peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 1 | <!-- |
| 2 | Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. |
| 3 | --> |
| 4 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 5 | # A categorization of standard (2018) and extended Fortran intrinsic procedures |
| 6 | |
| 7 | This note attempts to group the intrinsic procedures of Fortran into categories |
| 8 | of functions or subroutines with similar interfaces as an aid to |
| 9 | comprehension beyond that which might be gained from the standard's |
| 10 | alphabetical list. |
| 11 | |
| 12 | Few procedures are actually described here apart from their interfaces; see the |
| 13 | Fortran 2018 standard (section 16) for the complete story. |
| 14 | |
| 15 | Intrinsic modules are not covered here. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 16 | |
| 17 | ## General rules |
| 18 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 19 | 1. The value of any intrinsic function's `KIND` actual argument, if present, |
| 20 | must be a scalar constant integer expression, of any kind, whose value |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 21 | resolves to some supported kind of the function's result type. |
| 22 | If optional and absent, the kind of the function's result is |
| 23 | either the default kind of that category or to the kind of an argument |
| 24 | (e.g., as in `AINT`). |
| 25 | 1. Procedures are summarized with a non-Fortran syntax for brevity. |
| 26 | Wherever a function has a short definition, it appears after an |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 27 | equal sign as if it were a statement function. Any functions referenced |
| 28 | in these short summaries are intrinsic. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 29 | 1. Unless stated otherwise, an actual argument may have any supported kind |
| 30 | of a particular intrinsic type. Sometimes a pattern variable |
| 31 | can appear in a description (e.g., `REAL(k)`) when the kind of an |
| 32 | actual argument's type must match the kind of another argument, or |
| 33 | determines the kind type parameter of the function result. |
| 34 | 1. When an intrinsic type name appears without a kind (e.g., `REAL`), |
| 35 | it refers to the default kind of that type. Sometimes the word |
| 36 | `default` will appear for clarity. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 37 | 1. The names of the dummy arguments actually matter because they can |
| 38 | be used as keywords for actual arguments. |
| 39 | 1. All standard intrinsic functions are pure, even when not elemental. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 40 | 1. Assumed-rank arguments may not appear as actual arguments unless |
| 41 | expressly permitted. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 42 | |
| 43 | # Elemental intrinsic functions |
| 44 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 45 | Pure elemental semantics apply to these functions, to wit: when one or more of |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 46 | the actual arguments are arrays, the arguments must be conformable, and |
| 47 | the result is also an array. |
| 48 | Scalar arguments are expanded when the arguments are not all scalars. |
| 49 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 50 | ## Elemental intrinsic functions that may have unrestricted specific procedures |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame^] | 51 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 52 | When an elemental intrinsic function is documented here as having an |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 53 | _unrestricted specific name_, that name may be passed as an actual |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 54 | argument, used as the target of a procedure pointer, appear in |
| 55 | a generic interface, and be otherwise used as if it were an external |
| 56 | procedure. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 57 | An `INTRINSIC` statement or attribute may have to be applied to an |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame^] | 58 | unrestricted specific name to enable such usage. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 59 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 60 | In such usage, the instance of the function that accepts and returns |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 61 | values of the default kinds of the intrinsic types is used. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 62 | A Fortran `INTERFACE` could be written to define each of |
| 63 | these unrestricted specific intrinsic function names. |
| 64 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 65 | Calls to dummy arguments and procedure pointers that correspond to these |
| 66 | specific names must pass only scalar actual argument values. |
| 67 | |
| 68 | No other intrinsic function name can be passed as an actual argument, |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 69 | used as a pointer target, or appear in a generic interface. |
| 70 | |
| 71 | ### Trigonometric elemental intrinsic functions, generic and (mostly) specific |
| 72 | All of these functions can be used as unrestricted specific names. |
| 73 | |
| 74 | ``` |
| 75 | ACOS(REAL(k) X) -> REAL(k) |
| 76 | ASIN(REAL(k) X) -> REAL(k) |
| 77 | ATAN(REAL(k) X) -> REAL(k) |
| 78 | ATAN(REAL(k) Y, REAL(k) X) -> REAL(k) = ATAN2(Y, X) |
| 79 | ATAN2(REAL(k) Y, REAL(k) X) -> REAL(k) |
| 80 | COS(REAL(k) X) -> REAL(k) |
| 81 | COSH(REAL(k) X) -> REAL(k) |
| 82 | SIN(REAL(k) X) -> REAL(k) |
| 83 | SINH(REAL(k) X) -> REAL(k) |
| 84 | TAN(REAL(k) X) -> REAL(k) |
| 85 | TANH(REAL(k) X) -> REAL(k) |
| 86 | ``` |
| 87 | |
| 88 | These `COMPLEX` versions of some of those functions, and the |
| 89 | inverse hyperbolic functions, cannot be used as specific names. |
| 90 | ``` |
| 91 | ACOS(COMPLEX(k) X) -> COMPLEX(k) |
| 92 | ASIN(COMPLEX(k) X) -> COMPLEX(k) |
| 93 | ATAN(COMPLEX(k) X) -> COMPLEX(k) |
| 94 | ACOSH(REAL(k) X) -> REAL(k) |
| 95 | ACOSH(COMPLEX(k) X) -> COMPLEX(k) |
| 96 | ASINH(REAL(k) X) -> REAL(k) |
| 97 | ASINH(COMPLEX(k) X) -> COMPLEX(k) |
| 98 | ATANH(REAL(k) X) -> REAL(k) |
| 99 | ATANH(COMPLEX(k) X) -> COMPLEX(k) |
| 100 | COS(COMPLEX(k) X) -> COMPLEX(k) |
| 101 | COSH(COMPLEX(k) X) -> COMPLEX(k) |
| 102 | SIN(COMPLEX(k) X) -> COMPLEX(k) |
| 103 | SINH(COMPLEX(k) X) -> COMPLEX(k) |
| 104 | TAN(COMPLEX(k) X) -> COMPLEX(k) |
| 105 | TANH(COMPLEX(k) X) -> COMPLEX(k) |
| 106 | ``` |
| 107 | |
| 108 | ### Non-trigonometric elemental intrinsic functions, generic and specific |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 109 | These functions *can* be used as unrestricted specific names. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 110 | ``` |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 111 | ABS(REAL(k) A) -> REAL(k) = SIGN(A, 0.0) |
| 112 | AIMAG(COMPLEX(k) Z) -> REAL(k) = Z%IM |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 113 | AINT(REAL(k) A [, KIND=k ]) -> REAL(KIND) |
| 114 | ANINT(REAL(k) A [, KIND=k ] -> REAL(KIND) |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 115 | CONJG(COMPLEX(k) Z) -> COMPLEX(k) = CMPLX(Z%RE, -Z%IM) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame^] | 116 | DIM(REAL(k) X, REAL(k) Y) -> REAL(k) = X-MIN(X,Y) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 117 | DPROD(default REAL X, default REAL Y) -> DOUBLE PRECISION = DBLE(X)*DBLE(Y) |
| 118 | EXP(REAL(k) X) -> REAL(k) |
| 119 | INDEX(CHARACTER(k) STRING, CHARACTER(k) SUBSTRING [, LOGICAL(any) BACK, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 120 | LEN(CHARACTER(k,n) STRING [, KIND=KIND(0) ]) -> INTEGER(KIND) = n |
| 121 | LOG(REAL(k) X) -> REAL(k) |
| 122 | LOG10(REAL(k) X) -> REAL(k) |
| 123 | MOD(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k) = A-P*INT(A/P) |
| 124 | NINT(REAL(k) A [, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 125 | SIGN(REAL(k) A, REAL(k) B) -> REAL(k) |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 126 | SQRT(REAL(k) X) -> REAL(k) = X ** 0.5 |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 127 | ``` |
| 128 | |
peter klausler | 970e746c | 2018-09-25 22:36:00 | [diff] [blame] | 129 | These variants, however *cannot* be used as specific names without recourse to an alias |
| 130 | from the following section: |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 131 | ``` |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 132 | ABS(INTEGER(k) A) -> INTEGER(k) = SIGN(A, 0) |
| 133 | ABS(COMPLEX(k) A) -> REAL(k) = HYPOT(A%RE, A%IM) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame^] | 134 | DIM(INTEGER(k) X, INTEGER(k) Y) -> INTEGER(k) = X-MIN(X,Y) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 135 | EXP(COMPLEX(k) X) -> COMPLEX(k) |
| 136 | LOG(COMPLEX(k) X) -> COMPLEX(k) |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 137 | MOD(REAL(k) A, REAL(k) P) -> REAL(k) = A-P*INT(A/P) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 138 | SIGN(INTEGER(k) A, INTEGER(k) B) -> INTEGER(k) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame^] | 139 | SQRT(COMPLEX(k) X) -> COMPLEX(k) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 140 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 141 | |
| 142 | ### Unrestricted specific aliases for some elemental intrinsic functions with distinct names |
| 143 | |
| 144 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 145 | ALOG(REAL X) -> REAL = LOG(X) |
| 146 | ALOG10(REAL X) -> REAL = LOG10(X) |
| 147 | AMOD(REAL A, REAL P) -> REAL = MOD(A, P) |
| 148 | CABS(COMPLEX A) = ABS(A) |
| 149 | CCOS(COMPLEX X) = COS(X) |
| 150 | CEXP(COMPLEX A) -> COMPLEX = EXP(A) |
| 151 | CLOG(COMPLEX X) -> COMPLEX = LOG(X) |
| 152 | CSIN(COMPLEX X) = SIN(X) |
| 153 | CSQRT(COMPLEX X) -> COMPLEX = SQRT(X) |
| 154 | CTAN(COMPLEX X) = TAN(X) |
| 155 | DABS(DOUBLE PRECISION A) = ABS(A) |
| 156 | DACOS(DOUBLE PRECISION X) = ACOS(X) |
| 157 | DASIN(DOUBLE PRECISION X) = ASIN(X) |
| 158 | DATAN(DOUBLE PRECISION X) = ATAN(X) |
| 159 | DATAN2(DOUBLE PRECISION Y, DOUBLE PRECISION X) = ATAN2(Y, X) |
| 160 | DCOS(DOUBLE PRECISION X) = COS(X) |
| 161 | DCOSH(DOUBLE PRECISION X) = COSH(X) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame^] | 162 | DDIM(DOUBLE PRECISION X, DOUBLE PRECISION Y) -> DOUBLE PRECISION = X-MIN(X,Y) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 163 | DEXP(DOUBLE PRECISION) -> DOUBLE PRECISION = EXP(A) |
| 164 | DINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = AINT(A) |
| 165 | DLOG(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG(X) |
| 166 | DLOG10(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG10(X) |
| 167 | DMOD(DOUBLE PRECISION A, DOUBLE PRECISION P) -> DOUBLE PRECISION = MOD(A, P) |
| 168 | DNINT(DOUBLE PRECISION A) = ANINT(A) |
| 169 | DSIGN(DOUBLE PRECISION A, DOUBLE PRECISION B) -> DOUBLE PRECISION = SIGN(A, B) |
| 170 | DSIN(DOUBLE PRECISION X) = SIN(X) |
| 171 | DSINH(DOUBLE PRECISION X) = SINH(X) |
| 172 | DSQRT(DOUBLE PRECISION X) -> DOUBLE PRECISION = SQRT(X) |
| 173 | DTAN(DOUBLE PRECISION X) = TAN(X) |
| 174 | DTANH(DOUBLE PRECISION X) = TANH(X) |
| 175 | IABS(INTEGER A) = ABS(A) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame^] | 176 | IDIM(INTEGER X, INTEGER Y) -> INTEGER = X-MIN(X,Y) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 177 | IDNINT(DOUBLE PRECISION A) = NINT(A) |
| 178 | ISIGN(INTEGER A, INTEGER B) -> INTEGER = SIGN(A, B) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 179 | ``` |
| 180 | |
| 181 | ## Generic elemental intrinsic functions without specific names |
| 182 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 183 | (No procedures after this point can be passed as actual arguments, used as |
| 184 | pointer targets, or appear as specific procedures in generic interfaces.) |
| 185 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 186 | ### Elemental conversions |
| 187 | |
| 188 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 189 | ACHAR(INTEGER(k) I [, KIND=KIND('')]) -> CHARACTER(KIND,LEN=1) |
| 190 | CEILING(REAL() A [, KIND=KIND(0)]) -> INTEGER(KIND) |
| 191 | CHAR(INTEGER(any) I [, KIND=KIND('')]) -> CHARACTER(KIND,LEN=1) |
| 192 | CMPLX(COMPLEX(k) X [, KIND=KIND(0.0D0)]) -> COMPLEX(KIND) |
| 193 | CMPLX(INTEGER or REAL or BOZ X [, INTEGER or REAL or BOZ Y, KIND=KIND((0,0)) ]) -> COMPLEX(KIND) |
| 194 | EXPONENT(REAL(any) X) -> default INTEGER |
| 195 | FLOOR(REAL(any) A [, KIND=KIND(0)]) -> INTEGER(KIND) |
| 196 | IACHAR(CHARACTER(KIND=k,LEN=1) C [, KIND=KIND(0)]) -> INTEGER(KIND) |
| 197 | ICHAR(CHARACTER(KIND=k,LEN=1) C [, KIND=KIND(0)]) -> INTEGER(KIND) |
| 198 | INT(INTEGER or REAL or COMPLEX or BOZ A [, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 199 | LOGICAL(LOGICAL(any) L [, KIND=KIND(.TRUE.) ]) -> LOGICAL(KIND) |
| 200 | REAL(INTEGER or REAL or COMPLEX or BOZ A [, KIND=KIND(0.0) ]) -> REAL(KIND) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 201 | ``` |
| 202 | |
| 203 | ### Other generic elemental intrinsic functions without specific names |
| 204 | N.B. `BESSEL_JN(N1, N2, X)` and `BESSEL_YN(N1, N2, X)` are categorized |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 205 | below with the _transformational_ intrinsic functions. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 206 | |
| 207 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 208 | BESSEL_J0(REAL(k) X) -> REAL(k) |
| 209 | BESSEL_J1(REAL(k) X) -> REAL(k) |
| 210 | BESSEL_JN(INTEGER(n) N, REAL(k) X) -> REAL(k) |
| 211 | BESSEL_Y0(REAL(k) X) -> REAL(k) |
| 212 | BESSEL_Y1(REAL(k) X) -> REAL(k) |
| 213 | BESSEL_YN(INTEGER(n) N, REAL(k) X) -> REAL(k) |
| 214 | ERF(REAL(k) X) -> REAL(k) |
| 215 | ERFC(REAL(k) X) -> REAL(k) |
| 216 | ERFC_SCALED(REAL(k) X) -> REAL(k) |
| 217 | FRACTION(REAL(k) X) -> REAL(k) |
| 218 | GAMMA(REAL(k) X) -> REAL(k) |
peter klausler | 970e746c | 2018-09-25 22:36:00 | [diff] [blame] | 219 | HYPOT(REAL(k) X, REAL(k) Y) -> REAL(k) = SQRT(X*X+Y*Y) without spurious overflow |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 220 | IMAGE_STATUS(IMAGE [, scalar TEAM_TYPE TEAM ]) -> default INTEGER |
| 221 | IS_IOSTAT_END(INTEGER(any) I) -> default LOGICAL |
| 222 | IS_IOSTAT_EOR(INTEGER(any) I) -> default LOGICAL |
| 223 | LOG_GAMMA(REAL(k) X) -> REAL(k) |
| 224 | MAX(INTEGER(k) ...) -> INTEGER(k) |
| 225 | MAX(REAL(k) ...) -> REAL(k) |
| 226 | MAX(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...))) |
| 227 | MERGE(any type TSOURCE, same type FSOURCE, LOGICAL(any) MASK) -> type of FSOURCE |
| 228 | MIN(INTEGER(k) ...) -> INTEGER(k) |
| 229 | MIN(REAL(k) ...) -> REAL(k) |
| 230 | MIN(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...))) |
| 231 | MODULO(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k); P*result >= 0 |
| 232 | MODULO(REAL(k) A, REAL(k) P) -> REAL(k) = A - P*FLOOR(A/P) |
| 233 | NEAREST(REAL(k) X, REAL(any) S) -> REAL(k) |
| 234 | OUT_OF_RANGE(INTEGER or REAL(any) X, scalar INTEGER or REAL(k) MOLD [, scalar LOGICAL(any) ROUND ]) -> default LOGICAL |
| 235 | RRSPACING(REAL(k) X) -> REAL(k) |
| 236 | SCALE(REAL(k) X, INTEGER(any) I) -> REAL(k) |
| 237 | SET_EXPONENT(REAL(k) X, INTEGER(any) I) -> REAL(k) |
| 238 | SPACING(REAL(k) X) -> REAL(k) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 239 | ``` |
| 240 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 241 | ### Restricted specific aliases for elemental conversions &/or extrema with default intrinsic types |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 242 | |
| 243 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 244 | AMAX0(INTEGER ...) = REAL(MAX(...)) |
| 245 | AMAX1(REAL ...) = MAX(...) |
| 246 | AMIN0(INTEGER...) = REAL(MIN(...)) |
| 247 | AMIN1(REAL ...) = MIN(...) |
| 248 | DBLE(REAL A) = REAL(A, KIND=KIND(0.0D0)) |
| 249 | DMAX1(DOUBLE PRECISION ...) = MAX(...) |
| 250 | DMIN1(DOUBLE PRECISION ...) = MIN(...) |
| 251 | FLOAT(INTEGER I) = REAL(I) |
| 252 | IDINT(DOUBLE PRECISION A) = INT(A) |
| 253 | IFIX(REAL A) = INT(A) |
| 254 | MAX0(INTEGER ...) = MAX(...) |
| 255 | MAX1(REAL ...) = INT(MAX(...)) |
| 256 | MIN0(INTEGER ...) = MIN(...) |
| 257 | MIN1(REAL ...) = INT(MIN(...)) |
| 258 | SNGL(DOUBLE PRECISION A) = REAL(A) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 259 | ``` |
| 260 | |
| 261 | ### Generic elemental bit manipulation intrinsic functions |
| 262 | ``` |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 263 | BGE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL |
| 264 | BGT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL |
| 265 | BLE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL |
| 266 | BLT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 267 | BTEST(INTEGER(n1) I, INTEGER(n2) POS) -> default LOGICAL |
| 268 | DSHIFTL(INTEGER(k), INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k) |
| 269 | DSHIFTL(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k) |
| 270 | DSHIFTR(INTEGER(k), INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k) |
| 271 | DSHIFTR(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k) |
| 272 | IAND(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) |
| 273 | IAND(BOZ I, INTEGER(k) J) -> INTEGER(k) |
| 274 | IBCLR(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k) |
| 275 | IBSET(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k) |
| 276 | IBITS(INTEGER(k) I, INTEGER(n1) POS, INTEGER(n2) LEN) -> INTEGER(k) |
| 277 | IEOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) |
| 278 | IEOR(BOZ I, INTEGER(k) J) -> INTEGER(k) |
| 279 | IOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) |
| 280 | IOR(BOZ I, INTEGER(k) J) -> INTEGER(k) |
| 281 | ISHFT(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) |
| 282 | ISHFTC(INTEGER(k) I, INTEGER(n1) SHIFT [, INTEGER(n2) SIZE = BIT_SIZE(I) ]) -> INTEGER(k) |
| 283 | LEADZ(INTEGER(any) I) -> default INTEGER |
| 284 | MASKL(INTEGER(any) I [, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 285 | MASKR(INTEGER(any) I [, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 286 | MERGE_BITS(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK))) |
| 287 | MERGE_BITS(BOZ I, INTEGER(k) J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK))) |
| 288 | NOT(INTEGER(k) I) -> INTEGER(k) |
| 289 | POPCNT(INTEGER(any) I) -> default INTEGER |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 290 | POPPAR(INTEGER(any) I) -> default INTEGER = IAND(POPCNT(I), Z'1') |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 291 | SHIFTA(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) |
| 292 | SHIFTL(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) |
| 293 | SHIFTR(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) |
| 294 | TRAILZ(INTEGER(any) I) -> default INTEGER |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 295 | ``` |
| 296 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 297 | Any typeless "BOZ" argument to `MERGE_BITS` is converted to `INTEGER(k)`. Note that at most one |
| 298 | of its first two arguments can be a typeless "BOZ" literal. |
| 299 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 300 | ### Character elemental intrinsic functions |
| 301 | See also `INDEX` and `LEN` above among the elemental intrinsic functions with |
| 302 | unrestricted specific names. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 303 | ``` |
| 304 | ADJUSTL(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n) |
| 305 | ADJUSTR(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n) |
| 306 | LEN_TRIM(CHARACTER(k,n) STRING [, KIND=KIND(0) ]) -> INTEGER(KIND) = n |
| 307 | LGE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL |
| 308 | LGT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL |
| 309 | LLE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL |
| 310 | LLT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL |
| 311 | SCAN(CHARACTER(k,n) STRING, CHARACTER(k,m) SET [, LOGICAL(any) BACK, KIND ]) -> INTEGER(KIND) |
| 312 | VERIFY(CHARACTER(k,n) STRING, CHARACTER(k,m) SET [, LOGICAL(any) BACK, KIND ]) -> INTEGER(KIND) |
| 313 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 314 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 315 | `SCAN` returns the index of the first (or last, if `BACK=.TRUE.`) character in `STRING` |
| 316 | that is present in `SET`, or zero if none is. |
| 317 | |
| 318 | `VERIFY` is the opposite, and returns the index of the first (or last) character |
| 319 | in `STRING` that is *not* present in `SET`, or zero if all are. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 320 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 321 | # Transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 322 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 323 | This category comprises a large collection of intrinsic functions that |
| 324 | are collected together because they somehow transform their arguments |
| 325 | in a way that prevents them from being elemental. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 326 | All of them are pure, however. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 327 | |
| 328 | Some general rules apply to the transformational intrinsic functions: |
| 329 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 330 | 1. `DIM` arguments are optional; if present, the actual argument must be |
| 331 | a scalar integer of any kind. |
| 332 | 1. When an optional `DIM` argument is absent, or an `ARRAY` or `MASK` |
| 333 | argument is a vector, the result of the function is scalar; otherwise, |
| 334 | the result is an array of the same shape as the `ARRAY` or `MASK` |
| 335 | argument with the dimension `DIM` removed from the shape. |
| 336 | 1. When a function takes an optional `MASK` argument, it must be conformable |
| 337 | with its `ARRAY` argument if it is present, and the mask can be any kind |
| 338 | of `LOGICAL`. It can be scalar. |
| 339 | 1. The type `numeric` here can be any kind of `INTEGER`, `REAL`, or `COMPLEX`. |
| 340 | 1. The type `relational` here can be any kind of `INTEGER`, `REAL`, or `CHARACTER`. |
| 341 | 1. The type `any` here denotes any intrinsic or derived type. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 342 | 1. The notation `(..)` denotes an array of any rank (but not an assumed-rank array). |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 343 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 344 | ## Logical reduction transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 345 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 346 | ALL(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) |
| 347 | ANY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) |
| 348 | COUNT(LOGICAL(any) MASK(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 349 | PARITY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 350 | ``` |
| 351 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 352 | ## Numeric reduction transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 353 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 354 | IALL(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) |
| 355 | IANY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) |
| 356 | IPARITY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) |
| 357 | NORM2(REAL(k) X(..) [, DIM ]) -> REAL(k) |
| 358 | PRODUCT(numeric ARRAY(..) [, DIM, MASK ]) -> numeric |
| 359 | SUM(numeric ARRAY(..) [, DIM, MASK ]) -> numeric |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 360 | ``` |
| 361 | |
peter klausler | 970e746c | 2018-09-25 22:36:00 | [diff] [blame] | 362 | `NORM2` generalizes `HYPOT` by computing `SQRT(SUM(X*X))` while avoiding spurious overflows. |
| 363 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 364 | ## Extrema reduction transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 365 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 366 | MAXVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k) |
| 367 | MINVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 368 | ``` |
| 369 | |
| 370 | ### Locational transformational intrinsic functions |
| 371 | When the optional `DIM` argument is absent, the result is an `INTEGER(KIND)` |
| 372 | vector whose length is the rank of `ARRAY`. |
| 373 | When the optional `DIM` argument is present, the result is an `INTEGER(KIND)` |
| 374 | array of rank `RANK(ARRAY)-1` and shape equal to that of `ARRAY` with |
| 375 | the dimension `DIM` removed. |
| 376 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 377 | The optional `BACK` argument is a scalar LOGICAL value of any kind. |
| 378 | When present and `.TRUE.`, it causes the function to return the index |
| 379 | of the *last* occurence of the target or extreme value. |
| 380 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 381 | For `FINDLOC`, `ARRAY` may have any of the five intrinsic types, and `VALUE` |
| 382 | must a scalar value of a type for which `ARRAY==VALUE` or `ARRAY .EQV. VALUE` |
| 383 | is an acceptable expression. |
| 384 | |
| 385 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 386 | FINDLOC(intrinsic ARRAY(..), scalar VALUE [, DIM, MASK, KIND=KIND(0), BACK ]) |
| 387 | MAXLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK ]) |
| 388 | MINLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK ]) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 389 | ``` |
| 390 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 391 | ## Data rearrangement transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 392 | The optional `DIM` argument to these functions must be a scalar integer of |
| 393 | any kind, and it takes a default value of 1 when absent. |
| 394 | |
| 395 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 396 | CSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, DIM ]) -> same type/kind/shape as ARRAY |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 397 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 398 | Either `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 399 | |
| 400 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 401 | EOSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, BOUNDARY, DIM ]) -> same type/kind/shape as ARRAY |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 402 | ``` |
| 403 | * `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed. |
| 404 | * If `BOUNDARY` is present, it must have the same type and parameters as `ARRAY`. |
| 405 | * If `BOUNDARY` is absent, `ARRAY` must be of an intrinsic type, and the default `BOUNDARY` is the obvious `0`, `' '`, or `.FALSE.` value of `KIND(ARRAY)`. |
| 406 | * If `BOUNDARY` is present, either it is scalar, or `RANK(BOUNDARY) == RANK(ARRAY) - 1` and `SHAPE(BOUNDARY)` is that of `SHAPE(ARRAY)` with element `DIM` |
| 407 | removed. |
| 408 | |
| 409 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 410 | PACK(any ARRAY(..), LOGICAL(any) MASK(..)) -> vector of same type and kind as ARRAY |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 411 | ``` |
| 412 | * `MASK` is conformable with `ARRAY` and may be scalar. |
| 413 | * The length of the result vector is `COUNT(MASK)` if `MASK` is an array, else `SIZE(ARRAY)` if `MASK` is `.TRUE.`, else zero. |
| 414 | |
| 415 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 416 | PACK(any ARRAY(..), LOGICAL(any) MASK(..), any VECTOR(n)) -> vector of same type, kind, and size as VECTOR |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 417 | ``` |
| 418 | * `MASK` is conformable with `ARRAY` and may be scalar. |
| 419 | * `VECTOR` has the same type and kind as `ARRAY`. |
| 420 | * `VECTOR` must not be smaller than result of `PACK` with no `VECTOR` argument. |
| 421 | * The leading elements of `VECTOR` are replaced with elements from `ARRAY` as |
| 422 | if `PACK` had been invoked without `VECTOR`. |
| 423 | |
| 424 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 425 | RESHAPE(any SOURCE(..), INTEGER(k) SHAPE(n) [, PAD(..), INTEGER(k2) ORDER(n) ]) -> SOURCE array with shape SHAPE |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 426 | ``` |
| 427 | * If `ORDER` is present, it is a vector of the same size as `SHAPE`, and |
| 428 | contains a permutation. |
| 429 | * The element(s) of `PAD` are used to fill out the result once `SOURCE` |
| 430 | has been consumed. |
| 431 | |
| 432 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 433 | SPREAD(any SOURCE, DIM, scalar INTEGER(any) NCOPIES) -> same type as SOURCE, rank=RANK(SOURCE)+1 |
| 434 | TRANSFORM(any SOURCE, any MOLD) -> scalar if MOLD is scalar, else vector; same type and kind as MOLD |
| 435 | TRANSFORM(any SOURCE, any MOLD, scalar INTEGER(any) SIZE) -> vector(SIZE) of type and kind of MOLD |
| 436 | TRANSPOSE(any MATRIX(n,m)) -> matrix(m,n) of same type and kind as MATRIX |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 437 | ``` |
| 438 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 439 | The shape of the result of `SPREAD` is the same as that of `SOURCE`, with `NCOPIES` inserted |
| 440 | at position `DIM`. |
| 441 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 442 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 443 | UNPACK(any VECTOR(n), LOGICAL(any) MASK(..), FIELD) -> type and kind of VECTOR, shape of MASK |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 444 | ``` |
| 445 | `FIELD` has same type and kind as `VECTOR` and is conformable with `MASK`. |
| 446 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 447 | ## Other transformational intrinsic functions |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 448 | ``` |
| 449 | BESSEL_JN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0)) |
| 450 | BESSEL_YN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0)) |
| 451 | COMMAND_ARGUMENT_COUNT() -> scalar default INTEGER |
| 452 | DOT_PRODUCT(LOGICAL(k) VECTOR_A(n), LOGICAL(k) VECTOR_B(n)) -> LOGICAL(k) = ANY(VECTOR_A .AND. VECTOR_B) |
| 453 | DOT_PRODUCT(COMPLEX(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(CONJG(VECTOR_A) * VECTOR_B) |
| 454 | DOT_PRODUCT(INTEGER(any) or REAL(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(VECTOR_A * VECTOR_B) |
| 455 | MATMUL(numeric ARRAY_A(j), numeric ARRAY_B(j,k)) -> numeric vector(k) |
| 456 | MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k)) -> numeric vector(j) |
| 457 | MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k,m)) -> numeric matrix(j,m) |
| 458 | MATMUL(LOGICAL(n1) ARRAY_A(j), LOGICAL(n2) ARRAY_B(j,k)) -> LOGICAL vector(k) |
| 459 | MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k)) -> LOGICAL vector(j) |
| 460 | MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k,m)) -> LOGICAL matrix(j,m) |
| 461 | NULL([POINTER/ALLOCATABLE MOLD]) -> POINTER |
| 462 | REDUCE(any ARRAY(..), function OPERATION [, DIM, LOGICAL(any) MASK(..), IDENTITY, LOGICAL ORDERED ]) |
| 463 | REPEAT(CHARACTER(k,n) STRING, INTEGER(any) NCOPIES) -> CHARACTER(k,n*NCOPIES) |
| 464 | SELECTED_CHAR_KIND('DEFAULT' or 'ASCII' or 'ISO_10646' or ...) -> scalar default INTEGER |
| 465 | SELECTED_INT_KIND(scalar INTEGER(any) R) -> scalar default INTEGER |
| 466 | SELECTED_REAL_KIND([scalar INTEGER(any) P, scalar INTEGER(any) R, scalar INTEGER(any) RADIX]) -> scalar default INTEGER |
| 467 | SHAPE(SOURCE [, KIND=KIND(0) ]) -> INTEGER(KIND)(RANK(SOURCE)) |
| 468 | TRIM(CHARACTER(k,n) STRING) -> CHARACTER(k) |
| 469 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 470 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 471 | The type and kind of the result of a numeric `MATMUL` is the same as would result from |
| 472 | a multiplication of an element of ARRAY_A and an element of ARRAY_B. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 473 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 474 | The kind of the `LOGICAL` result of a `LOGICAL` `MATMUL` is the same as would result |
| 475 | from an intrinsic `.AND.` operation between an element of `ARRAY_A` and an element |
| 476 | of `ARRAY_B`. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 477 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 478 | Note that `DOT_PRODUCT` with a `COMPLEX` first argument operates on its complex conjugate, |
| 479 | but that `MATMUL` with a `COMPLEX` argument does not. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 480 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 481 | The `MOLD` argument to `NULL` may be omitted only in a context where the type of the pointer is known, |
| 482 | such as an initializer or pointer assignment statement. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 483 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 484 | At least one argument must be present in a call to `SELECTED_REAL_KIND`. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 485 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 486 | An assumed-rank array may be passed to `SHAPE`, and if it is associated with an assumed-size array, |
| 487 | the last element of the result will be -1. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 488 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 489 | ## Coarray transformational intrinsic functions |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 490 | ``` |
| 491 | FAILED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector |
| 492 | GET_TEAM([scalar INTEGER(?) LEVEL]) -> scalar TEAM_TYPE |
| 493 | IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n) [, scalar TEAM_TYPE TEAM ]) -> scalar default INTEGER |
| 494 | IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n), scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER |
| 495 | NUM_IMAGES([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER |
| 496 | NUM_IMAGES(scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER |
| 497 | STOPPED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector |
| 498 | TEAM_NUMBER([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER |
| 499 | THIS_IMAGE([COARRAY, DIM, scalar TEAM_TYPE TEAM]) -> default INTEGER |
| 500 | ``` |
| 501 | The result of `THIS_IMAGE` is a scalar if `DIM` is present or if `COARRAY` is absent, |
| 502 | and a vector whose length is the corank of `COARRAY` otherwise. |
| 503 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 504 | # Inquiry intrinsic functions |
| 505 | These are neither elemental nor transformational; all are pure. |
| 506 | |
| 507 | ## Type inquiry intrinsic functions |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 508 | The value of the argument is not used, and may be undefined. |
| 509 | ``` |
| 510 | BIT_SIZE(INTEGER(k) I(..)) -> INTEGER(k) |
| 511 | DIGITS(INTEGER or REAL X(..)) -> scalar default INTEGER |
| 512 | EPSILON(REAL(k) X(..)) -> scalar REAL(k) |
| 513 | HUGE(INTEGER(k) X(..)) -> scalar INTEGER(k) |
| 514 | HUGE(REAL(k) X(..)) -> scalar of REAL(k) |
| 515 | KIND(intrinsic X(..)) -> scalar default INTEGER |
| 516 | MAXEXPONENT(REAL(k) X(..)) -> scalar default INTEGER |
| 517 | MINEXPONENT(REAL(k) X(..)) -> scalar default INTEGER |
| 518 | NEW_LINE(CHARACTER(k,n) A(..)) -> scalar CHARACTER(k,1) = CHAR(10) |
| 519 | PRECISION(REAL(k) or COMPLEX(k) X) -> scalar default INTEGER |
| 520 | RADIX(INTEGER(k) or REAL(k) X) -> scalar default INTEGER, always 2 |
| 521 | RANGE(INTEGER(k) or REAL(k) or COMPLEX(k) X) -> scalar default INTEGER |
| 522 | TINY(REAL(k) X(..)) -> scalar REAL(k) |
| 523 | ``` |
| 524 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 525 | ## Bound and size inquiry intrinsic functions |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 526 | The results are scalar when `DIM` is present, and a vector of length=(co)rank(`(CO)ARRAY`) |
| 527 | when `DIM` is absent. |
| 528 | ``` |
| 529 | LBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 530 | LCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 531 | SIZE(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 532 | UBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 533 | UCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 534 | ``` |
| 535 | |
| 536 | Assumed-rank arrays may be used with `LBOUND`, `SIZE`, and `UBOUND`. |
| 537 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 538 | ## Object characteristic inquiry intrinsic functions |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 539 | ``` |
| 540 | ALLOCATED(any type ALLOCATABLE ARRAY) -> scalar default LOGICAL |
| 541 | ALLOCATED(any type ALLOCATABLE SCALAR) -> scalar default LOGICAL |
| 542 | ASSOCIATED(any type POINTER POINTER [, same type TARGET]) -> scalar default LOGICAL |
| 543 | COSHAPE(COARRAY [, KIND=KIND(0) ]) -> INTEGER(KIND) vector of length corank(COARRAY) |
| 544 | EXTENDS_TYPE_OF(A, MOLD) -> default LOGICAL |
| 545 | IS_CONTIGUOUS(any data ARRAY(..)) -> scalar default LOGICAL |
| 546 | PRESENT(OPTIONAL A) -> scalar default LOGICAL |
| 547 | RANK(any data A) -> scalar default INTEGER = 0 if A is scalar, SIZE(SHAPE(A)) if A is an array, rank if assumed-rank |
| 548 | SAME_TYPE_AS(A, B) -> scalar default LOGICAL |
| 549 | STORAGE_SIZE(any data A [, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 550 | ``` |
| 551 | The arguments to `EXTENDS_TYPE_OF` must be of extensible derived types or be unlimited polymorphic. |
| 552 | |
| 553 | An assumed-rank array may be used with `IS_CONTIGUOUS` and `RANK`. |
| 554 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 555 | # Intrinsic subroutines |
peter klausler | 970e746c | 2018-09-25 22:36:00 | [diff] [blame] | 556 | |
| 557 | (*TODO*: complete these descriptions) |
| 558 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 559 | ## One elemental intrinsic subroutine |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 560 | ``` |
| 561 | INTERFACE |
| 562 | SUBROUTINE MVBITS(FROM, FROMPOS, LEN, TO, TOPOS) |
| 563 | INTEGER(k1) :: FROM, TO |
| 564 | INTENT(IN) :: FROM |
| 565 | INTENT(INOUT) :: TO |
| 566 | INTEGER(k2), INTENT(IN) :: FROMPOS |
| 567 | INTEGER(k3), INTENT(IN) :: LEN |
| 568 | INTEGER(k4), INTENT(IN) :: TOPOS |
| 569 | END SUBROUTINE |
| 570 | END INTERFACE |
| 571 | ``` |
| 572 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 573 | ## Non-elemental intrinsic subroutines |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 574 | ``` |
| 575 | CALL CPU_TIME(REAL INTENT(OUT) TIME) |
| 576 | ``` |
| 577 | The kind of `TIME` is not specified in the standard. |
| 578 | |
| 579 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 580 | CALL DATA_AND_TIME([DATE, TIME, ZONE, VALUES]) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 581 | ``` |
| 582 | * All arguments are `OPTIONAL` and `INTENT(OUT)`. |
| 583 | * `DATE`, `TIME`, and `ZONE` are scalar default `CHARACTER`. |
| 584 | * `VALUES` is a vector of at least 8 elements of `INTEGER(KIND >= 2)`. |
| 585 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 586 | CALL EVENT_QUERY(EVENT, COUNT [, STAT]) |
| 587 | CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ]) |
| 588 | CALL GET_COMMAND([COMMAND, LENGTH, STATUS, ERRMSG ]) |
| 589 | CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS, ERRMSG ]) |
| 590 | CALL GET_ENVIRONMENT_VARIABLE(NAME [, VALUE, LENGTH, STATUS, TRIM_NAME, ERRMSG ]) |
| 591 | CALL MOVE_ALLOC(ALLOCATABLE INTENT(INOUT) FROM, ALLOCATABLE INTENT(OUT) TO [, STAT, ERRMSG ]) |
| 592 | CALL RANDOM_INIT(LOGICAL(k1) INTENT(IN) REPEATABLE, LOGICAL(k2) INTENT(IN) IMAGE_DISTINCT) |
| 593 | CALL RANDOM_NUMBER(REAL(k) INTENT(OUT) HARVEST(..)) |
| 594 | CALL RANDOM_SEED([SIZE, PUT, GET]) |
| 595 | CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX]) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 596 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 597 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 598 | ## Atomic intrinsic subroutines |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 599 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 600 | CALL ATOMIC_ADD(ATOM, VALUE [, STAT=]) |
| 601 | CALL ATOMIC_AND(ATOM, VALUE [, STAT=]) |
| 602 | CALL ATOMIC_CAS(ATOM, OLD, COMPARE, NEW [, STAT=]) |
| 603 | CALL ATOMIC_DEFINE(ATOM, VALUE [, STAT=]) |
| 604 | CALL ATOMIC_FETCH_ADD(ATOM, VALUE, OLD [, STAT=]) |
| 605 | CALL ATOMIC_FETCH_AND(ATOM, VALUE, OLD [, STAT=]) |
| 606 | CALL ATOMIC_FETCH_OR(ATOM, VALUE, OLD [, STAT=]) |
| 607 | CALL ATOMIC_FETCH_XOR(ATOM, VALUE, OLD [, STAT=]) |
| 608 | CALL ATOMIC_OR(ATOM, VALUE [, STAT=]) |
| 609 | CALL ATOMIC_REF(VALUE, ATOM [, STAT=]) |
| 610 | CALL ATOMIC_XOR(ATOM, VALUE [, STAT=]) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 611 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 612 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 613 | ## Collective intrinsic subroutines |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 614 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 615 | CALL CO_BROADCAST |
| 616 | CALL CO_MAX |
| 617 | CALL CO_MIN |
| 618 | CALL CO_REDUCE |
| 619 | CALL CO_SUM |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 620 | ``` |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame^] | 621 | |
| 622 | # Non-standard intrinsics |
| 623 | ## PGI |
| 624 | ``` |
| 625 | AND, OR, XOR |
| 626 | LSHIFT, RSHIFT, SHIFT |
| 627 | ZEXT, IZEXT |
| 628 | COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D |
| 629 | COMPL |
| 630 | DCMPLX |
| 631 | EQV, NEQV |
| 632 | INT8 |
| 633 | JINT, JNINT, KNINT |
| 634 | LOC |
| 635 | ``` |
| 636 | |
| 637 | ## Intel |
| 638 | ``` |
| 639 | DCMPLX(X,Y), QCMPLX(X,Y) |
| 640 | DREAL(DOUBLE COMPLEX A) -> DOUBLE PRECISION |
| 641 | DFLOAT, DREAL |
| 642 | QEXT, QFLOAT, QREAL |
| 643 | DNUM, INUM, JNUM, KNUM, QNUM, RNUM - scan value from string |
| 644 | ZEXT |
| 645 | RAN, RANF |
| 646 | ILEN(I) = BIT_SIZE(I) |
| 647 | SIZEOF |
| 648 | MCLOCK, SECNDS |
| 649 | COTAN(X) = 1.0/TAN(X) |
| 650 | COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COTAND - degrees |
| 651 | AND, OR, XOR |
| 652 | LSHIFT, RSHIFT |
| 653 | IBCHNG, ISHA, ISHC, ISHL, IXOR |
| 654 | IARG, IARGC, NARGS, NUMARG |
| 655 | BADDRESS, IADDR |
| 656 | CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, LOC |
| 657 | MALLOC |
| 658 | ``` |