| // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! A double-ended queue implemented as a circular buffer |
| //! |
| //! RingBuf implements the trait Deque. It should be imported with `use |
| //! collections::deque::Deque`. |
| |
| use std::cmp; |
| use std::iter::{Rev, RandomAccessIterator}; |
| |
| use deque::Deque; |
| |
| static INITIAL_CAPACITY: uint = 8u; // 2^3 |
| static MINIMUM_CAPACITY: uint = 2u; |
| |
| /// RingBuf is a circular buffer that implements Deque. |
| #[deriving(Clone)] |
| pub struct RingBuf<T> { |
| nelts: uint, |
| lo: uint, |
| elts: Vec<Option<T>> |
| } |
| |
| impl<T> Container for RingBuf<T> { |
| /// Return the number of elements in the RingBuf |
| fn len(&self) -> uint { self.nelts } |
| } |
| |
| impl<T> Mutable for RingBuf<T> { |
| /// Clear the RingBuf, removing all values. |
| fn clear(&mut self) { |
| for x in self.elts.mut_iter() { *x = None } |
| self.nelts = 0; |
| self.lo = 0; |
| } |
| } |
| |
| impl<T> Deque<T> for RingBuf<T> { |
| /// Return a reference to the first element in the RingBuf |
| fn front<'a>(&'a self) -> Option<&'a T> { |
| if self.nelts > 0 { Some(self.get(0)) } else { None } |
| } |
| |
| /// Return a mutable reference to the first element in the RingBuf |
| fn front_mut<'a>(&'a mut self) -> Option<&'a mut T> { |
| if self.nelts > 0 { Some(self.get_mut(0)) } else { None } |
| } |
| |
| /// Return a reference to the last element in the RingBuf |
| fn back<'a>(&'a self) -> Option<&'a T> { |
| if self.nelts > 0 { Some(self.get(self.nelts - 1)) } else { None } |
| } |
| |
| /// Return a mutable reference to the last element in the RingBuf |
| fn back_mut<'a>(&'a mut self) -> Option<&'a mut T> { |
| if self.nelts > 0 { Some(self.get_mut(self.nelts - 1)) } else { None } |
| } |
| |
| /// Remove and return the first element in the RingBuf, or None if it is empty |
| fn pop_front(&mut self) -> Option<T> { |
| let result = self.elts.get_mut(self.lo).take(); |
| if result.is_some() { |
| self.lo = (self.lo + 1u) % self.elts.len(); |
| self.nelts -= 1u; |
| } |
| result |
| } |
| |
| /// Remove and return the last element in the RingBuf, or None if it is empty |
| fn pop_back(&mut self) -> Option<T> { |
| if self.nelts > 0 { |
| self.nelts -= 1; |
| let hi = self.raw_index(self.nelts); |
| self.elts.get_mut(hi).take() |
| } else { |
| None |
| } |
| } |
| |
| /// Prepend an element to the RingBuf |
| fn push_front(&mut self, t: T) { |
| if self.nelts == self.elts.len() { |
| grow(self.nelts, &mut self.lo, &mut self.elts); |
| } |
| if self.lo == 0u { |
| self.lo = self.elts.len() - 1u; |
| } else { self.lo -= 1u; } |
| *self.elts.get_mut(self.lo) = Some(t); |
| self.nelts += 1u; |
| } |
| |
| /// Append an element to the RingBuf |
| fn push_back(&mut self, t: T) { |
| if self.nelts == self.elts.len() { |
| grow(self.nelts, &mut self.lo, &mut self.elts); |
| } |
| let hi = self.raw_index(self.nelts); |
| *self.elts.get_mut(hi) = Some(t); |
| self.nelts += 1u; |
| } |
| } |
| |
| impl<T> RingBuf<T> { |
| /// Create an empty RingBuf |
| pub fn new() -> RingBuf<T> { |
| RingBuf::with_capacity(INITIAL_CAPACITY) |
| } |
| |
| /// Create an empty RingBuf with space for at least `n` elements. |
| pub fn with_capacity(n: uint) -> RingBuf<T> { |
| RingBuf{nelts: 0, lo: 0, |
| elts: Vec::from_fn(cmp::max(MINIMUM_CAPACITY, n), |_| None)} |
| } |
| |
| /// Retrieve an element in the RingBuf by index |
| /// |
| /// Fails if there is no element with the given index |
| pub fn get<'a>(&'a self, i: uint) -> &'a T { |
| let idx = self.raw_index(i); |
| match *self.elts.get(idx) { |
| None => fail!(), |
| Some(ref v) => v |
| } |
| } |
| |
| /// Retrieve an element in the RingBuf by index |
| /// |
| /// Fails if there is no element with the given index |
| pub fn get_mut<'a>(&'a mut self, i: uint) -> &'a mut T { |
| let idx = self.raw_index(i); |
| match *self.elts.get_mut(idx) { |
| None => fail!(), |
| Some(ref mut v) => v |
| } |
| } |
| |
| /// Swap elements at indices `i` and `j` |
| /// |
| /// `i` and `j` may be equal. |
| /// |
| /// Fails if there is no element with the given index |
| pub fn swap(&mut self, i: uint, j: uint) { |
| assert!(i < self.len()); |
| assert!(j < self.len()); |
| let ri = self.raw_index(i); |
| let rj = self.raw_index(j); |
| self.elts.as_mut_slice().swap(ri, rj); |
| } |
| |
| /// Return index in underlying vec for a given logical element index |
| fn raw_index(&self, idx: uint) -> uint { |
| raw_index(self.lo, self.elts.len(), idx) |
| } |
| |
| /// Reserve capacity for exactly `n` elements in the given RingBuf, |
| /// doing nothing if `self`'s capacity is already equal to or greater |
| /// than the requested capacity |
| /// |
| /// # Arguments |
| /// |
| /// * n - The number of elements to reserve space for |
| pub fn reserve_exact(&mut self, n: uint) { |
| self.elts.reserve_exact(n); |
| } |
| |
| /// Reserve capacity for at least `n` elements in the given RingBuf, |
| /// over-allocating in case the caller needs to reserve additional |
| /// space. |
| /// |
| /// Do nothing if `self`'s capacity is already equal to or greater |
| /// than the requested capacity. |
| /// |
| /// # Arguments |
| /// |
| /// * n - The number of elements to reserve space for |
| pub fn reserve(&mut self, n: uint) { |
| self.elts.reserve(n); |
| } |
| |
| /// Front-to-back iterator. |
| pub fn iter<'a>(&'a self) -> Items<'a, T> { |
| Items{index: 0, rindex: self.nelts, lo: self.lo, elts: self.elts.as_slice()} |
| } |
| |
| /// Back-to-front iterator. |
| pub fn rev_iter<'a>(&'a self) -> Rev<Items<'a, T>> { |
| self.iter().rev() |
| } |
| |
| /// Front-to-back iterator which returns mutable values. |
| pub fn mut_iter<'a>(&'a mut self) -> MutItems<'a, T> { |
| let start_index = raw_index(self.lo, self.elts.len(), 0); |
| let end_index = raw_index(self.lo, self.elts.len(), self.nelts); |
| |
| // Divide up the array |
| if end_index <= start_index { |
| // Items to iterate goes from: |
| // start_index to self.elts.len() |
| // and then |
| // 0 to end_index |
| let (temp, remaining1) = self.elts.mut_split_at(start_index); |
| let (remaining2, _) = temp.mut_split_at(end_index); |
| MutItems { remaining1: remaining1, |
| remaining2: remaining2, |
| nelts: self.nelts } |
| } else { |
| // Items to iterate goes from start_index to end_index: |
| let (empty, elts) = self.elts.mut_split_at(0); |
| let remaining1 = elts.mut_slice(start_index, end_index); |
| MutItems { remaining1: remaining1, |
| remaining2: empty, |
| nelts: self.nelts } |
| } |
| } |
| |
| /// Back-to-front iterator which returns mutable values. |
| pub fn mut_rev_iter<'a>(&'a mut self) -> Rev<MutItems<'a, T>> { |
| self.mut_iter().rev() |
| } |
| } |
| |
| /// RingBuf iterator |
| pub struct Items<'a, T> { |
| lo: uint, |
| index: uint, |
| rindex: uint, |
| elts: &'a [Option<T>], |
| } |
| |
| impl<'a, T> Iterator<&'a T> for Items<'a, T> { |
| #[inline] |
| fn next(&mut self) -> Option<&'a T> { |
| if self.index == self.rindex { |
| return None; |
| } |
| let raw_index = raw_index(self.lo, self.elts.len(), self.index); |
| self.index += 1; |
| Some(self.elts[raw_index].get_ref()) |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (uint, Option<uint>) { |
| let len = self.rindex - self.index; |
| (len, Some(len)) |
| } |
| } |
| |
| impl<'a, T> DoubleEndedIterator<&'a T> for Items<'a, T> { |
| #[inline] |
| fn next_back(&mut self) -> Option<&'a T> { |
| if self.index == self.rindex { |
| return None; |
| } |
| self.rindex -= 1; |
| let raw_index = raw_index(self.lo, self.elts.len(), self.rindex); |
| Some(self.elts[raw_index].get_ref()) |
| } |
| } |
| |
| impl<'a, T> ExactSize<&'a T> for Items<'a, T> {} |
| |
| impl<'a, T> RandomAccessIterator<&'a T> for Items<'a, T> { |
| #[inline] |
| fn indexable(&self) -> uint { self.rindex - self.index } |
| |
| #[inline] |
| fn idx(&self, j: uint) -> Option<&'a T> { |
| if j >= self.indexable() { |
| None |
| } else { |
| let raw_index = raw_index(self.lo, self.elts.len(), self.index + j); |
| Some(self.elts[raw_index].get_ref()) |
| } |
| } |
| } |
| |
| /// RingBuf mutable iterator |
| pub struct MutItems<'a, T> { |
| remaining1: &'a mut [Option<T>], |
| remaining2: &'a mut [Option<T>], |
| nelts: uint, |
| } |
| |
| impl<'a, T> Iterator<&'a mut T> for MutItems<'a, T> { |
| #[inline] |
| fn next(&mut self) -> Option<&'a mut T> { |
| if self.nelts == 0 { |
| return None; |
| } |
| let r = if self.remaining1.len() > 0 { |
| &mut self.remaining1 |
| } else { |
| assert!(self.remaining2.len() > 0); |
| &mut self.remaining2 |
| }; |
| self.nelts -= 1; |
| Some(r.mut_shift_ref().unwrap().get_mut_ref()) |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (uint, Option<uint>) { |
| (self.nelts, Some(self.nelts)) |
| } |
| } |
| |
| impl<'a, T> DoubleEndedIterator<&'a mut T> for MutItems<'a, T> { |
| #[inline] |
| fn next_back(&mut self) -> Option<&'a mut T> { |
| if self.nelts == 0 { |
| return None; |
| } |
| let r = if self.remaining2.len() > 0 { |
| &mut self.remaining2 |
| } else { |
| assert!(self.remaining1.len() > 0); |
| &mut self.remaining1 |
| }; |
| self.nelts -= 1; |
| Some(r.mut_pop_ref().unwrap().get_mut_ref()) |
| } |
| } |
| |
| impl<'a, T> ExactSize<&'a mut T> for MutItems<'a, T> {} |
| |
| /// Grow is only called on full elts, so nelts is also len(elts), unlike |
| /// elsewhere. |
| fn grow<T>(nelts: uint, loptr: &mut uint, elts: &mut Vec<Option<T>>) { |
| assert_eq!(nelts, elts.len()); |
| let lo = *loptr; |
| let newlen = nelts * 2; |
| elts.reserve(newlen); |
| |
| /* fill with None */ |
| for _ in range(elts.len(), elts.capacity()) { |
| elts.push(None); |
| } |
| |
| /* |
| Move the shortest half into the newly reserved area. |
| lo ---->| |
| nelts ----------->| |
| [o o o|o o o o o] |
| A [. . .|o o o o o o o o|. . . . .] |
| B [o o o|. . . . . . . .|o o o o o] |
| */ |
| |
| assert!(newlen - nelts/2 >= nelts); |
| if lo <= (nelts - lo) { // A |
| for i in range(0u, lo) { |
| elts.as_mut_slice().swap(i, nelts + i); |
| } |
| } else { // B |
| for i in range(lo, nelts) { |
| elts.as_mut_slice().swap(i, newlen - nelts + i); |
| } |
| *loptr += newlen - nelts; |
| } |
| } |
| |
| /// Return index in underlying vec for a given logical element index |
| fn raw_index(lo: uint, len: uint, index: uint) -> uint { |
| if lo >= len - index { |
| lo + index - len |
| } else { |
| lo + index |
| } |
| } |
| |
| impl<A: Eq> Eq for RingBuf<A> { |
| fn eq(&self, other: &RingBuf<A>) -> bool { |
| self.nelts == other.nelts && |
| self.iter().zip(other.iter()).all(|(a, b)| a.eq(b)) |
| } |
| fn ne(&self, other: &RingBuf<A>) -> bool { |
| !self.eq(other) |
| } |
| } |
| |
| impl<A> FromIterator<A> for RingBuf<A> { |
| fn from_iter<T: Iterator<A>>(iterator: T) -> RingBuf<A> { |
| let (lower, _) = iterator.size_hint(); |
| let mut deq = RingBuf::with_capacity(lower); |
| deq.extend(iterator); |
| deq |
| } |
| } |
| |
| impl<A> Extendable<A> for RingBuf<A> { |
| fn extend<T: Iterator<A>>(&mut self, mut iterator: T) { |
| for elt in iterator { |
| self.push_back(elt); |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| extern crate test; |
| use self::test::Bencher; |
| use deque::Deque; |
| use std::clone::Clone; |
| use std::cmp::Eq; |
| use std::fmt::Show; |
| use super::RingBuf; |
| |
| #[test] |
| fn test_simple() { |
| let mut d = RingBuf::new(); |
| assert_eq!(d.len(), 0u); |
| d.push_front(17); |
| d.push_front(42); |
| d.push_back(137); |
| assert_eq!(d.len(), 3u); |
| d.push_back(137); |
| assert_eq!(d.len(), 4u); |
| debug!("{:?}", d.front()); |
| assert_eq!(*d.front().unwrap(), 42); |
| debug!("{:?}", d.back()); |
| assert_eq!(*d.back().unwrap(), 137); |
| let mut i = d.pop_front(); |
| debug!("{:?}", i); |
| assert_eq!(i, Some(42)); |
| i = d.pop_back(); |
| debug!("{:?}", i); |
| assert_eq!(i, Some(137)); |
| i = d.pop_back(); |
| debug!("{:?}", i); |
| assert_eq!(i, Some(137)); |
| i = d.pop_back(); |
| debug!("{:?}", i); |
| assert_eq!(i, Some(17)); |
| assert_eq!(d.len(), 0u); |
| d.push_back(3); |
| assert_eq!(d.len(), 1u); |
| d.push_front(2); |
| assert_eq!(d.len(), 2u); |
| d.push_back(4); |
| assert_eq!(d.len(), 3u); |
| d.push_front(1); |
| assert_eq!(d.len(), 4u); |
| debug!("{:?}", d.get(0)); |
| debug!("{:?}", d.get(1)); |
| debug!("{:?}", d.get(2)); |
| debug!("{:?}", d.get(3)); |
| assert_eq!(*d.get(0), 1); |
| assert_eq!(*d.get(1), 2); |
| assert_eq!(*d.get(2), 3); |
| assert_eq!(*d.get(3), 4); |
| } |
| |
| #[test] |
| fn test_boxes() { |
| let a: @int = @5; |
| let b: @int = @72; |
| let c: @int = @64; |
| let d: @int = @175; |
| |
| let mut deq = RingBuf::new(); |
| assert_eq!(deq.len(), 0); |
| deq.push_front(a); |
| deq.push_front(b); |
| deq.push_back(c); |
| assert_eq!(deq.len(), 3); |
| deq.push_back(d); |
| assert_eq!(deq.len(), 4); |
| assert_eq!(deq.front(), Some(&b)); |
| assert_eq!(deq.back(), Some(&d)); |
| assert_eq!(deq.pop_front(), Some(b)); |
| assert_eq!(deq.pop_back(), Some(d)); |
| assert_eq!(deq.pop_back(), Some(c)); |
| assert_eq!(deq.pop_back(), Some(a)); |
| assert_eq!(deq.len(), 0); |
| deq.push_back(c); |
| assert_eq!(deq.len(), 1); |
| deq.push_front(b); |
| assert_eq!(deq.len(), 2); |
| deq.push_back(d); |
| assert_eq!(deq.len(), 3); |
| deq.push_front(a); |
| assert_eq!(deq.len(), 4); |
| assert_eq!(*deq.get(0), a); |
| assert_eq!(*deq.get(1), b); |
| assert_eq!(*deq.get(2), c); |
| assert_eq!(*deq.get(3), d); |
| } |
| |
| #[cfg(test)] |
| fn test_parameterized<T:Clone + Eq + Show>(a: T, b: T, c: T, d: T) { |
| let mut deq = RingBuf::new(); |
| assert_eq!(deq.len(), 0); |
| deq.push_front(a.clone()); |
| deq.push_front(b.clone()); |
| deq.push_back(c.clone()); |
| assert_eq!(deq.len(), 3); |
| deq.push_back(d.clone()); |
| assert_eq!(deq.len(), 4); |
| assert_eq!((*deq.front().unwrap()).clone(), b.clone()); |
| assert_eq!((*deq.back().unwrap()).clone(), d.clone()); |
| assert_eq!(deq.pop_front().unwrap(), b.clone()); |
| assert_eq!(deq.pop_back().unwrap(), d.clone()); |
| assert_eq!(deq.pop_back().unwrap(), c.clone()); |
| assert_eq!(deq.pop_back().unwrap(), a.clone()); |
| assert_eq!(deq.len(), 0); |
| deq.push_back(c.clone()); |
| assert_eq!(deq.len(), 1); |
| deq.push_front(b.clone()); |
| assert_eq!(deq.len(), 2); |
| deq.push_back(d.clone()); |
| assert_eq!(deq.len(), 3); |
| deq.push_front(a.clone()); |
| assert_eq!(deq.len(), 4); |
| assert_eq!((*deq.get(0)).clone(), a.clone()); |
| assert_eq!((*deq.get(1)).clone(), b.clone()); |
| assert_eq!((*deq.get(2)).clone(), c.clone()); |
| assert_eq!((*deq.get(3)).clone(), d.clone()); |
| } |
| |
| #[test] |
| fn test_push_front_grow() { |
| let mut deq = RingBuf::new(); |
| for i in range(0u, 66) { |
| deq.push_front(i); |
| } |
| assert_eq!(deq.len(), 66); |
| |
| for i in range(0u, 66) { |
| assert_eq!(*deq.get(i), 65 - i); |
| } |
| |
| let mut deq = RingBuf::new(); |
| for i in range(0u, 66) { |
| deq.push_back(i); |
| } |
| |
| for i in range(0u, 66) { |
| assert_eq!(*deq.get(i), i); |
| } |
| } |
| |
| #[bench] |
| fn bench_new(b: &mut test::Bencher) { |
| b.iter(|| { |
| let _: RingBuf<u64> = RingBuf::new(); |
| }) |
| } |
| |
| #[bench] |
| fn bench_push_back(b: &mut test::Bencher) { |
| let mut deq = RingBuf::new(); |
| b.iter(|| { |
| deq.push_back(0); |
| }) |
| } |
| |
| #[bench] |
| fn bench_push_front(b: &mut test::Bencher) { |
| let mut deq = RingBuf::new(); |
| b.iter(|| { |
| deq.push_front(0); |
| }) |
| } |
| |
| #[bench] |
| fn bench_grow(b: &mut test::Bencher) { |
| let mut deq = RingBuf::new(); |
| b.iter(|| { |
| for _ in range(0, 65) { |
| deq.push_front(1); |
| } |
| }) |
| } |
| |
| #[deriving(Clone, Eq, Show)] |
| enum Taggy { |
| One(int), |
| Two(int, int), |
| Three(int, int, int), |
| } |
| |
| #[deriving(Clone, Eq, Show)] |
| enum Taggypar<T> { |
| Onepar(int), |
| Twopar(int, int), |
| Threepar(int, int, int), |
| } |
| |
| #[deriving(Clone, Eq, Show)] |
| struct RecCy { |
| x: int, |
| y: int, |
| t: Taggy |
| } |
| |
| #[test] |
| fn test_param_int() { |
| test_parameterized::<int>(5, 72, 64, 175); |
| } |
| |
| #[test] |
| fn test_param_at_int() { |
| test_parameterized::<@int>(@5, @72, @64, @175); |
| } |
| |
| #[test] |
| fn test_param_taggy() { |
| test_parameterized::<Taggy>(One(1), Two(1, 2), Three(1, 2, 3), Two(17, 42)); |
| } |
| |
| #[test] |
| fn test_param_taggypar() { |
| test_parameterized::<Taggypar<int>>(Onepar::<int>(1), |
| Twopar::<int>(1, 2), |
| Threepar::<int>(1, 2, 3), |
| Twopar::<int>(17, 42)); |
| } |
| |
| #[test] |
| fn test_param_reccy() { |
| let reccy1 = RecCy { x: 1, y: 2, t: One(1) }; |
| let reccy2 = RecCy { x: 345, y: 2, t: Two(1, 2) }; |
| let reccy3 = RecCy { x: 1, y: 777, t: Three(1, 2, 3) }; |
| let reccy4 = RecCy { x: 19, y: 252, t: Two(17, 42) }; |
| test_parameterized::<RecCy>(reccy1, reccy2, reccy3, reccy4); |
| } |
| |
| #[test] |
| fn test_with_capacity() { |
| let mut d = RingBuf::with_capacity(0); |
| d.push_back(1); |
| assert_eq!(d.len(), 1); |
| let mut d = RingBuf::with_capacity(50); |
| d.push_back(1); |
| assert_eq!(d.len(), 1); |
| } |
| |
| #[test] |
| fn test_reserve_exact() { |
| let mut d = RingBuf::new(); |
| d.push_back(0u64); |
| d.reserve_exact(50); |
| assert_eq!(d.elts.capacity(), 50); |
| let mut d = RingBuf::new(); |
| d.push_back(0u32); |
| d.reserve_exact(50); |
| assert_eq!(d.elts.capacity(), 50); |
| } |
| |
| #[test] |
| fn test_reserve() { |
| let mut d = RingBuf::new(); |
| d.push_back(0u64); |
| d.reserve(50); |
| assert_eq!(d.elts.capacity(), 64); |
| let mut d = RingBuf::new(); |
| d.push_back(0u32); |
| d.reserve(50); |
| assert_eq!(d.elts.capacity(), 64); |
| } |
| |
| #[test] |
| fn test_swap() { |
| let mut d: RingBuf<int> = range(0, 5).collect(); |
| d.pop_front(); |
| d.swap(0, 3); |
| assert_eq!(d.iter().map(|&x|x).collect::<Vec<int>>(), vec!(4, 2, 3, 1)); |
| } |
| |
| #[test] |
| fn test_iter() { |
| let mut d = RingBuf::new(); |
| assert_eq!(d.iter().next(), None); |
| assert_eq!(d.iter().size_hint(), (0, Some(0))); |
| |
| for i in range(0, 5) { |
| d.push_back(i); |
| } |
| assert_eq!(d.iter().collect::<Vec<&int>>().as_slice(), &[&0,&1,&2,&3,&4]); |
| |
| for i in range(6, 9) { |
| d.push_front(i); |
| } |
| assert_eq!(d.iter().collect::<Vec<&int>>().as_slice(), &[&8,&7,&6,&0,&1,&2,&3,&4]); |
| |
| let mut it = d.iter(); |
| let mut len = d.len(); |
| loop { |
| match it.next() { |
| None => break, |
| _ => { len -= 1; assert_eq!(it.size_hint(), (len, Some(len))) } |
| } |
| } |
| } |
| |
| #[test] |
| fn test_rev_iter() { |
| let mut d = RingBuf::new(); |
| assert_eq!(d.rev_iter().next(), None); |
| |
| for i in range(0, 5) { |
| d.push_back(i); |
| } |
| assert_eq!(d.rev_iter().collect::<Vec<&int>>().as_slice(), &[&4,&3,&2,&1,&0]); |
| |
| for i in range(6, 9) { |
| d.push_front(i); |
| } |
| assert_eq!(d.rev_iter().collect::<Vec<&int>>().as_slice(), &[&4,&3,&2,&1,&0,&6,&7,&8]); |
| } |
| |
| #[test] |
| fn test_mut_rev_iter_wrap() { |
| let mut d = RingBuf::with_capacity(3); |
| assert!(d.mut_rev_iter().next().is_none()); |
| |
| d.push_back(1); |
| d.push_back(2); |
| d.push_back(3); |
| assert_eq!(d.pop_front(), Some(1)); |
| d.push_back(4); |
| |
| assert_eq!(d.mut_rev_iter().map(|x| *x).collect::<Vec<int>>(), |
| vec!(4, 3, 2)); |
| } |
| |
| #[test] |
| fn test_mut_iter() { |
| let mut d = RingBuf::new(); |
| assert!(d.mut_iter().next().is_none()); |
| |
| for i in range(0u, 3) { |
| d.push_front(i); |
| } |
| |
| for (i, elt) in d.mut_iter().enumerate() { |
| assert_eq!(*elt, 2 - i); |
| *elt = i; |
| } |
| |
| { |
| let mut it = d.mut_iter(); |
| assert_eq!(*it.next().unwrap(), 0); |
| assert_eq!(*it.next().unwrap(), 1); |
| assert_eq!(*it.next().unwrap(), 2); |
| assert!(it.next().is_none()); |
| } |
| } |
| |
| #[test] |
| fn test_mut_rev_iter() { |
| let mut d = RingBuf::new(); |
| assert!(d.mut_rev_iter().next().is_none()); |
| |
| for i in range(0u, 3) { |
| d.push_front(i); |
| } |
| |
| for (i, elt) in d.mut_rev_iter().enumerate() { |
| assert_eq!(*elt, i); |
| *elt = i; |
| } |
| |
| { |
| let mut it = d.mut_rev_iter(); |
| assert_eq!(*it.next().unwrap(), 0); |
| assert_eq!(*it.next().unwrap(), 1); |
| assert_eq!(*it.next().unwrap(), 2); |
| assert!(it.next().is_none()); |
| } |
| } |
| |
| #[test] |
| fn test_from_iter() { |
| use std::iter; |
| let v = vec!(1,2,3,4,5,6,7); |
| let deq: RingBuf<int> = v.iter().map(|&x| x).collect(); |
| let u: Vec<int> = deq.iter().map(|&x| x).collect(); |
| assert_eq!(u, v); |
| |
| let mut seq = iter::count(0u, 2).take(256); |
| let deq: RingBuf<uint> = seq.collect(); |
| for (i, &x) in deq.iter().enumerate() { |
| assert_eq!(2*i, x); |
| } |
| assert_eq!(deq.len(), 256); |
| } |
| |
| #[test] |
| fn test_clone() { |
| let mut d = RingBuf::new(); |
| d.push_front(17); |
| d.push_front(42); |
| d.push_back(137); |
| d.push_back(137); |
| assert_eq!(d.len(), 4u); |
| let mut e = d.clone(); |
| assert_eq!(e.len(), 4u); |
| while !d.is_empty() { |
| assert_eq!(d.pop_back(), e.pop_back()); |
| } |
| assert_eq!(d.len(), 0u); |
| assert_eq!(e.len(), 0u); |
| } |
| |
| #[test] |
| fn test_eq() { |
| let mut d = RingBuf::new(); |
| assert!(d == RingBuf::with_capacity(0)); |
| d.push_front(137); |
| d.push_front(17); |
| d.push_front(42); |
| d.push_back(137); |
| let mut e = RingBuf::with_capacity(0); |
| e.push_back(42); |
| e.push_back(17); |
| e.push_back(137); |
| e.push_back(137); |
| assert!(&e == &d); |
| e.pop_back(); |
| e.push_back(0); |
| assert!(e != d); |
| e.clear(); |
| assert!(e == RingBuf::new()); |
| } |
| } |