| //! A pointer type for heap allocation. |
| //! |
| //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of |
| //! heap allocation in Rust. Boxes provide ownership for this allocation, and |
| //! drop their contents when they go out of scope. Boxes also ensure that they |
| //! never allocate more than `isize::MAX` bytes. |
| //! |
| //! # Examples |
| //! |
| //! Move a value from the stack to the heap by creating a [`Box`]: |
| //! |
| //! ``` |
| //! let val: u8 = 5; |
| //! let boxed: Box<u8> = Box::new(val); |
| //! ``` |
| //! |
| //! Move a value from a [`Box`] back to the stack by [dereferencing]: |
| //! |
| //! ``` |
| //! let boxed: Box<u8> = Box::new(5); |
| //! let val: u8 = *boxed; |
| //! ``` |
| //! |
| //! Creating a recursive data structure: |
| //! |
| //! ``` |
| //! #[derive(Debug)] |
| //! enum List<T> { |
| //! Cons(T, Box<List<T>>), |
| //! Nil, |
| //! } |
| //! |
| //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); |
| //! println!("{:?}", list); |
| //! ``` |
| //! |
| //! This will print `Cons(1, Cons(2, Nil))`. |
| //! |
| //! Recursive structures must be boxed, because if the definition of `Cons` |
| //! looked like this: |
| //! |
| //! ```compile_fail,E0072 |
| //! # enum List<T> { |
| //! Cons(T, List<T>), |
| //! # } |
| //! ``` |
| //! |
| //! It wouldn't work. This is because the size of a `List` depends on how many |
| //! elements are in the list, and so we don't know how much memory to allocate |
| //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how |
| //! big `Cons` needs to be. |
| //! |
| //! # Memory layout |
| //! |
| //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for |
| //! its allocation. It is valid to convert both ways between a [`Box`] and a |
| //! raw pointer allocated with the [`Global`] allocator, given that the |
| //! [`Layout`] used with the allocator is correct for the type. More precisely, |
| //! a `value: *mut T` that has been allocated with the [`Global`] allocator |
| //! with `Layout::for_value(&*value)` may be converted into a box using |
| //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut |
| //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the |
| //! [`Global`] allocator with [`Layout::for_value(&*value)`]. |
| //! |
| //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented |
| //! as a single pointer and is also ABI-compatible with C pointers |
| //! (i.e. the C type `T*`). This means that if you have extern "C" |
| //! Rust functions that will be called from C, you can define those |
| //! Rust functions using `Box<T>` types, and use `T*` as corresponding |
| //! type on the C side. As an example, consider this C header which |
| //! declares functions that create and destroy some kind of `Foo` |
| //! value: |
| //! |
| //! ```c |
| //! /* C header */ |
| //! |
| //! /* Returns ownership to the caller */ |
| //! struct Foo* foo_new(void); |
| //! |
| //! /* Takes ownership from the caller; no-op when invoked with NULL */ |
| //! void foo_delete(struct Foo*); |
| //! ``` |
| //! |
| //! These two functions might be implemented in Rust as follows. Here, the |
| //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures |
| //! the ownership constraints. Note also that the nullable argument to |
| //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>` |
| //! cannot be null. |
| //! |
| //! ``` |
| //! #[repr(C)] |
| //! pub struct Foo; |
| //! |
| //! #[no_mangle] |
| //! #[allow(improper_ctypes_definitions)] |
| //! pub extern "C" fn foo_new() -> Box<Foo> { |
| //! Box::new(Foo) |
| //! } |
| //! |
| //! #[no_mangle] |
| //! #[allow(improper_ctypes_definitions)] |
| //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {} |
| //! ``` |
| //! |
| //! Even though `Box<T>` has the same representation and C ABI as a C pointer, |
| //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>` |
| //! and expect things to work. `Box<T>` values will always be fully aligned, |
| //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to |
| //! free the value with the global allocator. In general, the best practice |
| //! is to only use `Box<T>` for pointers that originated from the global |
| //! allocator. |
| //! |
| //! **Important.** At least at present, you should avoid using |
| //! `Box<T>` types for functions that are defined in C but invoked |
| //! from Rust. In those cases, you should directly mirror the C types |
| //! as closely as possible. Using types like `Box<T>` where the C |
| //! definition is just using `T*` can lead to undefined behavior, as |
| //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. |
| //! |
| //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 |
| //! [dereferencing]: ../../std/ops/trait.Deref.html |
| //! [`Box`]: struct.Box.html |
| //! [`Box<T>`]: struct.Box.html |
| //! [`Box::<T>::from_raw(value)`]: struct.Box.html#method.from_raw |
| //! [`Box::<T>::into_raw`]: struct.Box.html#method.into_raw |
| //! [`Global`]: ../alloc/struct.Global.html |
| //! [`Layout`]: ../alloc/struct.Layout.html |
| //! [`Layout::for_value(&*value)`]: ../alloc/struct.Layout.html#method.for_value |
| |
| #![stable(feature = "rust1", since = "1.0.0")] |
| |
| use core::any::Any; |
| use core::borrow; |
| use core::cmp::Ordering; |
| use core::convert::{From, TryFrom}; |
| use core::fmt; |
| use core::future::Future; |
| use core::hash::{Hash, Hasher}; |
| use core::iter::{FromIterator, FusedIterator, Iterator}; |
| use core::marker::{Unpin, Unsize}; |
| use core::mem; |
| use core::ops::{ |
| CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver, |
| }; |
| use core::pin::Pin; |
| use core::ptr::{self, NonNull, Unique}; |
| use core::task::{Context, Poll}; |
| |
| use crate::alloc::{self, AllocInit, AllocRef, Global}; |
| use crate::borrow::Cow; |
| use crate::raw_vec::RawVec; |
| use crate::str::from_boxed_utf8_unchecked; |
| use crate::vec::Vec; |
| |
| /// A pointer type for heap allocation. |
| /// |
| /// See the [module-level documentation](../../std/boxed/index.html) for more. |
| #[lang = "owned_box"] |
| #[fundamental] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| pub struct Box<T: ?Sized>(Unique<T>); |
| |
| impl<T> Box<T> { |
| /// Allocates memory on the heap and then places `x` into it. |
| /// |
| /// This doesn't actually allocate if `T` is zero-sized. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let five = Box::new(5); |
| /// ``` |
| #[stable(feature = "rust1", since = "1.0.0")] |
| #[inline(always)] |
| pub fn new(x: T) -> Box<T> { |
| box x |
| } |
| |
| /// Constructs a new box with uninitialized contents. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let mut five = Box::<u32>::new_uninit(); |
| /// |
| /// let five = unsafe { |
| /// // Deferred initialization: |
| /// five.as_mut_ptr().write(5); |
| /// |
| /// five.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*five, 5) |
| /// ``` |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| pub fn new_uninit() -> Box<mem::MaybeUninit<T>> { |
| let layout = alloc::Layout::new::<mem::MaybeUninit<T>>(); |
| let ptr = Global |
| .alloc(layout, AllocInit::Uninitialized) |
| .unwrap_or_else(|_| alloc::handle_alloc_error(layout)) |
| .ptr |
| .cast(); |
| unsafe { Box::from_raw(ptr.as_ptr()) } |
| } |
| |
| /// Constructs a new `Box` with uninitialized contents, with the memory |
| /// being filled with `0` bytes. |
| /// |
| /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage |
| /// of this method. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let zero = Box::<u32>::new_zeroed(); |
| /// let zero = unsafe { zero.assume_init() }; |
| /// |
| /// assert_eq!(*zero, 0) |
| /// ``` |
| /// |
| /// [zeroed]: ../../std/mem/union.MaybeUninit.html#method.zeroed |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> { |
| let layout = alloc::Layout::new::<mem::MaybeUninit<T>>(); |
| let ptr = Global |
| .alloc(layout, AllocInit::Zeroed) |
| .unwrap_or_else(|_| alloc::handle_alloc_error(layout)) |
| .ptr |
| .cast(); |
| unsafe { Box::from_raw(ptr.as_ptr()) } |
| } |
| |
| /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then |
| /// `x` will be pinned in memory and unable to be moved. |
| #[stable(feature = "pin", since = "1.33.0")] |
| #[inline(always)] |
| pub fn pin(x: T) -> Pin<Box<T>> { |
| (box x).into() |
| } |
| |
| /// Converts a `Box<T>` into a `Box<[T]>` |
| /// |
| /// This conversion does not allocate on the heap and happens in place. |
| /// |
| #[unstable(feature = "box_into_boxed_slice", issue = "71582")] |
| pub fn into_boxed_slice(boxed: Box<T>) -> Box<[T]> { |
| // *mut T and *mut [T; 1] have the same size and alignment |
| unsafe { Box::from_raw(Box::into_raw(boxed) as *mut [T; 1]) } |
| } |
| } |
| |
| impl<T> Box<[T]> { |
| /// Constructs a new boxed slice with uninitialized contents. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
| /// |
| /// let values = unsafe { |
| /// // Deferred initialization: |
| /// values[0].as_mut_ptr().write(1); |
| /// values[1].as_mut_ptr().write(2); |
| /// values[2].as_mut_ptr().write(3); |
| /// |
| /// values.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*values, [1, 2, 3]) |
| /// ``` |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> { |
| unsafe { RawVec::with_capacity(len).into_box(len) } |
| } |
| } |
| |
| impl<T> Box<mem::MaybeUninit<T>> { |
| /// Converts to `Box<T>`. |
| /// |
| /// # Safety |
| /// |
| /// As with [`MaybeUninit::assume_init`], |
| /// it is up to the caller to guarantee that the value |
| /// really is in an initialized state. |
| /// Calling this when the content is not yet fully initialized |
| /// causes immediate undefined behavior. |
| /// |
| /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let mut five = Box::<u32>::new_uninit(); |
| /// |
| /// let five: Box<u32> = unsafe { |
| /// // Deferred initialization: |
| /// five.as_mut_ptr().write(5); |
| /// |
| /// five.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*five, 5) |
| /// ``` |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| #[inline] |
| pub unsafe fn assume_init(self) -> Box<T> { |
| unsafe { Box::from_raw(Box::into_raw(self) as *mut T) } |
| } |
| } |
| |
| impl<T> Box<[mem::MaybeUninit<T>]> { |
| /// Converts to `Box<[T]>`. |
| /// |
| /// # Safety |
| /// |
| /// As with [`MaybeUninit::assume_init`], |
| /// it is up to the caller to guarantee that the values |
| /// really are in an initialized state. |
| /// Calling this when the content is not yet fully initialized |
| /// causes immediate undefined behavior. |
| /// |
| /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(new_uninit)] |
| /// |
| /// let mut values = Box::<[u32]>::new_uninit_slice(3); |
| /// |
| /// let values = unsafe { |
| /// // Deferred initialization: |
| /// values[0].as_mut_ptr().write(1); |
| /// values[1].as_mut_ptr().write(2); |
| /// values[2].as_mut_ptr().write(3); |
| /// |
| /// values.assume_init() |
| /// }; |
| /// |
| /// assert_eq!(*values, [1, 2, 3]) |
| /// ``` |
| #[unstable(feature = "new_uninit", issue = "63291")] |
| #[inline] |
| pub unsafe fn assume_init(self) -> Box<[T]> { |
| unsafe { Box::from_raw(Box::into_raw(self) as *mut [T]) } |
| } |
| } |
| |
| impl<T: ?Sized> Box<T> { |
| /// Constructs a box from a raw pointer. |
| /// |
| /// After calling this function, the raw pointer is owned by the |
| /// resulting `Box`. Specifically, the `Box` destructor will call |
| /// the destructor of `T` and free the allocated memory. For this |
| /// to be safe, the memory must have been allocated in accordance |
| /// with the [memory layout] used by `Box` . |
| /// |
| /// # Safety |
| /// |
| /// This function is unsafe because improper use may lead to |
| /// memory problems. For example, a double-free may occur if the |
| /// function is called twice on the same raw pointer. |
| /// |
| /// # Examples |
| /// Recreate a `Box` which was previously converted to a raw pointer |
| /// using [`Box::into_raw`]: |
| /// ``` |
| /// let x = Box::new(5); |
| /// let ptr = Box::into_raw(x); |
| /// let x = unsafe { Box::from_raw(ptr) }; |
| /// ``` |
| /// Manually create a `Box` from scratch by using the global allocator: |
| /// ``` |
| /// use std::alloc::{alloc, Layout}; |
| /// |
| /// unsafe { |
| /// let ptr = alloc(Layout::new::<i32>()) as *mut i32; |
| /// // In general .write is required to avoid attempting to destruct |
| /// // the (uninitialized) previous contents of `ptr`, though for this |
| /// // simple example `*ptr = 5` would have worked as well. |
| /// ptr.write(5); |
| /// let x = Box::from_raw(ptr); |
| /// } |
| /// ``` |
| /// |
| /// [memory layout]: index.html#memory-layout |
| /// [`Layout`]: ../alloc/struct.Layout.html |
| /// [`Box::into_raw`]: struct.Box.html#method.into_raw |
| #[stable(feature = "box_raw", since = "1.4.0")] |
| #[inline] |
| pub unsafe fn from_raw(raw: *mut T) -> Self { |
| Box(unsafe { Unique::new_unchecked(raw) }) |
| } |
| |
| /// Consumes the `Box`, returning a wrapped raw pointer. |
| /// |
| /// The pointer will be properly aligned and non-null. |
| /// |
| /// After calling this function, the caller is responsible for the |
| /// memory previously managed by the `Box`. In particular, the |
| /// caller should properly destroy `T` and release the memory, taking |
| /// into account the [memory layout] used by `Box`. The easiest way to |
| /// do this is to convert the raw pointer back into a `Box` with the |
| /// [`Box::from_raw`] function, allowing the `Box` destructor to perform |
| /// the cleanup. |
| /// |
| /// Note: this is an associated function, which means that you have |
| /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This |
| /// is so that there is no conflict with a method on the inner type. |
| /// |
| /// # Examples |
| /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] |
| /// for automatic cleanup: |
| /// ``` |
| /// let x = Box::new(String::from("Hello")); |
| /// let ptr = Box::into_raw(x); |
| /// let x = unsafe { Box::from_raw(ptr) }; |
| /// ``` |
| /// Manual cleanup by explicitly running the destructor and deallocating |
| /// the memory: |
| /// ``` |
| /// use std::alloc::{dealloc, Layout}; |
| /// use std::ptr; |
| /// |
| /// let x = Box::new(String::from("Hello")); |
| /// let p = Box::into_raw(x); |
| /// unsafe { |
| /// ptr::drop_in_place(p); |
| /// dealloc(p as *mut u8, Layout::new::<String>()); |
| /// } |
| /// ``` |
| /// |
| /// [memory layout]: index.html#memory-layout |
| /// [`Box::from_raw`]: struct.Box.html#method.from_raw |
| #[stable(feature = "box_raw", since = "1.4.0")] |
| #[inline] |
| pub fn into_raw(b: Box<T>) -> *mut T { |
| // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a |
| // raw pointer for the type system. Turning it directly into a raw pointer would not be |
| // recognized as "releasing" the unique pointer to permit aliased raw accesses, |
| // so all raw pointer methods go through `leak` which creates a (unique) |
| // mutable reference. Turning *that* to a raw pointer behaves correctly. |
| Box::leak(b) as *mut T |
| } |
| |
| /// Consumes the `Box`, returning the wrapped pointer as `NonNull<T>`. |
| /// |
| /// After calling this function, the caller is responsible for the |
| /// memory previously managed by the `Box`. In particular, the |
| /// caller should properly destroy `T` and release the memory. The |
| /// easiest way to do so is to convert the `NonNull<T>` pointer |
| /// into a raw pointer and back into a `Box` with the [`Box::from_raw`] |
| /// function. |
| /// |
| /// Note: this is an associated function, which means that you have |
| /// to call it as `Box::into_raw_non_null(b)` |
| /// instead of `b.into_raw_non_null()`. This |
| /// is so that there is no conflict with a method on the inner type. |
| /// |
| /// [`Box::from_raw`]: struct.Box.html#method.from_raw |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(box_into_raw_non_null)] |
| /// #![allow(deprecated)] |
| /// |
| /// let x = Box::new(5); |
| /// let ptr = Box::into_raw_non_null(x); |
| /// |
| /// // Clean up the memory by converting the NonNull pointer back |
| /// // into a Box and letting the Box be dropped. |
| /// let x = unsafe { Box::from_raw(ptr.as_ptr()) }; |
| /// ``` |
| #[unstable(feature = "box_into_raw_non_null", issue = "47336")] |
| #[rustc_deprecated( |
| since = "1.44.0", |
| reason = "use `Box::leak(b).into()` or `NonNull::from(Box::leak(b))` instead" |
| )] |
| #[inline] |
| pub fn into_raw_non_null(b: Box<T>) -> NonNull<T> { |
| // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a |
| // raw pointer for the type system. Turning it directly into a raw pointer would not be |
| // recognized as "releasing" the unique pointer to permit aliased raw accesses, |
| // so all raw pointer methods go through `leak` which creates a (unique) |
| // mutable reference. Turning *that* to a raw pointer behaves correctly. |
| Box::leak(b).into() |
| } |
| |
| #[unstable( |
| feature = "ptr_internals", |
| issue = "none", |
| reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" |
| )] |
| #[inline] |
| #[doc(hidden)] |
| pub fn into_unique(b: Box<T>) -> Unique<T> { |
| // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a |
| // raw pointer for the type system. Turning it directly into a raw pointer would not be |
| // recognized as "releasing" the unique pointer to permit aliased raw accesses, |
| // so all raw pointer methods go through `leak` which creates a (unique) |
| // mutable reference. Turning *that* to a raw pointer behaves correctly. |
| Box::leak(b).into() |
| } |
| |
| /// Consumes and leaks the `Box`, returning a mutable reference, |
| /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime |
| /// `'a`. If the type has only static references, or none at all, then this |
| /// may be chosen to be `'static`. |
| /// |
| /// This function is mainly useful for data that lives for the remainder of |
| /// the program's life. Dropping the returned reference will cause a memory |
| /// leak. If this is not acceptable, the reference should first be wrapped |
| /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can |
| /// then be dropped which will properly destroy `T` and release the |
| /// allocated memory. |
| /// |
| /// Note: this is an associated function, which means that you have |
| /// to call it as `Box::leak(b)` instead of `b.leak()`. This |
| /// is so that there is no conflict with a method on the inner type. |
| /// |
| /// [`Box::from_raw`]: struct.Box.html#method.from_raw |
| /// |
| /// # Examples |
| /// |
| /// Simple usage: |
| /// |
| /// ``` |
| /// let x = Box::new(41); |
| /// let static_ref: &'static mut usize = Box::leak(x); |
| /// *static_ref += 1; |
| /// assert_eq!(*static_ref, 42); |
| /// ``` |
| /// |
| /// Unsized data: |
| /// |
| /// ``` |
| /// let x = vec![1, 2, 3].into_boxed_slice(); |
| /// let static_ref = Box::leak(x); |
| /// static_ref[0] = 4; |
| /// assert_eq!(*static_ref, [4, 2, 3]); |
| /// ``` |
| #[stable(feature = "box_leak", since = "1.26.0")] |
| #[inline] |
| pub fn leak<'a>(b: Box<T>) -> &'a mut T |
| where |
| T: 'a, // Technically not needed, but kept to be explicit. |
| { |
| unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } |
| } |
| |
| /// Converts a `Box<T>` into a `Pin<Box<T>>` |
| /// |
| /// This conversion does not allocate on the heap and happens in place. |
| /// |
| /// This is also available via [`From`]. |
| #[unstable(feature = "box_into_pin", issue = "62370")] |
| pub fn into_pin(boxed: Box<T>) -> Pin<Box<T>> { |
| // It's not possible to move or replace the insides of a `Pin<Box<T>>` |
| // when `T: !Unpin`, so it's safe to pin it directly without any |
| // additional requirements. |
| unsafe { Pin::new_unchecked(boxed) } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| unsafe impl<#[may_dangle] T: ?Sized> Drop for Box<T> { |
| fn drop(&mut self) { |
| // FIXME: Do nothing, drop is currently performed by compiler. |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: Default> Default for Box<T> { |
| /// Creates a `Box<T>`, with the `Default` value for T. |
| fn default() -> Box<T> { |
| box Default::default() |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T> Default for Box<[T]> { |
| fn default() -> Box<[T]> { |
| Box::<[T; 0]>::new([]) |
| } |
| } |
| |
| #[stable(feature = "default_box_extra", since = "1.17.0")] |
| impl Default for Box<str> { |
| fn default() -> Box<str> { |
| unsafe { from_boxed_utf8_unchecked(Default::default()) } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: Clone> Clone for Box<T> { |
| /// Returns a new box with a `clone()` of this box's contents. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let x = Box::new(5); |
| /// let y = x.clone(); |
| /// |
| /// // The value is the same |
| /// assert_eq!(x, y); |
| /// |
| /// // But they are unique objects |
| /// assert_ne!(&*x as *const i32, &*y as *const i32); |
| /// ``` |
| #[rustfmt::skip] |
| #[inline] |
| fn clone(&self) -> Box<T> { |
| box { (**self).clone() } |
| } |
| |
| /// Copies `source`'s contents into `self` without creating a new allocation. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let x = Box::new(5); |
| /// let mut y = Box::new(10); |
| /// let yp: *const i32 = &*y; |
| /// |
| /// y.clone_from(&x); |
| /// |
| /// // The value is the same |
| /// assert_eq!(x, y); |
| /// |
| /// // And no allocation occurred |
| /// assert_eq!(yp, &*y); |
| /// ``` |
| #[inline] |
| fn clone_from(&mut self, source: &Box<T>) { |
| (**self).clone_from(&(**source)); |
| } |
| } |
| |
| #[stable(feature = "box_slice_clone", since = "1.3.0")] |
| impl Clone for Box<str> { |
| fn clone(&self) -> Self { |
| // this makes a copy of the data |
| let buf: Box<[u8]> = self.as_bytes().into(); |
| unsafe { from_boxed_utf8_unchecked(buf) } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + PartialEq> PartialEq for Box<T> { |
| #[inline] |
| fn eq(&self, other: &Box<T>) -> bool { |
| PartialEq::eq(&**self, &**other) |
| } |
| #[inline] |
| fn ne(&self, other: &Box<T>) -> bool { |
| PartialEq::ne(&**self, &**other) |
| } |
| } |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + PartialOrd> PartialOrd for Box<T> { |
| #[inline] |
| fn partial_cmp(&self, other: &Box<T>) -> Option<Ordering> { |
| PartialOrd::partial_cmp(&**self, &**other) |
| } |
| #[inline] |
| fn lt(&self, other: &Box<T>) -> bool { |
| PartialOrd::lt(&**self, &**other) |
| } |
| #[inline] |
| fn le(&self, other: &Box<T>) -> bool { |
| PartialOrd::le(&**self, &**other) |
| } |
| #[inline] |
| fn ge(&self, other: &Box<T>) -> bool { |
| PartialOrd::ge(&**self, &**other) |
| } |
| #[inline] |
| fn gt(&self, other: &Box<T>) -> bool { |
| PartialOrd::gt(&**self, &**other) |
| } |
| } |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + Ord> Ord for Box<T> { |
| #[inline] |
| fn cmp(&self, other: &Box<T>) -> Ordering { |
| Ord::cmp(&**self, &**other) |
| } |
| } |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + Eq> Eq for Box<T> {} |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized + Hash> Hash for Box<T> { |
| fn hash<H: Hasher>(&self, state: &mut H) { |
| (**self).hash(state); |
| } |
| } |
| |
| #[stable(feature = "indirect_hasher_impl", since = "1.22.0")] |
| impl<T: ?Sized + Hasher> Hasher for Box<T> { |
| fn finish(&self) -> u64 { |
| (**self).finish() |
| } |
| fn write(&mut self, bytes: &[u8]) { |
| (**self).write(bytes) |
| } |
| fn write_u8(&mut self, i: u8) { |
| (**self).write_u8(i) |
| } |
| fn write_u16(&mut self, i: u16) { |
| (**self).write_u16(i) |
| } |
| fn write_u32(&mut self, i: u32) { |
| (**self).write_u32(i) |
| } |
| fn write_u64(&mut self, i: u64) { |
| (**self).write_u64(i) |
| } |
| fn write_u128(&mut self, i: u128) { |
| (**self).write_u128(i) |
| } |
| fn write_usize(&mut self, i: usize) { |
| (**self).write_usize(i) |
| } |
| fn write_i8(&mut self, i: i8) { |
| (**self).write_i8(i) |
| } |
| fn write_i16(&mut self, i: i16) { |
| (**self).write_i16(i) |
| } |
| fn write_i32(&mut self, i: i32) { |
| (**self).write_i32(i) |
| } |
| fn write_i64(&mut self, i: i64) { |
| (**self).write_i64(i) |
| } |
| fn write_i128(&mut self, i: i128) { |
| (**self).write_i128(i) |
| } |
| fn write_isize(&mut self, i: isize) { |
| (**self).write_isize(i) |
| } |
| } |
| |
| #[stable(feature = "from_for_ptrs", since = "1.6.0")] |
| impl<T> From<T> for Box<T> { |
| /// Converts a generic type `T` into a `Box<T>` |
| /// |
| /// The conversion allocates on the heap and moves `t` |
| /// from the stack into it. |
| /// |
| /// # Examples |
| /// ```rust |
| /// let x = 5; |
| /// let boxed = Box::new(5); |
| /// |
| /// assert_eq!(Box::from(x), boxed); |
| /// ``` |
| fn from(t: T) -> Self { |
| Box::new(t) |
| } |
| } |
| |
| #[stable(feature = "pin", since = "1.33.0")] |
| impl<T: ?Sized> From<Box<T>> for Pin<Box<T>> { |
| /// Converts a `Box<T>` into a `Pin<Box<T>>` |
| /// |
| /// This conversion does not allocate on the heap and happens in place. |
| fn from(boxed: Box<T>) -> Self { |
| Box::into_pin(boxed) |
| } |
| } |
| |
| #[stable(feature = "box_from_slice", since = "1.17.0")] |
| impl<T: Copy> From<&[T]> for Box<[T]> { |
| /// Converts a `&[T]` into a `Box<[T]>` |
| /// |
| /// This conversion allocates on the heap |
| /// and performs a copy of `slice`. |
| /// |
| /// # Examples |
| /// ```rust |
| /// // create a &[u8] which will be used to create a Box<[u8]> |
| /// let slice: &[u8] = &[104, 101, 108, 108, 111]; |
| /// let boxed_slice: Box<[u8]> = Box::from(slice); |
| /// |
| /// println!("{:?}", boxed_slice); |
| /// ``` |
| fn from(slice: &[T]) -> Box<[T]> { |
| let len = slice.len(); |
| let buf = RawVec::with_capacity(len); |
| unsafe { |
| ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); |
| buf.into_box(slice.len()).assume_init() |
| } |
| } |
| } |
| |
| #[stable(feature = "box_from_cow", since = "1.45.0")] |
| impl<T: Copy> From<Cow<'_, [T]>> for Box<[T]> { |
| #[inline] |
| fn from(cow: Cow<'_, [T]>) -> Box<[T]> { |
| match cow { |
| Cow::Borrowed(slice) => Box::from(slice), |
| Cow::Owned(slice) => Box::from(slice), |
| } |
| } |
| } |
| |
| #[stable(feature = "box_from_slice", since = "1.17.0")] |
| impl From<&str> for Box<str> { |
| /// Converts a `&str` into a `Box<str>` |
| /// |
| /// This conversion allocates on the heap |
| /// and performs a copy of `s`. |
| /// |
| /// # Examples |
| /// ```rust |
| /// let boxed: Box<str> = Box::from("hello"); |
| /// println!("{}", boxed); |
| /// ``` |
| #[inline] |
| fn from(s: &str) -> Box<str> { |
| unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } |
| } |
| } |
| |
| #[stable(feature = "box_from_cow", since = "1.45.0")] |
| impl From<Cow<'_, str>> for Box<str> { |
| #[inline] |
| fn from(cow: Cow<'_, str>) -> Box<str> { |
| match cow { |
| Cow::Borrowed(s) => Box::from(s), |
| Cow::Owned(s) => Box::from(s), |
| } |
| } |
| } |
| |
| #[stable(feature = "boxed_str_conv", since = "1.19.0")] |
| impl From<Box<str>> for Box<[u8]> { |
| /// Converts a `Box<str>>` into a `Box<[u8]>` |
| /// |
| /// This conversion does not allocate on the heap and happens in place. |
| /// |
| /// # Examples |
| /// ```rust |
| /// // create a Box<str> which will be used to create a Box<[u8]> |
| /// let boxed: Box<str> = Box::from("hello"); |
| /// let boxed_str: Box<[u8]> = Box::from(boxed); |
| /// |
| /// // create a &[u8] which will be used to create a Box<[u8]> |
| /// let slice: &[u8] = &[104, 101, 108, 108, 111]; |
| /// let boxed_slice = Box::from(slice); |
| /// |
| /// assert_eq!(boxed_slice, boxed_str); |
| /// ``` |
| #[inline] |
| fn from(s: Box<str>) -> Self { |
| unsafe { Box::from_raw(Box::into_raw(s) as *mut [u8]) } |
| } |
| } |
| |
| #[stable(feature = "box_from_array", since = "1.45.0")] |
| impl<T, const N: usize> From<[T; N]> for Box<[T]> { |
| /// Converts a `[T; N]` into a `Box<[T]>` |
| /// |
| /// This conversion moves the array to newly heap-allocated memory. |
| /// |
| /// # Examples |
| /// ```rust |
| /// let boxed: Box<[u8]> = Box::from([4, 2]); |
| /// println!("{:?}", boxed); |
| /// ``` |
| fn from(array: [T; N]) -> Box<[T]> { |
| box array |
| } |
| } |
| |
| #[stable(feature = "boxed_slice_try_from", since = "1.43.0")] |
| impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> { |
| type Error = Box<[T]>; |
| |
| fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> { |
| if boxed_slice.len() == N { |
| Ok(unsafe { Box::from_raw(Box::into_raw(boxed_slice) as *mut [T; N]) }) |
| } else { |
| Err(boxed_slice) |
| } |
| } |
| } |
| |
| impl Box<dyn Any> { |
| #[inline] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| /// Attempt to downcast the box to a concrete type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::any::Any; |
| /// |
| /// fn print_if_string(value: Box<dyn Any>) { |
| /// if let Ok(string) = value.downcast::<String>() { |
| /// println!("String ({}): {}", string.len(), string); |
| /// } |
| /// } |
| /// |
| /// let my_string = "Hello World".to_string(); |
| /// print_if_string(Box::new(my_string)); |
| /// print_if_string(Box::new(0i8)); |
| /// ``` |
| pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any>> { |
| if self.is::<T>() { |
| unsafe { |
| let raw: *mut dyn Any = Box::into_raw(self); |
| Ok(Box::from_raw(raw as *mut T)) |
| } |
| } else { |
| Err(self) |
| } |
| } |
| } |
| |
| impl Box<dyn Any + Send> { |
| #[inline] |
| #[stable(feature = "rust1", since = "1.0.0")] |
| /// Attempt to downcast the box to a concrete type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::any::Any; |
| /// |
| /// fn print_if_string(value: Box<dyn Any + Send>) { |
| /// if let Ok(string) = value.downcast::<String>() { |
| /// println!("String ({}): {}", string.len(), string); |
| /// } |
| /// } |
| /// |
| /// let my_string = "Hello World".to_string(); |
| /// print_if_string(Box::new(my_string)); |
| /// print_if_string(Box::new(0i8)); |
| /// ``` |
| pub fn downcast<T: Any>(self) -> Result<Box<T>, Box<dyn Any + Send>> { |
| <Box<dyn Any>>::downcast(self).map_err(|s| unsafe { |
| // reapply the Send marker |
| Box::from_raw(Box::into_raw(s) as *mut (dyn Any + Send)) |
| }) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: fmt::Display + ?Sized> fmt::Display for Box<T> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Display::fmt(&**self, f) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: fmt::Debug + ?Sized> fmt::Debug for Box<T> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt::Debug::fmt(&**self, f) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized> fmt::Pointer for Box<T> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // It's not possible to extract the inner Uniq directly from the Box, |
| // instead we cast it to a *const which aliases the Unique |
| let ptr: *const T = &**self; |
| fmt::Pointer::fmt(&ptr, f) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized> Deref for Box<T> { |
| type Target = T; |
| |
| fn deref(&self) -> &T { |
| &**self |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<T: ?Sized> DerefMut for Box<T> { |
| fn deref_mut(&mut self) -> &mut T { |
| &mut **self |
| } |
| } |
| |
| #[unstable(feature = "receiver_trait", issue = "none")] |
| impl<T: ?Sized> Receiver for Box<T> {} |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<I: Iterator + ?Sized> Iterator for Box<I> { |
| type Item = I::Item; |
| fn next(&mut self) -> Option<I::Item> { |
| (**self).next() |
| } |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (**self).size_hint() |
| } |
| fn nth(&mut self, n: usize) -> Option<I::Item> { |
| (**self).nth(n) |
| } |
| fn last(self) -> Option<I::Item> { |
| BoxIter::last(self) |
| } |
| } |
| |
| trait BoxIter { |
| type Item; |
| fn last(self) -> Option<Self::Item>; |
| } |
| |
| impl<I: Iterator + ?Sized> BoxIter for Box<I> { |
| type Item = I::Item; |
| default fn last(self) -> Option<I::Item> { |
| #[inline] |
| fn some<T>(_: Option<T>, x: T) -> Option<T> { |
| Some(x) |
| } |
| |
| self.fold(None, some) |
| } |
| } |
| |
| /// Specialization for sized `I`s that uses `I`s implementation of `last()` |
| /// instead of the default. |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<I: Iterator> BoxIter for Box<I> { |
| fn last(self) -> Option<I::Item> { |
| (*self).last() |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<I> { |
| fn next_back(&mut self) -> Option<I::Item> { |
| (**self).next_back() |
| } |
| fn nth_back(&mut self, n: usize) -> Option<I::Item> { |
| (**self).nth_back(n) |
| } |
| } |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl<I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<I> { |
| fn len(&self) -> usize { |
| (**self).len() |
| } |
| fn is_empty(&self) -> bool { |
| (**self).is_empty() |
| } |
| } |
| |
| #[stable(feature = "fused", since = "1.26.0")] |
| impl<I: FusedIterator + ?Sized> FusedIterator for Box<I> {} |
| |
| #[stable(feature = "boxed_closure_impls", since = "1.35.0")] |
| impl<A, F: FnOnce<A> + ?Sized> FnOnce<A> for Box<F> { |
| type Output = <F as FnOnce<A>>::Output; |
| |
| extern "rust-call" fn call_once(self, args: A) -> Self::Output { |
| <F as FnOnce<A>>::call_once(*self, args) |
| } |
| } |
| |
| #[stable(feature = "boxed_closure_impls", since = "1.35.0")] |
| impl<A, F: FnMut<A> + ?Sized> FnMut<A> for Box<F> { |
| extern "rust-call" fn call_mut(&mut self, args: A) -> Self::Output { |
| <F as FnMut<A>>::call_mut(self, args) |
| } |
| } |
| |
| #[stable(feature = "boxed_closure_impls", since = "1.35.0")] |
| impl<A, F: Fn<A> + ?Sized> Fn<A> for Box<F> { |
| extern "rust-call" fn call(&self, args: A) -> Self::Output { |
| <F as Fn<A>>::call(self, args) |
| } |
| } |
| |
| #[unstable(feature = "coerce_unsized", issue = "27732")] |
| impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Box<U>> for Box<T> {} |
| |
| #[unstable(feature = "dispatch_from_dyn", issue = "none")] |
| impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T> {} |
| |
| #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] |
| impl<A> FromIterator<A> for Box<[A]> { |
| fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self { |
| iter.into_iter().collect::<Vec<_>>().into_boxed_slice() |
| } |
| } |
| |
| #[stable(feature = "box_slice_clone", since = "1.3.0")] |
| impl<T: Clone> Clone for Box<[T]> { |
| fn clone(&self) -> Self { |
| self.to_vec().into_boxed_slice() |
| } |
| |
| fn clone_from(&mut self, other: &Self) { |
| if self.len() == other.len() { |
| self.clone_from_slice(&other); |
| } else { |
| *self = other.clone(); |
| } |
| } |
| } |
| |
| #[stable(feature = "box_borrow", since = "1.1.0")] |
| impl<T: ?Sized> borrow::Borrow<T> for Box<T> { |
| fn borrow(&self) -> &T { |
| &**self |
| } |
| } |
| |
| #[stable(feature = "box_borrow", since = "1.1.0")] |
| impl<T: ?Sized> borrow::BorrowMut<T> for Box<T> { |
| fn borrow_mut(&mut self) -> &mut T { |
| &mut **self |
| } |
| } |
| |
| #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] |
| impl<T: ?Sized> AsRef<T> for Box<T> { |
| fn as_ref(&self) -> &T { |
| &**self |
| } |
| } |
| |
| #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] |
| impl<T: ?Sized> AsMut<T> for Box<T> { |
| fn as_mut(&mut self) -> &mut T { |
| &mut **self |
| } |
| } |
| |
| /* Nota bene |
| * |
| * We could have chosen not to add this impl, and instead have written a |
| * function of Pin<Box<T>> to Pin<T>. Such a function would not be sound, |
| * because Box<T> implements Unpin even when T does not, as a result of |
| * this impl. |
| * |
| * We chose this API instead of the alternative for a few reasons: |
| * - Logically, it is helpful to understand pinning in regard to the |
| * memory region being pointed to. For this reason none of the |
| * standard library pointer types support projecting through a pin |
| * (Box<T> is the only pointer type in std for which this would be |
| * safe.) |
| * - It is in practice very useful to have Box<T> be unconditionally |
| * Unpin because of trait objects, for which the structural auto |
| * trait functionality does not apply (e.g., Box<dyn Foo> would |
| * otherwise not be Unpin). |
| * |
| * Another type with the same semantics as Box but only a conditional |
| * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and |
| * could have a method to project a Pin<T> from it. |
| */ |
| #[stable(feature = "pin", since = "1.33.0")] |
| impl<T: ?Sized> Unpin for Box<T> {} |
| |
| #[unstable(feature = "generator_trait", issue = "43122")] |
| impl<G: ?Sized + Generator<R> + Unpin, R> Generator<R> for Box<G> { |
| type Yield = G::Yield; |
| type Return = G::Return; |
| |
| fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { |
| G::resume(Pin::new(&mut *self), arg) |
| } |
| } |
| |
| #[unstable(feature = "generator_trait", issue = "43122")] |
| impl<G: ?Sized + Generator<R>, R> Generator<R> for Pin<Box<G>> { |
| type Yield = G::Yield; |
| type Return = G::Return; |
| |
| fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> { |
| G::resume((*self).as_mut(), arg) |
| } |
| } |
| |
| #[stable(feature = "futures_api", since = "1.36.0")] |
| impl<F: ?Sized + Future + Unpin> Future for Box<F> { |
| type Output = F::Output; |
| |
| fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { |
| F::poll(Pin::new(&mut *self), cx) |
| } |
| } |