blob: 83f76c1cbc5bf09e25930b048eb2346c6427b9f8 [file] [log] [blame]
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use os::unix::prelude::*;
use collections::hash_map::{HashMap, Entry};
use env;
use ffi::{OsString, OsStr, CString, CStr};
use fmt;
use io::{self, Error, ErrorKind};
use libc::{self, pid_t, c_int, gid_t, uid_t, c_char};
use mem;
use ptr;
use sys::fd::FileDesc;
use sys::fs::{File, OpenOptions};
use sys::pipe::{self, AnonPipe};
use sys::{self, cvt, cvt_r};
////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////
pub struct Command {
// Currently we try hard to ensure that the call to `.exec()` doesn't
// actually allocate any memory. While many platforms try to ensure that
// memory allocation works after a fork in a multithreaded process, it's
// been observed to be buggy and somewhat unreliable, so we do our best to
// just not do it at all!
//
// Along those lines, the `argv` and `envp` raw pointers here are exactly
// what's gonna get passed to `execvp`. The `argv` array starts with the
// `program` and ends with a NULL, and the `envp` pointer, if present, is
// also null-terminated.
//
// Right now we don't support removing arguments, so there's no much fancy
// support there, but we support adding and removing environment variables,
// so a side table is used to track where in the `envp` array each key is
// located. Whenever we add a key we update it in place if it's already
// present, and whenever we remove a key we update the locations of all
// other keys.
program: CString,
args: Vec<CString>,
env: Option<HashMap<OsString, (usize, CString)>>,
argv: Vec<*const c_char>,
envp: Option<Vec<*const c_char>>,
cwd: Option<CString>,
uid: Option<uid_t>,
gid: Option<gid_t>,
session_leader: bool,
saw_nul: bool,
closures: Vec<Box<FnMut() -> io::Result<()> + Send + Sync>>,
stdin: Option<Stdio>,
stdout: Option<Stdio>,
stderr: Option<Stdio>,
}
// passed back to std::process with the pipes connected to the child, if any
// were requested
pub struct StdioPipes {
pub stdin: Option<AnonPipe>,
pub stdout: Option<AnonPipe>,
pub stderr: Option<AnonPipe>,
}
// passed to do_exec() with configuration of what the child stdio should look
// like
struct ChildPipes {
stdin: ChildStdio,
stdout: ChildStdio,
stderr: ChildStdio,
}
enum ChildStdio {
Inherit,
Explicit(c_int),
Owned(FileDesc),
}
pub enum Stdio {
Inherit,
Null,
MakePipe,
Fd(FileDesc),
}
impl Command {
pub fn new(program: &OsStr) -> Command {
let mut saw_nul = false;
let program = os2c(program, &mut saw_nul);
Command {
argv: vec![program.as_ptr(), 0 as *const _],
program: program,
args: Vec::new(),
env: None,
envp: None,
cwd: None,
uid: None,
gid: None,
session_leader: false,
saw_nul: saw_nul,
closures: Vec::new(),
stdin: None,
stdout: None,
stderr: None,
}
}
pub fn arg(&mut self, arg: &OsStr) {
// Overwrite the trailing NULL pointer in `argv` and then add a new null
// pointer.
let arg = os2c(arg, &mut self.saw_nul);
self.argv[self.args.len() + 1] = arg.as_ptr();
self.argv.push(0 as *const _);
// Also make sure we keep track of the owned value to schedule a
// destructor for this memory.
self.args.push(arg);
}
fn init_env_map(&mut self) -> (&mut HashMap<OsString, (usize, CString)>,
&mut Vec<*const c_char>) {
if self.env.is_none() {
let mut map = HashMap::new();
let mut envp = Vec::new();
for (k, v) in env::vars_os() {
let s = pair_to_key(&k, &v, &mut self.saw_nul);
envp.push(s.as_ptr());
map.insert(k, (envp.len() - 1, s));
}
envp.push(0 as *const _);
self.env = Some(map);
self.envp = Some(envp);
}
(self.env.as_mut().unwrap(), self.envp.as_mut().unwrap())
}
pub fn env(&mut self, key: &OsStr, val: &OsStr) {
let new_key = pair_to_key(key, val, &mut self.saw_nul);
let (map, envp) = self.init_env_map();
// If `key` is already present then we we just update `envp` in place
// (and store the owned value), but if it's not there we override the
// trailing NULL pointer, add a new NULL pointer, and store where we
// were located.
match map.entry(key.to_owned()) {
Entry::Occupied(mut e) => {
let (i, ref mut s) = *e.get_mut();
envp[i] = new_key.as_ptr();
*s = new_key;
}
Entry::Vacant(e) => {
let len = envp.len();
envp[len - 1] = new_key.as_ptr();
envp.push(0 as *const _);
e.insert((len - 1, new_key));
}
}
}
pub fn env_remove(&mut self, key: &OsStr) {
let (map, envp) = self.init_env_map();
// If we actually ended up removing a key, then we need to update the
// position of all keys that come after us in `envp` because they're all
// one element sooner now.
if let Some((i, _)) = map.remove(key) {
envp.remove(i);
for (_, &mut (ref mut j, _)) in map.iter_mut() {
if *j >= i {
*j -= 1;
}
}
}
}
pub fn env_clear(&mut self) {
self.env = Some(HashMap::new());
self.envp = Some(vec![0 as *const _]);
}
pub fn cwd(&mut self, dir: &OsStr) {
self.cwd = Some(os2c(dir, &mut self.saw_nul));
}
pub fn uid(&mut self, id: uid_t) {
self.uid = Some(id);
}
pub fn gid(&mut self, id: gid_t) {
self.gid = Some(id);
}
pub fn session_leader(&mut self, session_leader: bool) {
self.session_leader = session_leader;
}
pub fn before_exec(&mut self,
f: Box<FnMut() -> io::Result<()> + Send + Sync>) {
self.closures.push(f);
}
pub fn stdin(&mut self, stdin: Stdio) {
self.stdin = Some(stdin);
}
pub fn stdout(&mut self, stdout: Stdio) {
self.stdout = Some(stdout);
}
pub fn stderr(&mut self, stderr: Stdio) {
self.stderr = Some(stderr);
}
pub fn spawn(&mut self, default: Stdio, needs_stdin: bool)
-> io::Result<(Process, StdioPipes)> {
const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX";
if self.saw_nul {
return Err(io::Error::new(ErrorKind::InvalidInput,
"nul byte found in provided data"));
}
let (ours, theirs) = self.setup_io(default, needs_stdin)?;
let (input, output) = sys::pipe::anon_pipe()?;
let pid = unsafe {
match cvt(libc::fork())? {
0 => {
drop(input);
let err = self.do_exec(theirs);
let errno = err.raw_os_error().unwrap_or(libc::EINVAL) as u32;
let bytes = [
(errno >> 24) as u8,
(errno >> 16) as u8,
(errno >> 8) as u8,
(errno >> 0) as u8,
CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
];
// pipe I/O up to PIPE_BUF bytes should be atomic, and then
// we want to be sure we *don't* run at_exit destructors as
// we're being torn down regardless
assert!(output.write(&bytes).is_ok());
libc::_exit(1)
}
n => n,
}
};
let mut p = Process { pid: pid, status: None };
drop(output);
let mut bytes = [0; 8];
// loop to handle EINTR
loop {
match input.read(&mut bytes) {
Ok(0) => return Ok((p, ours)),
Ok(8) => {
assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
"Validation on the CLOEXEC pipe failed: {:?}", bytes);
let errno = combine(&bytes[0.. 4]);
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
return Err(Error::from_raw_os_error(errno))
}
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => {
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("the CLOEXEC pipe failed: {:?}", e)
},
Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
assert!(p.wait().is_ok(),
"wait() should either return Ok or panic");
panic!("short read on the CLOEXEC pipe")
}
}
}
fn combine(arr: &[u8]) -> i32 {
let a = arr[0] as u32;
let b = arr[1] as u32;
let c = arr[2] as u32;
let d = arr[3] as u32;
((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
}
}
pub fn exec(&mut self, default: Stdio) -> io::Error {
if self.saw_nul {
return io::Error::new(ErrorKind::InvalidInput,
"nul byte found in provided data")
}
match self.setup_io(default, true) {
Ok((_, theirs)) => unsafe { self.do_exec(theirs) },
Err(e) => e,
}
}
// And at this point we've reached a special time in the life of the
// child. The child must now be considered hamstrung and unable to
// do anything other than syscalls really. Consider the following
// scenario:
//
// 1. Thread A of process 1 grabs the malloc() mutex
// 2. Thread B of process 1 forks(), creating thread C
// 3. Thread C of process 2 then attempts to malloc()
// 4. The memory of process 2 is the same as the memory of
// process 1, so the mutex is locked.
//
// This situation looks a lot like deadlock, right? It turns out
// that this is what pthread_atfork() takes care of, which is
// presumably implemented across platforms. The first thing that
// threads to *before* forking is to do things like grab the malloc
// mutex, and then after the fork they unlock it.
//
// Despite this information, libnative's spawn has been witnessed to
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
// all collected backtraces point at malloc/free traffic in the
// child spawned process.
//
// For this reason, the block of code below should contain 0
// invocations of either malloc of free (or their related friends).
//
// As an example of not having malloc/free traffic, we don't close
// this file descriptor by dropping the FileDesc (which contains an
// allocation). Instead we just close it manually. This will never
// have the drop glue anyway because this code never returns (the
// child will either exec() or invoke libc::exit)
unsafe fn do_exec(&mut self, stdio: ChildPipes) -> io::Error {
macro_rules! try {
($e:expr) => (match $e {
Ok(e) => e,
Err(e) => return e,
})
}
if let Some(fd) = stdio.stdin.fd() {
cvt_r(|| libc::dup2(fd, libc::STDIN_FILENO))?;
}
if let Some(fd) = stdio.stdout.fd() {
cvt_r(|| libc::dup2(fd, libc::STDOUT_FILENO))?;
}
if let Some(fd) = stdio.stderr.fd() {
cvt_r(|| libc::dup2(fd, libc::STDERR_FILENO))?;
}
if let Some(u) = self.gid {
cvt(libc::setgid(u as gid_t))?;
}
if let Some(u) = self.uid {
// When dropping privileges from root, the `setgroups` call
// will remove any extraneous groups. If we don't call this,
// then even though our uid has dropped, we may still have
// groups that enable us to do super-user things. This will
// fail if we aren't root, so don't bother checking the
// return value, this is just done as an optimistic
// privilege dropping function.
let _ = libc::setgroups(0, ptr::null());
cvt(libc::setuid(u as uid_t))?;
}
if self.session_leader {
// Don't check the error of setsid because it fails if we're the
// process leader already. We just forked so it shouldn't return
// error, but ignore it anyway.
let _ = libc::setsid();
}
if let Some(ref cwd) = self.cwd {
cvt(libc::chdir(cwd.as_ptr()))?;
}
if let Some(ref envp) = self.envp {
*sys::os::environ() = envp.as_ptr();
}
// NaCl has no signal support.
if cfg!(not(target_os = "nacl")) {
// Reset signal handling so the child process starts in a
// standardized state. libstd ignores SIGPIPE, and signal-handling
// libraries often set a mask. Child processes inherit ignored
// signals and the signal mask from their parent, but most
// UNIX programs do not reset these things on their own, so we
// need to clean things up now to avoid confusing the program
// we're about to run.
let mut set: libc::sigset_t = mem::uninitialized();
cvt(libc::sigemptyset(&mut set))?;
cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &set,
ptr::null_mut()))?;
let ret = libc::signal(libc::SIGPIPE, libc::SIG_DFL);
if ret == libc::SIG_ERR {
return io::Error::last_os_error()
}
}
for callback in self.closures.iter_mut() {
callback()?;
}
libc::execvp(self.argv[0], self.argv.as_ptr());
io::Error::last_os_error()
}
fn setup_io(&self, default: Stdio, needs_stdin: bool)
-> io::Result<(StdioPipes, ChildPipes)> {
let null = Stdio::Null;
let default_stdin = if needs_stdin {&default} else {&null};
let stdin = self.stdin.as_ref().unwrap_or(default_stdin);
let stdout = self.stdout.as_ref().unwrap_or(&default);
let stderr = self.stderr.as_ref().unwrap_or(&default);
let (their_stdin, our_stdin) = stdin.to_child_stdio(true)?;
let (their_stdout, our_stdout) = stdout.to_child_stdio(false)?;
let (their_stderr, our_stderr) = stderr.to_child_stdio(false)?;
let ours = StdioPipes {
stdin: our_stdin,
stdout: our_stdout,
stderr: our_stderr,
};
let theirs = ChildPipes {
stdin: their_stdin,
stdout: their_stdout,
stderr: their_stderr,
};
Ok((ours, theirs))
}
}
fn os2c(s: &OsStr, saw_nul: &mut bool) -> CString {
CString::new(s.as_bytes()).unwrap_or_else(|_e| {
*saw_nul = true;
CString::new("<string-with-nul>").unwrap()
})
}
impl Stdio {
fn to_child_stdio(&self, readable: bool)
-> io::Result<(ChildStdio, Option<AnonPipe>)> {
match *self {
Stdio::Inherit => Ok((ChildStdio::Inherit, None)),
// Make sure that the source descriptors are not an stdio
// descriptor, otherwise the order which we set the child's
// descriptors may blow away a descriptor which we are hoping to
// save. For example, suppose we want the child's stderr to be the
// parent's stdout, and the child's stdout to be the parent's
// stderr. No matter which we dup first, the second will get
// overwritten prematurely.
Stdio::Fd(ref fd) => {
if fd.raw() >= 0 && fd.raw() <= libc::STDERR_FILENO {
Ok((ChildStdio::Owned(fd.duplicate()?), None))
} else {
Ok((ChildStdio::Explicit(fd.raw()), None))
}
}
Stdio::MakePipe => {
let (reader, writer) = pipe::anon_pipe()?;
let (ours, theirs) = if readable {
(writer, reader)
} else {
(reader, writer)
};
Ok((ChildStdio::Owned(theirs.into_fd()), Some(ours)))
}
Stdio::Null => {
let mut opts = OpenOptions::new();
opts.read(readable);
opts.write(!readable);
let path = unsafe {
CStr::from_ptr("/dev/null\0".as_ptr() as *const _)
};
let fd = File::open_c(&path, &opts)?;
Ok((ChildStdio::Owned(fd.into_fd()), None))
}
}
}
}
impl ChildStdio {
fn fd(&self) -> Option<c_int> {
match *self {
ChildStdio::Inherit => None,
ChildStdio::Explicit(fd) => Some(fd),
ChildStdio::Owned(ref fd) => Some(fd.raw()),
}
}
}
fn pair_to_key(key: &OsStr, value: &OsStr, saw_nul: &mut bool) -> CString {
let (key, value) = (key.as_bytes(), value.as_bytes());
let mut v = Vec::with_capacity(key.len() + value.len() + 1);
v.extend(key);
v.push(b'=');
v.extend(value);
CString::new(v).unwrap_or_else(|_e| {
*saw_nul = true;
CString::new("foo=bar").unwrap()
})
}
impl fmt::Debug for Command {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.program)?;
for arg in &self.args {
write!(f, " {:?}", arg)?;
}
Ok(())
}
}
////////////////////////////////////////////////////////////////////////////////
// Processes
////////////////////////////////////////////////////////////////////////////////
/// Unix exit statuses
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(c_int);
impl ExitStatus {
fn exited(&self) -> bool {
unsafe { libc::WIFEXITED(self.0) }
}
pub fn success(&self) -> bool {
self.code() == Some(0)
}
pub fn code(&self) -> Option<i32> {
if self.exited() {
Some(unsafe { libc::WEXITSTATUS(self.0) })
} else {
None
}
}
pub fn signal(&self) -> Option<i32> {
if !self.exited() {
Some(unsafe { libc::WTERMSIG(self.0) })
} else {
None
}
}
}
impl fmt::Display for ExitStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(code) = self.code() {
write!(f, "exit code: {}", code)
} else {
let signal = self.signal().unwrap();
write!(f, "signal: {}", signal)
}
}
}
/// The unique id of the process (this should never be negative).
pub struct Process {
pid: pid_t,
status: Option<ExitStatus>,
}
impl Process {
pub fn id(&self) -> u32 {
self.pid as u32
}
pub fn kill(&mut self) -> io::Result<()> {
// If we've already waited on this process then the pid can be recycled
// and used for another process, and we probably shouldn't be killing
// random processes, so just return an error.
if self.status.is_some() {
Err(Error::new(ErrorKind::InvalidInput,
"invalid argument: can't kill an exited process"))
} else {
cvt(unsafe { libc::kill(self.pid, libc::SIGKILL) }).map(|_| ())
}
}
pub fn wait(&mut self) -> io::Result<ExitStatus> {
if let Some(status) = self.status {
return Ok(status)
}
let mut status = 0 as c_int;
cvt_r(|| unsafe { libc::waitpid(self.pid, &mut status, 0) })?;
self.status = Some(ExitStatus(status));
Ok(ExitStatus(status))
}
}
#[cfg(test)]
mod tests {
use super::*;
use prelude::v1::*;
use ffi::OsStr;
use mem;
use ptr;
use libc;
use sys::cvt;
macro_rules! t {
($e:expr) => {
match $e {
Ok(t) => t,
Err(e) => panic!("received error for `{}`: {}", stringify!($e), e),
}
}
}
#[cfg(not(target_os = "android"))]
extern {
#[cfg_attr(target_os = "netbsd", link_name = "__sigaddset14")]
fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int;
}
#[cfg(target_os = "android")]
unsafe fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int {
use slice;
let raw = slice::from_raw_parts_mut(set as *mut u8, mem::size_of::<libc::sigset_t>());
let bit = (signum - 1) as usize;
raw[bit / 8] |= 1 << (bit % 8);
return 0;
}
// See #14232 for more information, but it appears that signal delivery to a
// newly spawned process may just be raced in the OSX, so to prevent this
// test from being flaky we ignore it on OSX.
#[test]
#[cfg_attr(target_os = "macos", ignore)]
#[cfg_attr(target_os = "nacl", ignore)] // no signals on NaCl.
fn test_process_mask() {
unsafe {
// Test to make sure that a signal mask does not get inherited.
let mut cmd = Command::new(OsStr::new("cat"));
let mut set: libc::sigset_t = mem::uninitialized();
let mut old_set: libc::sigset_t = mem::uninitialized();
t!(cvt(libc::sigemptyset(&mut set)));
t!(cvt(sigaddset(&mut set, libc::SIGINT)));
t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &set, &mut old_set)));
cmd.stdin(Stdio::MakePipe);
cmd.stdout(Stdio::MakePipe);
let (mut cat, mut pipes) = t!(cmd.spawn(Stdio::Null, true));
let stdin_write = pipes.stdin.take().unwrap();
let stdout_read = pipes.stdout.take().unwrap();
t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &old_set,
ptr::null_mut())));
t!(cvt(libc::kill(cat.id() as libc::pid_t, libc::SIGINT)));
// We need to wait until SIGINT is definitely delivered. The
// easiest way is to write something to cat, and try to read it
// back: if SIGINT is unmasked, it'll get delivered when cat is
// next scheduled.
let _ = stdin_write.write(b"Hello");
drop(stdin_write);
// Either EOF or failure (EPIPE) is okay.
let mut buf = [0; 5];
if let Ok(ret) = stdout_read.read(&mut buf) {
assert!(ret == 0);
}
t!(cat.wait());
}
}
}