential mappings result in a sequential for-loop. To have more
577/// flexibility when mapping code to hardware ids, the transform supports two
578/// affine maps. The first `map` is used to compute the actual index for
579/// substitution from the hardware id. The second `bound` is used to compute the
580/// launch dimension for the hardware id from the number of iterations the
581/// mapped loop is performing. Note that the number of iterations might be
582/// imprecise if the corresponding loop-bounds are loop-dependent. In such case,
583/// the hardware id might iterate over additional indices. The transformation
584/// caters for this by predicating the created sequence of instructions on
585/// the actual loop bound. This only works if an static upper bound for the
Kazuaki Ishizaki5aacce32020-04-05 02:30:01586/// dynamic loop bound can be derived, currently via analyzing `affine.min`
Stephan Herhut715783d2020-02-07 12:22:10587/// operations.
River Riddle31454272020-03-18 03:07:55588LogicalResult
Stephan Herhut715783d2020-02-07 12:22:10589ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp,
590 PatternRewriter &rewriter) const {
Vladislav Vinogradovec03bbe2021-08-20 11:25:42591 // Mark the operation as visited for recursive legality check.
592 parallelOp->setAttr(kVisitedAttrName, rewriter.getUnitAttr());
593
Stephan Herhut5da24232020-11-12 17:36:14594 // We can only transform starting at the outer-most loop. Launches inside of
595 // parallel loops are not supported.
Christian Sigg0bf4a822020-12-09 10:50:18596 if (auto parentLoop = parallelOp->getParentOfType<ParallelOp>())
Stephan Herhut5da24232020-11-12 17:36:14597 return failure();
Stephan Herhut715783d2020-02-07 12:22:10598 // Create a launch operation. We start with bound one for all grid/block
599 // sizes. Those will be refined later as we discover them from mappings.
600 Location loc = parallelOp.getLoc();
Mogballa54f4ea2021-10-12 23:14:57601 Value constantOne =
602 rewriter.create<arith::ConstantIndexOp>(parallelOp.getLoc(), 1);
Stephan Herhut715783d2020-02-07 12:22:10603 gpu::LaunchOp launchOp = rewriter.create<gpu::LaunchOp>(
604 parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne,
605 constantOne, constantOne);
606 rewriter.setInsertionPointToEnd(&launchOp.body().front());
607 rewriter.create<gpu::TerminatorOp>(loc);
608 rewriter.setInsertionPointToStart(&launchOp.body().front());
609
610 BlockAndValueMapping cloningMap;
MaheshRavishankar46bb6612020-03-24 22:55:36611 llvm::DenseMap<gpu::Processor, Value> launchBounds;
Stephan Herhut715783d2020-02-07 12:22:10612 SmallVector<Operation *, 16> worklist;
613 if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist,
Stephan Herhut10ec1862020-03-02 17:05:42614 launchBounds, rewriter)))
River Riddle31454272020-03-18 03:07:55615 return failure();
Stephan Herhut715783d2020-02-07 12:22:10616
617 // Whether we have seen any side-effects. Reset when leaving an inner scope.
618 bool seenSideeffects = false;
619 // Whether we have left a nesting scope (and hence are no longer innermost).
620 bool leftNestingScope = false;
621 while (!worklist.empty()) {
622 Operation *op = worklist.pop_back_val();
Stephan Herhut715783d2020-02-07 12:22:10623 // Now walk over the body and clone it.
Alex Zinenko60f443b2020-05-13 10:12:30624 // TODO: This is only correct if there either is no further scf.parallel
Stephan Herhut715783d2020-02-07 12:22:10625 // nested or this code is side-effect free. Otherwise we might need
Kazuaki Ishizakie5a85122020-03-26 18:51:37626 // predication. We are overly conservative for now and only allow
Stephan Herhut715783d2020-02-07 12:22:10627 // side-effects in the innermost scope.
628 if (auto nestedParallel = dyn_cast<ParallelOp>(op)) {
629 // Before entering a nested scope, make sure there have been no
630 // sideeffects until now.
631 if (seenSideeffects)
River Riddle31454272020-03-18 03:07:55632 return failure();
Alex Zinenko60f443b2020-05-13 10:12:30633 // A nested scf.parallel needs insertion of code to compute indices.
Stephan Herhut715783d2020-02-07 12:22:10634 // Insert that now. This will also update the worklist with the loops
635 // body.
Stephan Herhut10ec1862020-03-02 17:05:42636 if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap,
637 worklist, launchBounds, rewriter)))
River Riddle31454272020-03-18 03:07:55638 return failure();
Stephan Herhut715783d2020-02-07 12:22:10639 } else if (op == launchOp.getOperation()) {
640 // Found our sentinel value. We have finished the operations from one
641 // nesting level, pop one level back up.
Mehdi Amini02b6fb22021-12-20 19:45:05642 auto *parent = rewriter.getInsertionPoint()->getParentOp();
Stephan Herhut715783d2020-02-07 12:22:10643 rewriter.setInsertionPointAfter(parent);
644 leftNestingScope = true;
645 seenSideeffects = false;
646 } else {
647 // Otherwise we copy it over.
648 Operation *clone = rewriter.clone(*op, cloningMap);
649 cloningMap.map(op->getResults(), clone->getResults());
650 // Check for side effects.
River Riddle0ddba0b2020-03-12 21:06:41651 // TODO: Handle region side effects properly.
652 seenSideeffects |= !MemoryEffectOpInterface::hasNoEffect(clone) ||
653 clone->getNumRegions() != 0;
Stephan Herhut715783d2020-02-07 12:22:10654 // If we are no longer in the innermost scope, sideeffects are disallowed.
655 if (seenSideeffects && leftNestingScope)
River Riddle31454272020-03-18 03:07:55656 return failure();
Stephan Herhut715783d2020-02-07 12:22:10657 }
658 }
659
Stephan Herhut10ec1862020-03-02 17:05:42660 // Now that we succeeded creating the launch operation, also update the
661 // bounds.
662 for (auto bound : launchBounds)
MaheshRavishankar46bb6612020-03-24 22:55:36663 launchOp.setOperand(getLaunchOpArgumentNum(std::get<0>(bound)),
664 std::get<1>(bound));
Stephan Herhut10ec1862020-03-02 17:05:42665
Stephan Herhut715783d2020-02-07 12:22:10666 rewriter.eraseOp(parallelOp);
River Riddle31454272020-03-18 03:07:55667 return success();
Stephan Herhut715783d2020-02-07 12:22:10668}
669
Chris Lattnerdc4e9132021-03-22 23:58:34670void mlir::populateParallelLoopToGPUPatterns(RewritePatternSet &patterns) {
671 patterns.add<ParallelToGpuLaunchLowering>(patterns.getContext());
Stephan Herhut715783d2020-02-07 12:22:10672}
Stephan Herhut5da24232020-11-12 17:36:14673
674void mlir::configureParallelLoopToGPULegality(ConversionTarget &target) {
Julian Grosse2310702021-02-10 12:53:11675 target.addLegalDialect<memref::MemRefDialect>();
Stephan Herhut5da24232020-11-12 17:36:14676 target.addDynamicallyLegalOp<scf::ParallelOp>([](scf::ParallelOp parallelOp) {
Vladislav Vinogradovec03bbe2021-08-20 11:25:42677 return !parallelOp->hasAttr(gpu::getMappingAttrName()) ||
678 parallelOp->hasAttr(kVisitedAttrName);
679 });
680}
681
682void mlir::finalizeParallelLoopToGPUConversion(Operation *op) {
683 op->walk([](scf::ParallelOp parallelOp) {
684 parallelOp->removeAttr(kVisitedAttrName);
Stephan Herhut5da24232020-11-12 17:36:14685 });
686}