| // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| pub use self::PathParsingMode::*; |
| use self::ItemOrViewItem::*; |
| |
| use abi; |
| use ast::{AssociatedType, BareFnTy}; |
| use ast::{RegionTyParamBound, TraitTyParamBound, TraitBoundModifier}; |
| use ast::{ProvidedMethod, Public, Unsafety}; |
| use ast::{Mod, BiAdd, Arg, Arm, Attribute, BindByRef, BindByValue}; |
| use ast::{BiBitAnd, BiBitOr, BiBitXor, BiRem, Block}; |
| use ast::{BlockCheckMode, CaptureByRef, CaptureByValue, CaptureClause}; |
| use ast::{Crate, CrateConfig, Decl, DeclItem}; |
| use ast::{DeclLocal, DefaultBlock, UnDeref, BiDiv, EMPTY_CTXT, EnumDef, ExplicitSelf}; |
| use ast::{Expr, Expr_, ExprAddrOf, ExprMatch, ExprAgain}; |
| use ast::{ExprAssign, ExprAssignOp, ExprBinary, ExprBlock, ExprBox}; |
| use ast::{ExprBreak, ExprCall, ExprCast}; |
| use ast::{ExprField, ExprTupField, ExprClosure, ExprIf, ExprIfLet, ExprIndex}; |
| use ast::{ExprLit, ExprLoop, ExprMac, ExprRange}; |
| use ast::{ExprMethodCall, ExprParen, ExprPath}; |
| use ast::{ExprRepeat, ExprRet, ExprStruct, ExprTup, ExprUnary}; |
| use ast::{ExprVec, ExprWhile, ExprWhileLet, ExprForLoop, Field, FnDecl}; |
| use ast::{FnUnboxedClosureKind, FnMutUnboxedClosureKind}; |
| use ast::{FnOnceUnboxedClosureKind}; |
| use ast::{ForeignItem, ForeignItemStatic, ForeignItemFn, ForeignMod, FunctionRetTy}; |
| use ast::{Ident, Inherited, ImplItem, Item, Item_, ItemStatic}; |
| use ast::{ItemEnum, ItemFn, ItemForeignMod, ItemImpl, ItemConst}; |
| use ast::{ItemMac, ItemMod, ItemStruct, ItemTrait, ItemTy}; |
| use ast::{LifetimeDef, Lit, Lit_}; |
| use ast::{LitBool, LitChar, LitByte, LitBinary}; |
| use ast::{LitStr, LitInt, Local, LocalLet}; |
| use ast::{MacStmtWithBraces, MacStmtWithSemicolon, MacStmtWithoutBraces}; |
| use ast::{MutImmutable, MutMutable, Mac_, MacInvocTT, MatchSource}; |
| use ast::{Method, MutTy, BiMul, Mutability}; |
| use ast::{MethodImplItem, NamedField, UnNeg, NoReturn, NodeId, UnNot}; |
| use ast::{Pat, PatEnum, PatIdent, PatLit, PatRange, PatRegion, PatStruct}; |
| use ast::{PatTup, PatBox, PatWild, PatWildMulti, PatWildSingle}; |
| use ast::{PolyTraitRef}; |
| use ast::{QPath, RequiredMethod}; |
| use ast::{Return, BiShl, BiShr, Stmt, StmtDecl}; |
| use ast::{StmtExpr, StmtSemi, StmtMac, StructDef, StructField}; |
| use ast::{StructVariantKind, BiSub, StrStyle}; |
| use ast::{SelfExplicit, SelfRegion, SelfStatic, SelfValue}; |
| use ast::{Delimited, SequenceRepetition, TokenTree, TraitItem, TraitRef}; |
| use ast::{TtDelimited, TtSequence, TtToken}; |
| use ast::{TupleVariantKind, Ty, Ty_, TypeBinding}; |
| use ast::{TypeField, TyFixedLengthVec, TyBareFn}; |
| use ast::{TyTypeof, TyInfer, TypeMethod}; |
| use ast::{TyParam, TyParamBound, TyParen, TyPath, TyPolyTraitRef, TyPtr, TyQPath}; |
| use ast::{TyRptr, TyTup, TyU32, TyVec, UnUniq}; |
| use ast::{TypeImplItem, TypeTraitItem, Typedef, UnboxedClosureKind}; |
| use ast::{UnnamedField, UnsafeBlock}; |
| use ast::{ViewItem, ViewItem_, ViewItemExternCrate, ViewItemUse}; |
| use ast::{ViewPath, ViewPathGlob, ViewPathList, ViewPathSimple}; |
| use ast::{Visibility, WhereClause}; |
| use ast; |
| use ast_util::{self, as_prec, ident_to_path, operator_prec}; |
| use codemap::{self, Span, BytePos, Spanned, spanned, mk_sp}; |
| use diagnostic; |
| use ext::tt::macro_parser; |
| use parse; |
| use parse::attr::ParserAttr; |
| use parse::classify; |
| use parse::common::{SeqSep, seq_sep_none, seq_sep_trailing_allowed}; |
| use parse::lexer::{Reader, TokenAndSpan}; |
| use parse::obsolete::*; |
| use parse::token::{self, MatchNt, SubstNt, SpecialVarNt, InternedString}; |
| use parse::token::{keywords, special_idents, SpecialMacroVar}; |
| use parse::{new_sub_parser_from_file, ParseSess}; |
| use print::pprust; |
| use ptr::P; |
| use owned_slice::OwnedSlice; |
| |
| use std::collections::HashSet; |
| use std::io::fs::PathExtensions; |
| use std::iter; |
| use std::mem; |
| use std::num::Float; |
| use std::rc::Rc; |
| use std::slice; |
| |
| bitflags! { |
| flags Restrictions: u8 { |
| const UNRESTRICTED = 0b0000, |
| const RESTRICTION_STMT_EXPR = 0b0001, |
| const RESTRICTION_NO_BAR_OP = 0b0010, |
| const RESTRICTION_NO_STRUCT_LITERAL = 0b0100, |
| const RESTRICTION_NO_DOTS = 0b1000, |
| } |
| } |
| |
| |
| type ItemInfo = (Ident, Item_, Option<Vec<Attribute> >); |
| |
| /// How to parse a path. There are four different kinds of paths, all of which |
| /// are parsed somewhat differently. |
| #[derive(Copy, PartialEq)] |
| pub enum PathParsingMode { |
| /// A path with no type parameters; e.g. `foo::bar::Baz` |
| NoTypesAllowed, |
| /// A path with a lifetime and type parameters, with no double colons |
| /// before the type parameters; e.g. `foo::bar<'a>::Baz<T>` |
| LifetimeAndTypesWithoutColons, |
| /// A path with a lifetime and type parameters with double colons before |
| /// the type parameters; e.g. `foo::bar::<'a>::Baz::<T>` |
| LifetimeAndTypesWithColons, |
| } |
| |
| /// How to parse a bound, whether to allow bound modifiers such as `?`. |
| #[derive(Copy, PartialEq)] |
| pub enum BoundParsingMode { |
| Bare, |
| Modified, |
| } |
| |
| enum ItemOrViewItem { |
| /// Indicates a failure to parse any kind of item. The attributes are |
| /// returned. |
| IoviNone(Vec<Attribute>), |
| IoviItem(P<Item>), |
| IoviForeignItem(P<ForeignItem>), |
| IoviViewItem(ViewItem) |
| } |
| |
| |
| /// Possibly accept an `token::Interpolated` expression (a pre-parsed expression |
| /// dropped into the token stream, which happens while parsing the result of |
| /// macro expansion). Placement of these is not as complex as I feared it would |
| /// be. The important thing is to make sure that lookahead doesn't balk at |
| /// `token::Interpolated` tokens. |
| macro_rules! maybe_whole_expr { |
| ($p:expr) => ( |
| { |
| let found = match $p.token { |
| token::Interpolated(token::NtExpr(ref e)) => { |
| Some((*e).clone()) |
| } |
| token::Interpolated(token::NtPath(_)) => { |
| // FIXME: The following avoids an issue with lexical borrowck scopes, |
| // but the clone is unfortunate. |
| let pt = match $p.token { |
| token::Interpolated(token::NtPath(ref pt)) => (**pt).clone(), |
| _ => unreachable!() |
| }; |
| let span = $p.span; |
| Some($p.mk_expr(span.lo, span.hi, ExprPath(pt))) |
| } |
| token::Interpolated(token::NtBlock(_)) => { |
| // FIXME: The following avoids an issue with lexical borrowck scopes, |
| // but the clone is unfortunate. |
| let b = match $p.token { |
| token::Interpolated(token::NtBlock(ref b)) => (*b).clone(), |
| _ => unreachable!() |
| }; |
| let span = $p.span; |
| Some($p.mk_expr(span.lo, span.hi, ExprBlock(b))) |
| } |
| _ => None |
| }; |
| match found { |
| Some(e) => { |
| $p.bump(); |
| return e; |
| } |
| None => () |
| } |
| } |
| ) |
| } |
| |
| /// As maybe_whole_expr, but for things other than expressions |
| macro_rules! maybe_whole { |
| ($p:expr, $constructor:ident) => ( |
| { |
| let found = match ($p).token { |
| token::Interpolated(token::$constructor(_)) => { |
| Some(($p).bump_and_get()) |
| } |
| _ => None |
| }; |
| if let Some(token::Interpolated(token::$constructor(x))) = found { |
| return x.clone(); |
| } |
| } |
| ); |
| (no_clone $p:expr, $constructor:ident) => ( |
| { |
| let found = match ($p).token { |
| token::Interpolated(token::$constructor(_)) => { |
| Some(($p).bump_and_get()) |
| } |
| _ => None |
| }; |
| if let Some(token::Interpolated(token::$constructor(x))) = found { |
| return x; |
| } |
| } |
| ); |
| (deref $p:expr, $constructor:ident) => ( |
| { |
| let found = match ($p).token { |
| token::Interpolated(token::$constructor(_)) => { |
| Some(($p).bump_and_get()) |
| } |
| _ => None |
| }; |
| if let Some(token::Interpolated(token::$constructor(x))) = found { |
| return (*x).clone(); |
| } |
| } |
| ); |
| (Some $p:expr, $constructor:ident) => ( |
| { |
| let found = match ($p).token { |
| token::Interpolated(token::$constructor(_)) => { |
| Some(($p).bump_and_get()) |
| } |
| _ => None |
| }; |
| if let Some(token::Interpolated(token::$constructor(x))) = found { |
| return Some(x.clone()); |
| } |
| } |
| ); |
| (iovi $p:expr, $constructor:ident) => ( |
| { |
| let found = match ($p).token { |
| token::Interpolated(token::$constructor(_)) => { |
| Some(($p).bump_and_get()) |
| } |
| _ => None |
| }; |
| if let Some(token::Interpolated(token::$constructor(x))) = found { |
| return IoviItem(x.clone()); |
| } |
| } |
| ); |
| (pair_empty $p:expr, $constructor:ident) => ( |
| { |
| let found = match ($p).token { |
| token::Interpolated(token::$constructor(_)) => { |
| Some(($p).bump_and_get()) |
| } |
| _ => None |
| }; |
| if let Some(token::Interpolated(token::$constructor(x))) = found { |
| return (Vec::new(), x); |
| } |
| } |
| ) |
| } |
| |
| |
| fn maybe_append(mut lhs: Vec<Attribute>, rhs: Option<Vec<Attribute>>) |
| -> Vec<Attribute> { |
| match rhs { |
| Some(ref attrs) => lhs.extend(attrs.iter().map(|a| a.clone())), |
| None => {} |
| } |
| lhs |
| } |
| |
| |
| struct ParsedItemsAndViewItems { |
| attrs_remaining: Vec<Attribute>, |
| view_items: Vec<ViewItem>, |
| items: Vec<P<Item>> , |
| foreign_items: Vec<P<ForeignItem>> |
| } |
| |
| /* ident is handled by common.rs */ |
| |
| pub struct Parser<'a> { |
| pub sess: &'a ParseSess, |
| /// the current token: |
| pub token: token::Token, |
| /// the span of the current token: |
| pub span: Span, |
| /// the span of the prior token: |
| pub last_span: Span, |
| pub cfg: CrateConfig, |
| /// the previous token or None (only stashed sometimes). |
| pub last_token: Option<Box<token::Token>>, |
| pub buffer: [TokenAndSpan; 4], |
| pub buffer_start: int, |
| pub buffer_end: int, |
| pub tokens_consumed: uint, |
| pub restrictions: Restrictions, |
| pub quote_depth: uint, // not (yet) related to the quasiquoter |
| pub reader: Box<Reader+'a>, |
| pub interner: Rc<token::IdentInterner>, |
| /// The set of seen errors about obsolete syntax. Used to suppress |
| /// extra detail when the same error is seen twice |
| pub obsolete_set: HashSet<ObsoleteSyntax>, |
| /// Used to determine the path to externally loaded source files |
| pub mod_path_stack: Vec<InternedString>, |
| /// Stack of spans of open delimiters. Used for error message. |
| pub open_braces: Vec<Span>, |
| /// Flag if this parser "owns" the directory that it is currently parsing |
| /// in. This will affect how nested files are looked up. |
| pub owns_directory: bool, |
| /// Name of the root module this parser originated from. If `None`, then the |
| /// name is not known. This does not change while the parser is descending |
| /// into modules, and sub-parsers have new values for this name. |
| pub root_module_name: Option<String>, |
| pub expected_tokens: Vec<TokenType>, |
| } |
| |
| #[derive(PartialEq, Eq, Clone)] |
| pub enum TokenType { |
| Token(token::Token), |
| Operator, |
| } |
| |
| impl TokenType { |
| fn to_string(&self) -> String { |
| match *self { |
| TokenType::Token(ref t) => format!("`{}`", Parser::token_to_string(t)), |
| TokenType::Operator => "an operator".to_string(), |
| } |
| } |
| } |
| |
| fn is_plain_ident_or_underscore(t: &token::Token) -> bool { |
| t.is_plain_ident() || *t == token::Underscore |
| } |
| |
| impl<'a> Parser<'a> { |
| pub fn new(sess: &'a ParseSess, |
| cfg: ast::CrateConfig, |
| mut rdr: Box<Reader+'a>) |
| -> Parser<'a> |
| { |
| let tok0 = rdr.real_token(); |
| let span = tok0.sp; |
| let placeholder = TokenAndSpan { |
| tok: token::Underscore, |
| sp: span, |
| }; |
| |
| Parser { |
| reader: rdr, |
| interner: token::get_ident_interner(), |
| sess: sess, |
| cfg: cfg, |
| token: tok0.tok, |
| span: span, |
| last_span: span, |
| last_token: None, |
| buffer: [ |
| placeholder.clone(), |
| placeholder.clone(), |
| placeholder.clone(), |
| placeholder.clone(), |
| ], |
| buffer_start: 0, |
| buffer_end: 0, |
| tokens_consumed: 0, |
| restrictions: UNRESTRICTED, |
| quote_depth: 0, |
| obsolete_set: HashSet::new(), |
| mod_path_stack: Vec::new(), |
| open_braces: Vec::new(), |
| owns_directory: true, |
| root_module_name: None, |
| expected_tokens: Vec::new(), |
| } |
| } |
| |
| /// Convert a token to a string using self's reader |
| pub fn token_to_string(token: &token::Token) -> String { |
| pprust::token_to_string(token) |
| } |
| |
| /// Convert the current token to a string using self's reader |
| pub fn this_token_to_string(&mut self) -> String { |
| Parser::token_to_string(&self.token) |
| } |
| |
| pub fn unexpected_last(&mut self, t: &token::Token) -> ! { |
| let token_str = Parser::token_to_string(t); |
| let last_span = self.last_span; |
| self.span_fatal(last_span, &format!("unexpected token: `{}`", |
| token_str)[]); |
| } |
| |
| pub fn unexpected(&mut self) -> ! { |
| let this_token = self.this_token_to_string(); |
| self.fatal(&format!("unexpected token: `{}`", this_token)[]); |
| } |
| |
| /// Expect and consume the token t. Signal an error if |
| /// the next token is not t. |
| pub fn expect(&mut self, t: &token::Token) { |
| if self.expected_tokens.is_empty() { |
| if self.token == *t { |
| self.bump(); |
| } else { |
| let token_str = Parser::token_to_string(t); |
| let this_token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected `{}`, found `{}`", |
| token_str, |
| this_token_str)[]) |
| } |
| } else { |
| self.expect_one_of(slice::ref_slice(t), &[]); |
| } |
| } |
| |
| /// Expect next token to be edible or inedible token. If edible, |
| /// then consume it; if inedible, then return without consuming |
| /// anything. Signal a fatal error if next token is unexpected. |
| pub fn expect_one_of(&mut self, |
| edible: &[token::Token], |
| inedible: &[token::Token]) { |
| fn tokens_to_string(tokens: &[TokenType]) -> String { |
| let mut i = tokens.iter(); |
| // This might be a sign we need a connect method on Iterator. |
| let b = i.next() |
| .map_or("".to_string(), |t| t.to_string()); |
| i.enumerate().fold(b, |mut b, (i, ref a)| { |
| if tokens.len() > 2 && i == tokens.len() - 2 { |
| b.push_str(", or "); |
| } else if tokens.len() == 2 && i == tokens.len() - 2 { |
| b.push_str(" or "); |
| } else { |
| b.push_str(", "); |
| } |
| b.push_str(&*a.to_string()); |
| b |
| }) |
| } |
| if edible.contains(&self.token) { |
| self.bump(); |
| } else if inedible.contains(&self.token) { |
| // leave it in the input |
| } else { |
| let mut expected = edible.iter().map(|x| TokenType::Token(x.clone())) |
| .collect::<Vec<_>>(); |
| expected.extend(inedible.iter().map(|x| TokenType::Token(x.clone()))); |
| expected.push_all(&*self.expected_tokens); |
| expected.sort_by(|a, b| a.to_string().cmp(&b.to_string())); |
| expected.dedup(); |
| let expect = tokens_to_string(&expected[]); |
| let actual = self.this_token_to_string(); |
| self.fatal( |
| &(if expected.len() != 1 { |
| (format!("expected one of {}, found `{}`", |
| expect, |
| actual)) |
| } else { |
| (format!("expected {}, found `{}`", |
| expect, |
| actual)) |
| }[]) |
| ) |
| } |
| } |
| |
| /// Check for erroneous `ident { }`; if matches, signal error and |
| /// recover (without consuming any expected input token). Returns |
| /// true if and only if input was consumed for recovery. |
| pub fn check_for_erroneous_unit_struct_expecting(&mut self, expected: &[token::Token]) -> bool { |
| if self.token == token::OpenDelim(token::Brace) |
| && expected.iter().all(|t| *t != token::OpenDelim(token::Brace)) |
| && self.look_ahead(1, |t| *t == token::CloseDelim(token::Brace)) { |
| // matched; signal non-fatal error and recover. |
| let span = self.span; |
| self.span_err(span, |
| "unit-like struct construction is written with no trailing `{ }`"); |
| self.eat(&token::OpenDelim(token::Brace)); |
| self.eat(&token::CloseDelim(token::Brace)); |
| true |
| } else { |
| false |
| } |
| } |
| |
| /// Commit to parsing a complete expression `e` expected to be |
| /// followed by some token from the set edible + inedible. Recover |
| /// from anticipated input errors, discarding erroneous characters. |
| pub fn commit_expr(&mut self, e: &Expr, edible: &[token::Token], inedible: &[token::Token]) { |
| debug!("commit_expr {:?}", e); |
| if let ExprPath(..) = e.node { |
| // might be unit-struct construction; check for recoverableinput error. |
| let mut expected = edible.iter().map(|x| x.clone()).collect::<Vec<_>>(); |
| expected.push_all(inedible); |
| self.check_for_erroneous_unit_struct_expecting(&expected[]); |
| } |
| self.expect_one_of(edible, inedible) |
| } |
| |
| pub fn commit_expr_expecting(&mut self, e: &Expr, edible: token::Token) { |
| self.commit_expr(e, &[edible], &[]) |
| } |
| |
| /// Commit to parsing a complete statement `s`, which expects to be |
| /// followed by some token from the set edible + inedible. Check |
| /// for recoverable input errors, discarding erroneous characters. |
| pub fn commit_stmt(&mut self, edible: &[token::Token], inedible: &[token::Token]) { |
| if self.last_token |
| .as_ref() |
| .map_or(false, |t| t.is_ident() || t.is_path()) { |
| let mut expected = edible.iter().map(|x| x.clone()).collect::<Vec<_>>(); |
| expected.push_all(&inedible[]); |
| self.check_for_erroneous_unit_struct_expecting( |
| &expected[]); |
| } |
| self.expect_one_of(edible, inedible) |
| } |
| |
| pub fn commit_stmt_expecting(&mut self, edible: token::Token) { |
| self.commit_stmt(&[edible], &[]) |
| } |
| |
| pub fn parse_ident(&mut self) -> ast::Ident { |
| self.check_strict_keywords(); |
| self.check_reserved_keywords(); |
| match self.token { |
| token::Ident(i, _) => { |
| self.bump(); |
| i |
| } |
| token::Interpolated(token::NtIdent(..)) => { |
| self.bug("ident interpolation not converted to real token"); |
| } |
| _ => { |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected ident, found `{}`", |
| token_str)[]) |
| } |
| } |
| } |
| |
| pub fn parse_path_list_item(&mut self) -> ast::PathListItem { |
| let lo = self.span.lo; |
| let node = if self.eat_keyword(keywords::Mod) { |
| let span = self.last_span; |
| self.span_warn(span, "deprecated syntax; use the `self` keyword now"); |
| ast::PathListMod { id: ast::DUMMY_NODE_ID } |
| } else if self.eat_keyword(keywords::Self) { |
| ast::PathListMod { id: ast::DUMMY_NODE_ID } |
| } else { |
| let ident = self.parse_ident(); |
| ast::PathListIdent { name: ident, id: ast::DUMMY_NODE_ID } |
| }; |
| let hi = self.last_span.hi; |
| spanned(lo, hi, node) |
| } |
| |
| /// Check if the next token is `tok`, and return `true` if so. |
| /// |
| /// This method is will automatically add `tok` to `expected_tokens` if `tok` is not |
| /// encountered. |
| pub fn check(&mut self, tok: &token::Token) -> bool { |
| let is_present = self.token == *tok; |
| if !is_present { self.expected_tokens.push(TokenType::Token(tok.clone())); } |
| is_present |
| } |
| |
| /// Consume token 'tok' if it exists. Returns true if the given |
| /// token was present, false otherwise. |
| pub fn eat(&mut self, tok: &token::Token) -> bool { |
| let is_present = self.check(tok); |
| if is_present { self.bump() } |
| is_present |
| } |
| |
| /// If the next token is the given keyword, eat it and return |
| /// true. Otherwise, return false. |
| pub fn eat_keyword(&mut self, kw: keywords::Keyword) -> bool { |
| if self.token.is_keyword(kw) { |
| self.bump(); |
| true |
| } else { |
| false |
| } |
| } |
| |
| /// If the given word is not a keyword, signal an error. |
| /// If the next token is not the given word, signal an error. |
| /// Otherwise, eat it. |
| pub fn expect_keyword(&mut self, kw: keywords::Keyword) { |
| if !self.eat_keyword(kw) { |
| let id_interned_str = token::get_name(kw.to_name()); |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected `{}`, found `{}`", |
| id_interned_str, token_str)[]) |
| } |
| } |
| |
| /// Signal an error if the given string is a strict keyword |
| pub fn check_strict_keywords(&mut self) { |
| if self.token.is_strict_keyword() { |
| let token_str = self.this_token_to_string(); |
| let span = self.span; |
| self.span_err(span, |
| &format!("expected identifier, found keyword `{}`", |
| token_str)[]); |
| } |
| } |
| |
| /// Signal an error if the current token is a reserved keyword |
| pub fn check_reserved_keywords(&mut self) { |
| if self.token.is_reserved_keyword() { |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("`{}` is a reserved keyword", |
| token_str)[]) |
| } |
| } |
| |
| /// Expect and consume an `&`. If `&&` is seen, replace it with a single |
| /// `&` and continue. If an `&` is not seen, signal an error. |
| fn expect_and(&mut self) { |
| match self.token { |
| token::BinOp(token::And) => self.bump(), |
| token::AndAnd => { |
| let span = self.span; |
| let lo = span.lo + BytePos(1); |
| self.replace_token(token::BinOp(token::And), lo, span.hi) |
| } |
| _ => { |
| let token_str = self.this_token_to_string(); |
| let found_token = |
| Parser::token_to_string(&token::BinOp(token::And)); |
| self.fatal(&format!("expected `{}`, found `{}`", |
| found_token, |
| token_str)[]) |
| } |
| } |
| } |
| |
| /// Expect and consume a `|`. If `||` is seen, replace it with a single |
| /// `|` and continue. If a `|` is not seen, signal an error. |
| fn expect_or(&mut self) { |
| match self.token { |
| token::BinOp(token::Or) => self.bump(), |
| token::OrOr => { |
| let span = self.span; |
| let lo = span.lo + BytePos(1); |
| self.replace_token(token::BinOp(token::Or), lo, span.hi) |
| } |
| _ => { |
| let found_token = self.this_token_to_string(); |
| let token_str = |
| Parser::token_to_string(&token::BinOp(token::Or)); |
| self.fatal(&format!("expected `{}`, found `{}`", |
| token_str, |
| found_token)[]) |
| } |
| } |
| } |
| |
| pub fn expect_no_suffix(&mut self, sp: Span, kind: &str, suffix: Option<ast::Name>) { |
| match suffix { |
| None => {/* everything ok */} |
| Some(suf) => { |
| let text = suf.as_str(); |
| if text.is_empty() { |
| self.span_bug(sp, "found empty literal suffix in Some") |
| } |
| self.span_err(sp, &*format!("{} with a suffix is illegal", kind)); |
| } |
| } |
| } |
| |
| |
| /// Attempt to consume a `<`. If `<<` is seen, replace it with a single |
| /// `<` and continue. If a `<` is not seen, return false. |
| /// |
| /// This is meant to be used when parsing generics on a path to get the |
| /// starting token. |
| fn eat_lt(&mut self) -> bool { |
| match self.token { |
| token::Lt => { self.bump(); true } |
| token::BinOp(token::Shl) => { |
| let span = self.span; |
| let lo = span.lo + BytePos(1); |
| self.replace_token(token::Lt, lo, span.hi); |
| true |
| } |
| _ => false, |
| } |
| } |
| |
| fn expect_lt(&mut self) { |
| if !self.eat_lt() { |
| let found_token = self.this_token_to_string(); |
| let token_str = Parser::token_to_string(&token::Lt); |
| self.fatal(&format!("expected `{}`, found `{}`", |
| token_str, |
| found_token)[]) |
| } |
| } |
| |
| /// Parse a sequence bracketed by `|` and `|`, stopping before the `|`. |
| fn parse_seq_to_before_or<T, F>(&mut self, |
| sep: &token::Token, |
| mut f: F) |
| -> Vec<T> where |
| F: FnMut(&mut Parser) -> T, |
| { |
| let mut first = true; |
| let mut vector = Vec::new(); |
| while self.token != token::BinOp(token::Or) && |
| self.token != token::OrOr { |
| if first { |
| first = false |
| } else { |
| self.expect(sep) |
| } |
| |
| vector.push(f(self)) |
| } |
| vector |
| } |
| |
| /// Expect and consume a GT. if a >> is seen, replace it |
| /// with a single > and continue. If a GT is not seen, |
| /// signal an error. |
| pub fn expect_gt(&mut self) { |
| match self.token { |
| token::Gt => self.bump(), |
| token::BinOp(token::Shr) => { |
| let span = self.span; |
| let lo = span.lo + BytePos(1); |
| self.replace_token(token::Gt, lo, span.hi) |
| } |
| token::BinOpEq(token::Shr) => { |
| let span = self.span; |
| let lo = span.lo + BytePos(1); |
| self.replace_token(token::Ge, lo, span.hi) |
| } |
| token::Ge => { |
| let span = self.span; |
| let lo = span.lo + BytePos(1); |
| self.replace_token(token::Eq, lo, span.hi) |
| } |
| _ => { |
| let gt_str = Parser::token_to_string(&token::Gt); |
| let this_token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected `{}`, found `{}`", |
| gt_str, |
| this_token_str)[]) |
| } |
| } |
| } |
| |
| pub fn parse_seq_to_before_gt_or_return<T, F>(&mut self, |
| sep: Option<token::Token>, |
| mut f: F) |
| -> (OwnedSlice<T>, bool) where |
| F: FnMut(&mut Parser) -> Option<T>, |
| { |
| let mut v = Vec::new(); |
| // This loop works by alternating back and forth between parsing types |
| // and commas. For example, given a string `A, B,>`, the parser would |
| // first parse `A`, then a comma, then `B`, then a comma. After that it |
| // would encounter a `>` and stop. This lets the parser handle trailing |
| // commas in generic parameters, because it can stop either after |
| // parsing a type or after parsing a comma. |
| for i in iter::count(0u, 1) { |
| if self.check(&token::Gt) |
| || self.token == token::BinOp(token::Shr) |
| || self.token == token::Ge |
| || self.token == token::BinOpEq(token::Shr) { |
| break; |
| } |
| |
| if i % 2 == 0 { |
| match f(self) { |
| Some(result) => v.push(result), |
| None => return (OwnedSlice::from_vec(v), true) |
| } |
| } else { |
| sep.as_ref().map(|t| self.expect(t)); |
| } |
| } |
| return (OwnedSlice::from_vec(v), false); |
| } |
| |
| /// Parse a sequence bracketed by '<' and '>', stopping |
| /// before the '>'. |
| pub fn parse_seq_to_before_gt<T, F>(&mut self, |
| sep: Option<token::Token>, |
| mut f: F) |
| -> OwnedSlice<T> where |
| F: FnMut(&mut Parser) -> T, |
| { |
| let (result, returned) = self.parse_seq_to_before_gt_or_return(sep, |p| Some(f(p))); |
| assert!(!returned); |
| return result; |
| } |
| |
| pub fn parse_seq_to_gt<T, F>(&mut self, |
| sep: Option<token::Token>, |
| f: F) |
| -> OwnedSlice<T> where |
| F: FnMut(&mut Parser) -> T, |
| { |
| let v = self.parse_seq_to_before_gt(sep, f); |
| self.expect_gt(); |
| return v; |
| } |
| |
| pub fn parse_seq_to_gt_or_return<T, F>(&mut self, |
| sep: Option<token::Token>, |
| f: F) |
| -> (OwnedSlice<T>, bool) where |
| F: FnMut(&mut Parser) -> Option<T>, |
| { |
| let (v, returned) = self.parse_seq_to_before_gt_or_return(sep, f); |
| if !returned { |
| self.expect_gt(); |
| } |
| return (v, returned); |
| } |
| |
| /// Parse a sequence, including the closing delimiter. The function |
| /// f must consume tokens until reaching the next separator or |
| /// closing bracket. |
| pub fn parse_seq_to_end<T, F>(&mut self, |
| ket: &token::Token, |
| sep: SeqSep, |
| f: F) |
| -> Vec<T> where |
| F: FnMut(&mut Parser) -> T, |
| { |
| let val = self.parse_seq_to_before_end(ket, sep, f); |
| self.bump(); |
| val |
| } |
| |
| /// Parse a sequence, not including the closing delimiter. The function |
| /// f must consume tokens until reaching the next separator or |
| /// closing bracket. |
| pub fn parse_seq_to_before_end<T, F>(&mut self, |
| ket: &token::Token, |
| sep: SeqSep, |
| mut f: F) |
| -> Vec<T> where |
| F: FnMut(&mut Parser) -> T, |
| { |
| let mut first: bool = true; |
| let mut v = vec!(); |
| while self.token != *ket { |
| match sep.sep { |
| Some(ref t) => { |
| if first { first = false; } |
| else { self.expect(t); } |
| } |
| _ => () |
| } |
| if sep.trailing_sep_allowed && self.check(ket) { break; } |
| v.push(f(self)); |
| } |
| return v; |
| } |
| |
| /// Parse a sequence, including the closing delimiter. The function |
| /// f must consume tokens until reaching the next separator or |
| /// closing bracket. |
| pub fn parse_unspanned_seq<T, F>(&mut self, |
| bra: &token::Token, |
| ket: &token::Token, |
| sep: SeqSep, |
| f: F) |
| -> Vec<T> where |
| F: FnMut(&mut Parser) -> T, |
| { |
| self.expect(bra); |
| let result = self.parse_seq_to_before_end(ket, sep, f); |
| self.bump(); |
| result |
| } |
| |
| /// Parse a sequence parameter of enum variant. For consistency purposes, |
| /// these should not be empty. |
| pub fn parse_enum_variant_seq<T, F>(&mut self, |
| bra: &token::Token, |
| ket: &token::Token, |
| sep: SeqSep, |
| f: F) |
| -> Vec<T> where |
| F: FnMut(&mut Parser) -> T, |
| { |
| let result = self.parse_unspanned_seq(bra, ket, sep, f); |
| if result.is_empty() { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| "nullary enum variants are written with no trailing `( )`"); |
| } |
| result |
| } |
| |
| // NB: Do not use this function unless you actually plan to place the |
| // spanned list in the AST. |
| pub fn parse_seq<T, F>(&mut self, |
| bra: &token::Token, |
| ket: &token::Token, |
| sep: SeqSep, |
| f: F) |
| -> Spanned<Vec<T>> where |
| F: FnMut(&mut Parser) -> T, |
| { |
| let lo = self.span.lo; |
| self.expect(bra); |
| let result = self.parse_seq_to_before_end(ket, sep, f); |
| let hi = self.span.hi; |
| self.bump(); |
| spanned(lo, hi, result) |
| } |
| |
| /// Advance the parser by one token |
| pub fn bump(&mut self) { |
| self.last_span = self.span; |
| // Stash token for error recovery (sometimes; clone is not necessarily cheap). |
| self.last_token = if self.token.is_ident() || self.token.is_path() { |
| Some(box self.token.clone()) |
| } else { |
| None |
| }; |
| let next = if self.buffer_start == self.buffer_end { |
| self.reader.real_token() |
| } else { |
| // Avoid token copies with `replace`. |
| let buffer_start = self.buffer_start as uint; |
| let next_index = (buffer_start + 1) & 3 as uint; |
| self.buffer_start = next_index as int; |
| |
| let placeholder = TokenAndSpan { |
| tok: token::Underscore, |
| sp: self.span, |
| }; |
| mem::replace(&mut self.buffer[buffer_start], placeholder) |
| }; |
| self.span = next.sp; |
| self.token = next.tok; |
| self.tokens_consumed += 1u; |
| self.expected_tokens.clear(); |
| // check after each token |
| self.check_unknown_macro_variable(); |
| } |
| |
| /// Advance the parser by one token and return the bumped token. |
| pub fn bump_and_get(&mut self) -> token::Token { |
| let old_token = mem::replace(&mut self.token, token::Underscore); |
| self.bump(); |
| old_token |
| } |
| |
| /// EFFECT: replace the current token and span with the given one |
| pub fn replace_token(&mut self, |
| next: token::Token, |
| lo: BytePos, |
| hi: BytePos) { |
| self.last_span = mk_sp(self.span.lo, lo); |
| self.token = next; |
| self.span = mk_sp(lo, hi); |
| } |
| pub fn buffer_length(&mut self) -> int { |
| if self.buffer_start <= self.buffer_end { |
| return self.buffer_end - self.buffer_start; |
| } |
| return (4 - self.buffer_start) + self.buffer_end; |
| } |
| pub fn look_ahead<R, F>(&mut self, distance: uint, f: F) -> R where |
| F: FnOnce(&token::Token) -> R, |
| { |
| let dist = distance as int; |
| while self.buffer_length() < dist { |
| self.buffer[self.buffer_end as uint] = self.reader.real_token(); |
| self.buffer_end = (self.buffer_end + 1) & 3; |
| } |
| f(&self.buffer[((self.buffer_start + dist - 1) & 3) as uint].tok) |
| } |
| pub fn fatal(&mut self, m: &str) -> ! { |
| self.sess.span_diagnostic.span_fatal(self.span, m) |
| } |
| pub fn span_fatal(&mut self, sp: Span, m: &str) -> ! { |
| self.sess.span_diagnostic.span_fatal(sp, m) |
| } |
| pub fn span_fatal_help(&mut self, sp: Span, m: &str, help: &str) -> ! { |
| self.span_err(sp, m); |
| self.span_help(sp, help); |
| panic!(diagnostic::FatalError); |
| } |
| pub fn span_note(&mut self, sp: Span, m: &str) { |
| self.sess.span_diagnostic.span_note(sp, m) |
| } |
| pub fn span_help(&mut self, sp: Span, m: &str) { |
| self.sess.span_diagnostic.span_help(sp, m) |
| } |
| pub fn bug(&mut self, m: &str) -> ! { |
| self.sess.span_diagnostic.span_bug(self.span, m) |
| } |
| pub fn warn(&mut self, m: &str) { |
| self.sess.span_diagnostic.span_warn(self.span, m) |
| } |
| pub fn span_warn(&mut self, sp: Span, m: &str) { |
| self.sess.span_diagnostic.span_warn(sp, m) |
| } |
| pub fn span_err(&mut self, sp: Span, m: &str) { |
| self.sess.span_diagnostic.span_err(sp, m) |
| } |
| pub fn span_bug(&mut self, sp: Span, m: &str) -> ! { |
| self.sess.span_diagnostic.span_bug(sp, m) |
| } |
| pub fn abort_if_errors(&mut self) { |
| self.sess.span_diagnostic.handler().abort_if_errors(); |
| } |
| |
| pub fn id_to_interned_str(&mut self, id: Ident) -> InternedString { |
| token::get_ident(id) |
| } |
| |
| /// Is the current token one of the keywords that signals a bare function |
| /// type? |
| pub fn token_is_bare_fn_keyword(&mut self) -> bool { |
| self.token.is_keyword(keywords::Fn) || |
| self.token.is_keyword(keywords::Unsafe) || |
| self.token.is_keyword(keywords::Extern) |
| } |
| |
| /// Is the current token one of the keywords that signals a closure type? |
| pub fn token_is_closure_keyword(&mut self) -> bool { |
| self.token.is_keyword(keywords::Unsafe) |
| } |
| |
| pub fn get_lifetime(&mut self) -> ast::Ident { |
| match self.token { |
| token::Lifetime(ref ident) => *ident, |
| _ => self.bug("not a lifetime"), |
| } |
| } |
| |
| pub fn parse_for_in_type(&mut self) -> Ty_ { |
| /* |
| Parses whatever can come after a `for` keyword in a type. |
| The `for` has already been consumed. |
| |
| Deprecated: |
| |
| - for <'lt> |S| -> T |
| |
| Eventually: |
| |
| - for <'lt> [unsafe] [extern "ABI"] fn (S) -> T |
| - for <'lt> path::foo(a, b) |
| |
| */ |
| |
| // parse <'lt> |
| let lifetime_defs = self.parse_late_bound_lifetime_defs(); |
| |
| // examine next token to decide to do |
| if self.eat_keyword(keywords::Proc) { |
| self.parse_proc_type(lifetime_defs) |
| } else if self.token_is_bare_fn_keyword() || self.token_is_closure_keyword() { |
| self.parse_ty_bare_fn_or_ty_closure(lifetime_defs) |
| } else if self.check(&token::ModSep) || |
| self.token.is_ident() || |
| self.token.is_path() |
| { |
| let trait_ref = self.parse_trait_ref(); |
| let poly_trait_ref = ast::PolyTraitRef { bound_lifetimes: lifetime_defs, |
| trait_ref: trait_ref }; |
| let other_bounds = if self.eat(&token::BinOp(token::Plus)) { |
| self.parse_ty_param_bounds(BoundParsingMode::Bare) |
| } else { |
| OwnedSlice::empty() |
| }; |
| let all_bounds = |
| Some(TraitTyParamBound(poly_trait_ref, TraitBoundModifier::None)).into_iter() |
| .chain(other_bounds.into_vec().into_iter()) |
| .collect(); |
| ast::TyPolyTraitRef(all_bounds) |
| } else { |
| self.parse_ty_closure(lifetime_defs) |
| } |
| } |
| |
| pub fn parse_ty_path(&mut self) -> Ty_ { |
| let path = self.parse_path(LifetimeAndTypesWithoutColons); |
| TyPath(path, ast::DUMMY_NODE_ID) |
| } |
| |
| /// parse a TyBareFn type: |
| pub fn parse_ty_bare_fn(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> Ty_ { |
| /* |
| |
| [unsafe] [extern "ABI"] fn <'lt> (S) -> T |
| ^~~~^ ^~~~^ ^~~~^ ^~^ ^ |
| | | | | | |
| | | | | Return type |
| | | | Argument types |
| | | Lifetimes |
| | ABI |
| Function Style |
| */ |
| |
| let unsafety = self.parse_unsafety(); |
| let abi = if self.eat_keyword(keywords::Extern) { |
| self.parse_opt_abi().unwrap_or(abi::C) |
| } else { |
| abi::Rust |
| }; |
| |
| self.expect_keyword(keywords::Fn); |
| let lifetime_defs = self.parse_legacy_lifetime_defs(lifetime_defs); |
| let (inputs, variadic) = self.parse_fn_args(false, true); |
| let ret_ty = self.parse_ret_ty(); |
| let decl = P(FnDecl { |
| inputs: inputs, |
| output: ret_ty, |
| variadic: variadic |
| }); |
| TyBareFn(P(BareFnTy { |
| abi: abi, |
| unsafety: unsafety, |
| lifetimes: lifetime_defs, |
| decl: decl |
| })) |
| } |
| |
| /// Parses a procedure type (`proc`). The initial `proc` keyword must |
| /// already have been parsed. |
| pub fn parse_proc_type(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> Ty_ { |
| /* |
| |
| proc <'lt> (S) [:Bounds] -> T |
| ^~~^ ^~~~^ ^ ^~~~~~~~^ ^ |
| | | | | | |
| | | | | Return type |
| | | | Bounds |
| | | Argument types |
| | Legacy lifetimes |
| the `proc` keyword (already consumed) |
| |
| */ |
| |
| let proc_span = self.last_span; |
| |
| // To be helpful, parse the proc as ever |
| let _ = self.parse_legacy_lifetime_defs(lifetime_defs); |
| let _ = self.parse_fn_args(false, false); |
| let _ = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare); |
| let _ = self.parse_ret_ty(); |
| |
| self.obsolete(proc_span, ObsoleteSyntax::ProcType); |
| |
| TyInfer |
| } |
| |
| /// Parses an optional unboxed closure kind (`&:`, `&mut:`, or `:`). |
| pub fn parse_optional_unboxed_closure_kind(&mut self) |
| -> Option<UnboxedClosureKind> { |
| if self.check(&token::BinOp(token::And)) && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Mut)) && |
| self.look_ahead(2, |t| *t == token::Colon) { |
| self.bump(); |
| self.bump(); |
| self.bump(); |
| return Some(FnMutUnboxedClosureKind) |
| } |
| |
| if self.token == token::BinOp(token::And) && |
| self.look_ahead(1, |t| *t == token::Colon) { |
| self.bump(); |
| self.bump(); |
| return Some(FnUnboxedClosureKind) |
| } |
| |
| if self.eat(&token::Colon) { |
| return Some(FnOnceUnboxedClosureKind) |
| } |
| |
| return None |
| } |
| |
| pub fn parse_ty_bare_fn_or_ty_closure(&mut self, lifetime_defs: Vec<LifetimeDef>) -> Ty_ { |
| // Both bare fns and closures can begin with stuff like unsafe |
| // and extern. So we just scan ahead a few tokens to see if we see |
| // a `fn`. |
| // |
| // Closure: [unsafe] <'lt> |S| [:Bounds] -> T |
| // Fn: [unsafe] [extern "ABI"] fn <'lt> (S) -> T |
| |
| if self.token.is_keyword(keywords::Fn) { |
| self.parse_ty_bare_fn(lifetime_defs) |
| } else if self.token.is_keyword(keywords::Extern) { |
| self.parse_ty_bare_fn(lifetime_defs) |
| } else if self.token.is_keyword(keywords::Unsafe) { |
| if self.look_ahead(1, |t| t.is_keyword(keywords::Fn) || |
| t.is_keyword(keywords::Extern)) { |
| self.parse_ty_bare_fn(lifetime_defs) |
| } else { |
| self.parse_ty_closure(lifetime_defs) |
| } |
| } else { |
| self.parse_ty_closure(lifetime_defs) |
| } |
| } |
| |
| /// Parse a TyClosure type |
| pub fn parse_ty_closure(&mut self, lifetime_defs: Vec<ast::LifetimeDef>) -> Ty_ { |
| /* |
| |
| [unsafe] <'lt> |S| [:Bounds] -> T |
| ^~~~~~~^ ^~~~^ ^ ^~~~~~~~^ ^ |
| | | | | | |
| | | | | Return type |
| | | | Closure bounds |
| | | Argument types |
| | Deprecated lifetime defs |
| | |
| Function Style |
| |
| */ |
| |
| let ty_closure_span = self.last_span; |
| |
| // To be helpful, parse the closure type as ever |
| let _ = self.parse_unsafety(); |
| |
| let _ = self.parse_legacy_lifetime_defs(lifetime_defs); |
| |
| if !self.eat(&token::OrOr) { |
| self.expect_or(); |
| |
| let _ = self.parse_seq_to_before_or( |
| &token::Comma, |
| |p| p.parse_arg_general(false)); |
| self.expect_or(); |
| } |
| |
| let _ = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare); |
| |
| let _ = self.parse_ret_ty(); |
| |
| self.obsolete(ty_closure_span, ObsoleteSyntax::ClosureType); |
| |
| TyInfer |
| } |
| |
| pub fn parse_unsafety(&mut self) -> Unsafety { |
| if self.eat_keyword(keywords::Unsafe) { |
| return Unsafety::Unsafe; |
| } else { |
| return Unsafety::Normal; |
| } |
| } |
| |
| /// Parses `[ 'for' '<' lifetime_defs '>' ]' |
| fn parse_legacy_lifetime_defs(&mut self, |
| lifetime_defs: Vec<ast::LifetimeDef>) |
| -> Vec<ast::LifetimeDef> |
| { |
| if self.token == token::Lt { |
| self.bump(); |
| if lifetime_defs.is_empty() { |
| self.warn("deprecated syntax; use the `for` keyword now \ |
| (e.g. change `fn<'a>` to `for<'a> fn`)"); |
| let lifetime_defs = self.parse_lifetime_defs(); |
| self.expect_gt(); |
| lifetime_defs |
| } else { |
| self.fatal("cannot use new `for` keyword and older syntax together"); |
| } |
| } else { |
| lifetime_defs |
| } |
| } |
| |
| /// Parses `type Foo;` in a trait declaration only. The `type` keyword has |
| /// already been parsed. |
| fn parse_associated_type(&mut self, attrs: Vec<Attribute>) |
| -> AssociatedType |
| { |
| let ty_param = self.parse_ty_param(); |
| self.expect(&token::Semi); |
| AssociatedType { |
| attrs: attrs, |
| ty_param: ty_param, |
| } |
| } |
| |
| /// Parses `type Foo = TYPE;` in an implementation declaration only. The |
| /// `type` keyword has already been parsed. |
| fn parse_typedef(&mut self, attrs: Vec<Attribute>, vis: Visibility) |
| -> Typedef { |
| let lo = self.span.lo; |
| let ident = self.parse_ident(); |
| self.expect(&token::Eq); |
| let typ = self.parse_ty_sum(); |
| let hi = self.span.hi; |
| self.expect(&token::Semi); |
| Typedef { |
| id: ast::DUMMY_NODE_ID, |
| span: mk_sp(lo, hi), |
| ident: ident, |
| vis: vis, |
| attrs: attrs, |
| typ: typ, |
| } |
| } |
| |
| /// Parse the items in a trait declaration |
| pub fn parse_trait_items(&mut self) -> Vec<TraitItem> { |
| self.parse_unspanned_seq( |
| &token::OpenDelim(token::Brace), |
| &token::CloseDelim(token::Brace), |
| seq_sep_none(), |
| |p| { |
| let attrs = p.parse_outer_attributes(); |
| |
| if p.eat_keyword(keywords::Type) { |
| TypeTraitItem(P(p.parse_associated_type(attrs))) |
| } else { |
| let lo = p.span.lo; |
| |
| let vis = p.parse_visibility(); |
| let style = p.parse_unsafety(); |
| let abi = if p.eat_keyword(keywords::Extern) { |
| p.parse_opt_abi().unwrap_or(abi::C) |
| } else { |
| abi::Rust |
| }; |
| p.expect_keyword(keywords::Fn); |
| |
| let ident = p.parse_ident(); |
| let mut generics = p.parse_generics(); |
| |
| let (explicit_self, d) = p.parse_fn_decl_with_self(|p| { |
| // This is somewhat dubious; We don't want to allow |
| // argument names to be left off if there is a |
| // definition... |
| p.parse_arg_general(false) |
| }); |
| |
| p.parse_where_clause(&mut generics); |
| |
| let hi = p.last_span.hi; |
| match p.token { |
| token::Semi => { |
| p.bump(); |
| debug!("parse_trait_methods(): parsing required method"); |
| RequiredMethod(TypeMethod { |
| ident: ident, |
| attrs: attrs, |
| unsafety: style, |
| decl: d, |
| generics: generics, |
| abi: abi, |
| explicit_self: explicit_self, |
| id: ast::DUMMY_NODE_ID, |
| span: mk_sp(lo, hi), |
| vis: vis, |
| }) |
| } |
| token::OpenDelim(token::Brace) => { |
| debug!("parse_trait_methods(): parsing provided method"); |
| let (inner_attrs, body) = |
| p.parse_inner_attrs_and_block(); |
| let mut attrs = attrs; |
| attrs.push_all(&inner_attrs[]); |
| ProvidedMethod(P(ast::Method { |
| attrs: attrs, |
| id: ast::DUMMY_NODE_ID, |
| span: mk_sp(lo, hi), |
| node: ast::MethDecl(ident, |
| generics, |
| abi, |
| explicit_self, |
| style, |
| d, |
| body, |
| vis) |
| })) |
| } |
| |
| _ => { |
| let token_str = p.this_token_to_string(); |
| p.fatal(&format!("expected `;` or `{{`, found `{}`", |
| token_str)[]) |
| } |
| } |
| } |
| }) |
| } |
| |
| /// Parse a possibly mutable type |
| pub fn parse_mt(&mut self) -> MutTy { |
| let mutbl = self.parse_mutability(); |
| let t = self.parse_ty(); |
| MutTy { ty: t, mutbl: mutbl } |
| } |
| |
| /// Parse [mut/const/imm] ID : TY |
| /// now used only by obsolete record syntax parser... |
| pub fn parse_ty_field(&mut self) -> TypeField { |
| let lo = self.span.lo; |
| let mutbl = self.parse_mutability(); |
| let id = self.parse_ident(); |
| self.expect(&token::Colon); |
| let ty = self.parse_ty_sum(); |
| let hi = ty.span.hi; |
| ast::TypeField { |
| ident: id, |
| mt: MutTy { ty: ty, mutbl: mutbl }, |
| span: mk_sp(lo, hi), |
| } |
| } |
| |
| /// Parse optional return type [ -> TY ] in function decl |
| pub fn parse_ret_ty(&mut self) -> FunctionRetTy { |
| if self.eat(&token::RArrow) { |
| if self.eat(&token::Not) { |
| NoReturn(self.span) |
| } else { |
| let t = self.parse_ty(); |
| |
| // We used to allow `fn foo() -> &T + U`, but don't |
| // anymore. If we see it, report a useful error. This |
| // only makes sense because `parse_ret_ty` is only |
| // used in fn *declarations*, not fn types or where |
| // clauses (i.e., not when parsing something like |
| // `FnMut() -> T + Send`, where the `+` is legal). |
| if self.token == token::BinOp(token::Plus) { |
| self.warn("deprecated syntax: `()` are required, see RFC 438 for details"); |
| } |
| |
| Return(t) |
| } |
| } else { |
| let pos = self.span.lo; |
| Return(P(Ty { |
| id: ast::DUMMY_NODE_ID, |
| node: TyTup(vec![]), |
| span: mk_sp(pos, pos), |
| })) |
| } |
| } |
| |
| /// Parse a type in a context where `T1+T2` is allowed. |
| pub fn parse_ty_sum(&mut self) -> P<Ty> { |
| let lo = self.span.lo; |
| let lhs = self.parse_ty(); |
| |
| if !self.eat(&token::BinOp(token::Plus)) { |
| return lhs; |
| } |
| |
| let bounds = self.parse_ty_param_bounds(BoundParsingMode::Bare); |
| |
| // In type grammar, `+` is treated like a binary operator, |
| // and hence both L and R side are required. |
| if bounds.len() == 0 { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| "at least one type parameter bound \ |
| must be specified"); |
| } |
| |
| let sp = mk_sp(lo, self.last_span.hi); |
| let sum = ast::TyObjectSum(lhs, bounds); |
| P(Ty {id: ast::DUMMY_NODE_ID, node: sum, span: sp}) |
| } |
| |
| /// Parse a type. |
| pub fn parse_ty(&mut self) -> P<Ty> { |
| maybe_whole!(no_clone self, NtTy); |
| |
| let lo = self.span.lo; |
| |
| let t = if self.check(&token::OpenDelim(token::Paren)) { |
| self.bump(); |
| |
| // (t) is a parenthesized ty |
| // (t,) is the type of a tuple with only one field, |
| // of type t |
| let mut ts = vec![]; |
| let mut last_comma = false; |
| while self.token != token::CloseDelim(token::Paren) { |
| ts.push(self.parse_ty_sum()); |
| if self.check(&token::Comma) { |
| last_comma = true; |
| self.bump(); |
| } else { |
| last_comma = false; |
| break; |
| } |
| } |
| |
| self.expect(&token::CloseDelim(token::Paren)); |
| if ts.len() == 1 && !last_comma { |
| TyParen(ts.into_iter().nth(0).unwrap()) |
| } else { |
| TyTup(ts) |
| } |
| } else if self.token == token::Tilde { |
| // OWNED POINTER |
| self.bump(); |
| let last_span = self.last_span; |
| match self.token { |
| token::OpenDelim(token::Bracket) => { |
| self.obsolete(last_span, ObsoleteSyntax::OwnedVector) |
| } |
| _ => self.obsolete(last_span, ObsoleteSyntax::OwnedType) |
| } |
| TyTup(vec![self.parse_ty()]) |
| } else if self.check(&token::BinOp(token::Star)) { |
| // STAR POINTER (bare pointer?) |
| self.bump(); |
| TyPtr(self.parse_ptr()) |
| } else if self.check(&token::OpenDelim(token::Bracket)) { |
| // VECTOR |
| self.expect(&token::OpenDelim(token::Bracket)); |
| let t = self.parse_ty_sum(); |
| |
| // Parse the `; e` in `[ int; e ]` |
| // where `e` is a const expression |
| let t = match self.maybe_parse_fixed_length_of_vec() { |
| None => TyVec(t), |
| Some(suffix) => TyFixedLengthVec(t, suffix) |
| }; |
| self.expect(&token::CloseDelim(token::Bracket)); |
| t |
| } else if self.check(&token::BinOp(token::And)) || |
| self.token == token::AndAnd { |
| // BORROWED POINTER |
| self.expect_and(); |
| self.parse_borrowed_pointee() |
| } else if self.token.is_keyword(keywords::For) { |
| self.parse_for_in_type() |
| } else if self.token_is_bare_fn_keyword() || |
| self.token_is_closure_keyword() { |
| // BARE FUNCTION OR CLOSURE |
| self.parse_ty_bare_fn_or_ty_closure(Vec::new()) |
| } else if self.check(&token::BinOp(token::Or)) || |
| self.token == token::OrOr || |
| (self.token == token::Lt && |
| self.look_ahead(1, |t| { |
| *t == token::Gt || t.is_lifetime() |
| })) { |
| // CLOSURE |
| self.parse_ty_closure(Vec::new()) |
| } else if self.eat_keyword(keywords::Typeof) { |
| // TYPEOF |
| // In order to not be ambiguous, the type must be surrounded by parens. |
| self.expect(&token::OpenDelim(token::Paren)); |
| let e = self.parse_expr(); |
| self.expect(&token::CloseDelim(token::Paren)); |
| TyTypeof(e) |
| } else if self.eat_keyword(keywords::Proc) { |
| self.parse_proc_type(Vec::new()) |
| } else if self.eat_lt() { |
| // QUALIFIED PATH `<TYPE as TRAIT_REF>::item` |
| let self_type = self.parse_ty_sum(); |
| self.expect_keyword(keywords::As); |
| let trait_ref = self.parse_trait_ref(); |
| self.expect(&token::Gt); |
| self.expect(&token::ModSep); |
| let item_name = self.parse_ident(); |
| TyQPath(P(QPath { |
| self_type: self_type, |
| trait_ref: P(trait_ref), |
| item_name: item_name, |
| })) |
| } else if self.check(&token::ModSep) || |
| self.token.is_ident() || |
| self.token.is_path() { |
| // NAMED TYPE |
| self.parse_ty_path() |
| } else if self.eat(&token::Underscore) { |
| // TYPE TO BE INFERRED |
| TyInfer |
| } else { |
| let this_token_str = self.this_token_to_string(); |
| let msg = format!("expected type, found `{}`", this_token_str); |
| self.fatal(&msg[]); |
| }; |
| |
| let sp = mk_sp(lo, self.last_span.hi); |
| P(Ty {id: ast::DUMMY_NODE_ID, node: t, span: sp}) |
| } |
| |
| pub fn parse_borrowed_pointee(&mut self) -> Ty_ { |
| // look for `&'lt` or `&'foo ` and interpret `foo` as the region name: |
| let opt_lifetime = self.parse_opt_lifetime(); |
| |
| let mt = self.parse_mt(); |
| return TyRptr(opt_lifetime, mt); |
| } |
| |
| pub fn parse_ptr(&mut self) -> MutTy { |
| let mutbl = if self.eat_keyword(keywords::Mut) { |
| MutMutable |
| } else if self.eat_keyword(keywords::Const) { |
| MutImmutable |
| } else { |
| let span = self.last_span; |
| self.span_err(span, |
| "bare raw pointers are no longer allowed, you should \ |
| likely use `*mut T`, but otherwise `*T` is now \ |
| known as `*const T`"); |
| MutImmutable |
| }; |
| let t = self.parse_ty(); |
| MutTy { ty: t, mutbl: mutbl } |
| } |
| |
| pub fn is_named_argument(&mut self) -> bool { |
| let offset = match self.token { |
| token::BinOp(token::And) => 1, |
| token::AndAnd => 1, |
| _ if self.token.is_keyword(keywords::Mut) => 1, |
| _ => 0 |
| }; |
| |
| debug!("parser is_named_argument offset:{}", offset); |
| |
| if offset == 0 { |
| is_plain_ident_or_underscore(&self.token) |
| && self.look_ahead(1, |t| *t == token::Colon) |
| } else { |
| self.look_ahead(offset, |t| is_plain_ident_or_underscore(t)) |
| && self.look_ahead(offset + 1, |t| *t == token::Colon) |
| } |
| } |
| |
| /// This version of parse arg doesn't necessarily require |
| /// identifier names. |
| pub fn parse_arg_general(&mut self, require_name: bool) -> Arg { |
| let pat = if require_name || self.is_named_argument() { |
| debug!("parse_arg_general parse_pat (require_name:{})", |
| require_name); |
| let pat = self.parse_pat(); |
| |
| self.expect(&token::Colon); |
| pat |
| } else { |
| debug!("parse_arg_general ident_to_pat"); |
| ast_util::ident_to_pat(ast::DUMMY_NODE_ID, |
| self.last_span, |
| special_idents::invalid) |
| }; |
| |
| let t = self.parse_ty_sum(); |
| |
| Arg { |
| ty: t, |
| pat: pat, |
| id: ast::DUMMY_NODE_ID, |
| } |
| } |
| |
| /// Parse a single function argument |
| pub fn parse_arg(&mut self) -> Arg { |
| self.parse_arg_general(true) |
| } |
| |
| /// Parse an argument in a lambda header e.g. |arg, arg| |
| pub fn parse_fn_block_arg(&mut self) -> Arg { |
| let pat = self.parse_pat(); |
| let t = if self.eat(&token::Colon) { |
| self.parse_ty_sum() |
| } else { |
| P(Ty { |
| id: ast::DUMMY_NODE_ID, |
| node: TyInfer, |
| span: mk_sp(self.span.lo, self.span.hi), |
| }) |
| }; |
| Arg { |
| ty: t, |
| pat: pat, |
| id: ast::DUMMY_NODE_ID |
| } |
| } |
| |
| pub fn maybe_parse_fixed_length_of_vec(&mut self) -> Option<P<ast::Expr>> { |
| if self.check(&token::Semi) { |
| self.bump(); |
| Some(self.parse_expr()) |
| } else { |
| None |
| } |
| } |
| |
| /// Matches token_lit = LIT_INTEGER | ... |
| pub fn lit_from_token(&mut self, tok: &token::Token) -> Lit_ { |
| match *tok { |
| token::Interpolated(token::NtExpr(ref v)) => { |
| match v.node { |
| ExprLit(ref lit) => { lit.node.clone() } |
| _ => { self.unexpected_last(tok); } |
| } |
| } |
| token::Literal(lit, suf) => { |
| let (suffix_illegal, out) = match lit { |
| token::Byte(i) => (true, LitByte(parse::byte_lit(i.as_str()).0)), |
| token::Char(i) => (true, LitChar(parse::char_lit(i.as_str()).0)), |
| |
| // there are some valid suffixes for integer and |
| // float literals, so all the handling is done |
| // internally. |
| token::Integer(s) => { |
| (false, parse::integer_lit(s.as_str(), |
| suf.as_ref().map(|s| s.as_str()), |
| &self.sess.span_diagnostic, |
| self.last_span)) |
| } |
| token::Float(s) => { |
| (false, parse::float_lit(s.as_str(), |
| suf.as_ref().map(|s| s.as_str()), |
| &self.sess.span_diagnostic, |
| self.last_span)) |
| } |
| |
| token::Str_(s) => { |
| (true, |
| LitStr(token::intern_and_get_ident(parse::str_lit(s.as_str()).as_slice()), |
| ast::CookedStr)) |
| } |
| token::StrRaw(s, n) => { |
| (true, |
| LitStr( |
| token::intern_and_get_ident(&parse::raw_str_lit(s.as_str())[]), |
| ast::RawStr(n))) |
| } |
| token::Binary(i) => |
| (true, LitBinary(parse::binary_lit(i.as_str()))), |
| token::BinaryRaw(i, _) => |
| (true, |
| LitBinary(Rc::new(i.as_str().as_bytes().iter().map(|&x| x).collect()))), |
| }; |
| |
| if suffix_illegal { |
| let sp = self.last_span; |
| self.expect_no_suffix(sp, &*format!("{} literal", lit.short_name()), suf) |
| } |
| |
| out |
| } |
| _ => { self.unexpected_last(tok); } |
| } |
| } |
| |
| /// Matches lit = true | false | token_lit |
| pub fn parse_lit(&mut self) -> Lit { |
| let lo = self.span.lo; |
| let lit = if self.eat_keyword(keywords::True) { |
| LitBool(true) |
| } else if self.eat_keyword(keywords::False) { |
| LitBool(false) |
| } else { |
| let token = self.bump_and_get(); |
| let lit = self.lit_from_token(&token); |
| lit |
| }; |
| codemap::Spanned { node: lit, span: mk_sp(lo, self.last_span.hi) } |
| } |
| |
| /// matches '-' lit | lit |
| pub fn parse_literal_maybe_minus(&mut self) -> P<Expr> { |
| let minus_lo = self.span.lo; |
| let minus_present = self.eat(&token::BinOp(token::Minus)); |
| |
| let lo = self.span.lo; |
| let literal = P(self.parse_lit()); |
| let hi = self.span.hi; |
| let expr = self.mk_expr(lo, hi, ExprLit(literal)); |
| |
| if minus_present { |
| let minus_hi = self.span.hi; |
| let unary = self.mk_unary(UnNeg, expr); |
| self.mk_expr(minus_lo, minus_hi, unary) |
| } else { |
| expr |
| } |
| } |
| |
| /// Parses a path and optional type parameter bounds, depending on the |
| /// mode. The `mode` parameter determines whether lifetimes, types, and/or |
| /// bounds are permitted and whether `::` must precede type parameter |
| /// groups. |
| pub fn parse_path(&mut self, mode: PathParsingMode) -> ast::Path { |
| // Check for a whole path... |
| let found = match self.token { |
| token::Interpolated(token::NtPath(_)) => Some(self.bump_and_get()), |
| _ => None, |
| }; |
| if let Some(token::Interpolated(token::NtPath(box path))) = found { |
| return path; |
| } |
| |
| let lo = self.span.lo; |
| let is_global = self.eat(&token::ModSep); |
| |
| // Parse any number of segments and bound sets. A segment is an |
| // identifier followed by an optional lifetime and a set of types. |
| // A bound set is a set of type parameter bounds. |
| let segments = match mode { |
| LifetimeAndTypesWithoutColons => { |
| self.parse_path_segments_without_colons() |
| } |
| LifetimeAndTypesWithColons => { |
| self.parse_path_segments_with_colons() |
| } |
| NoTypesAllowed => { |
| self.parse_path_segments_without_types() |
| } |
| }; |
| |
| // Assemble the span. |
| let span = mk_sp(lo, self.last_span.hi); |
| |
| // Assemble the result. |
| ast::Path { |
| span: span, |
| global: is_global, |
| segments: segments, |
| } |
| } |
| |
| /// Examples: |
| /// - `a::b<T,U>::c<V,W>` |
| /// - `a::b<T,U>::c(V) -> W` |
| /// - `a::b<T,U>::c(V)` |
| pub fn parse_path_segments_without_colons(&mut self) -> Vec<ast::PathSegment> { |
| let mut segments = Vec::new(); |
| loop { |
| // First, parse an identifier. |
| let identifier = self.parse_ident(); |
| |
| // Parse types, optionally. |
| let parameters = if self.eat_lt() { |
| let (lifetimes, types, bindings) = self.parse_generic_values_after_lt(); |
| |
| ast::AngleBracketedParameters(ast::AngleBracketedParameterData { |
| lifetimes: lifetimes, |
| types: OwnedSlice::from_vec(types), |
| bindings: OwnedSlice::from_vec(bindings), |
| }) |
| } else if self.eat(&token::OpenDelim(token::Paren)) { |
| let inputs = self.parse_seq_to_end( |
| &token::CloseDelim(token::Paren), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_ty_sum()); |
| |
| let output_ty = if self.eat(&token::RArrow) { |
| Some(self.parse_ty()) |
| } else { |
| None |
| }; |
| |
| ast::ParenthesizedParameters(ast::ParenthesizedParameterData { |
| inputs: inputs, |
| output: output_ty |
| }) |
| } else { |
| ast::PathParameters::none() |
| }; |
| |
| // Assemble and push the result. |
| segments.push(ast::PathSegment { identifier: identifier, |
| parameters: parameters }); |
| |
| // Continue only if we see a `::` |
| if !self.eat(&token::ModSep) { |
| return segments; |
| } |
| } |
| } |
| |
| /// Examples: |
| /// - `a::b::<T,U>::c` |
| pub fn parse_path_segments_with_colons(&mut self) -> Vec<ast::PathSegment> { |
| let mut segments = Vec::new(); |
| loop { |
| // First, parse an identifier. |
| let identifier = self.parse_ident(); |
| |
| // If we do not see a `::`, stop. |
| if !self.eat(&token::ModSep) { |
| segments.push(ast::PathSegment { |
| identifier: identifier, |
| parameters: ast::AngleBracketedParameters(ast::AngleBracketedParameterData { |
| lifetimes: Vec::new(), |
| types: OwnedSlice::empty(), |
| bindings: OwnedSlice::empty(), |
| }) |
| }); |
| return segments; |
| } |
| |
| // Check for a type segment. |
| if self.eat_lt() { |
| // Consumed `a::b::<`, go look for types |
| let (lifetimes, types, bindings) = self.parse_generic_values_after_lt(); |
| segments.push(ast::PathSegment { |
| identifier: identifier, |
| parameters: ast::AngleBracketedParameters(ast::AngleBracketedParameterData { |
| lifetimes: lifetimes, |
| types: OwnedSlice::from_vec(types), |
| bindings: OwnedSlice::from_vec(bindings), |
| }), |
| }); |
| |
| // Consumed `a::b::<T,U>`, check for `::` before proceeding |
| if !self.eat(&token::ModSep) { |
| return segments; |
| } |
| } else { |
| // Consumed `a::`, go look for `b` |
| segments.push(ast::PathSegment { |
| identifier: identifier, |
| parameters: ast::PathParameters::none(), |
| }); |
| } |
| } |
| } |
| |
| |
| /// Examples: |
| /// - `a::b::c` |
| pub fn parse_path_segments_without_types(&mut self) -> Vec<ast::PathSegment> { |
| let mut segments = Vec::new(); |
| loop { |
| // First, parse an identifier. |
| let identifier = self.parse_ident(); |
| |
| // Assemble and push the result. |
| segments.push(ast::PathSegment { |
| identifier: identifier, |
| parameters: ast::PathParameters::none() |
| }); |
| |
| // If we do not see a `::`, stop. |
| if !self.eat(&token::ModSep) { |
| return segments; |
| } |
| } |
| } |
| |
| /// parses 0 or 1 lifetime |
| pub fn parse_opt_lifetime(&mut self) -> Option<ast::Lifetime> { |
| match self.token { |
| token::Lifetime(..) => { |
| Some(self.parse_lifetime()) |
| } |
| _ => { |
| None |
| } |
| } |
| } |
| |
| /// Parses a single lifetime |
| /// Matches lifetime = LIFETIME |
| pub fn parse_lifetime(&mut self) -> ast::Lifetime { |
| match self.token { |
| token::Lifetime(i) => { |
| let span = self.span; |
| self.bump(); |
| return ast::Lifetime { |
| id: ast::DUMMY_NODE_ID, |
| span: span, |
| name: i.name |
| }; |
| } |
| _ => { |
| self.fatal(&format!("expected a lifetime name")[]); |
| } |
| } |
| } |
| |
| /// Parses `lifetime_defs = [ lifetime_defs { ',' lifetime_defs } ]` where `lifetime_def = |
| /// lifetime [':' lifetimes]` |
| pub fn parse_lifetime_defs(&mut self) -> Vec<ast::LifetimeDef> { |
| |
| let mut res = Vec::new(); |
| loop { |
| match self.token { |
| token::Lifetime(_) => { |
| let lifetime = self.parse_lifetime(); |
| let bounds = |
| if self.eat(&token::Colon) { |
| self.parse_lifetimes(token::BinOp(token::Plus)) |
| } else { |
| Vec::new() |
| }; |
| res.push(ast::LifetimeDef { lifetime: lifetime, |
| bounds: bounds }); |
| } |
| |
| _ => { |
| return res; |
| } |
| } |
| |
| match self.token { |
| token::Comma => { self.bump(); } |
| token::Gt => { return res; } |
| token::BinOp(token::Shr) => { return res; } |
| _ => { |
| let this_token_str = self.this_token_to_string(); |
| let msg = format!("expected `,` or `>` after lifetime \ |
| name, found `{}`", |
| this_token_str); |
| self.fatal(&msg[]); |
| } |
| } |
| } |
| } |
| |
| /// matches lifetimes = ( lifetime ) | ( lifetime , lifetimes ) actually, it matches the empty |
| /// one too, but putting that in there messes up the grammar.... |
| /// |
| /// Parses zero or more comma separated lifetimes. Expects each lifetime to be followed by |
| /// either a comma or `>`. Used when parsing type parameter lists, where we expect something |
| /// like `<'a, 'b, T>`. |
| pub fn parse_lifetimes(&mut self, sep: token::Token) -> Vec<ast::Lifetime> { |
| |
| let mut res = Vec::new(); |
| loop { |
| match self.token { |
| token::Lifetime(_) => { |
| res.push(self.parse_lifetime()); |
| } |
| _ => { |
| return res; |
| } |
| } |
| |
| if self.token != sep { |
| return res; |
| } |
| |
| self.bump(); |
| } |
| } |
| |
| /// Parse mutability declaration (mut/const/imm) |
| pub fn parse_mutability(&mut self) -> Mutability { |
| if self.eat_keyword(keywords::Mut) { |
| MutMutable |
| } else { |
| MutImmutable |
| } |
| } |
| |
| /// Parse ident COLON expr |
| pub fn parse_field(&mut self) -> Field { |
| let lo = self.span.lo; |
| let i = self.parse_ident(); |
| let hi = self.last_span.hi; |
| self.expect(&token::Colon); |
| let e = self.parse_expr(); |
| ast::Field { |
| ident: spanned(lo, hi, i), |
| span: mk_sp(lo, e.span.hi), |
| expr: e, |
| } |
| } |
| |
| pub fn mk_expr(&mut self, lo: BytePos, hi: BytePos, node: Expr_) -> P<Expr> { |
| P(Expr { |
| id: ast::DUMMY_NODE_ID, |
| node: node, |
| span: mk_sp(lo, hi), |
| }) |
| } |
| |
| pub fn mk_unary(&mut self, unop: ast::UnOp, expr: P<Expr>) -> ast::Expr_ { |
| ExprUnary(unop, expr) |
| } |
| |
| pub fn mk_binary(&mut self, binop: ast::BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ { |
| ExprBinary(binop, lhs, rhs) |
| } |
| |
| pub fn mk_call(&mut self, f: P<Expr>, args: Vec<P<Expr>>) -> ast::Expr_ { |
| ExprCall(f, args) |
| } |
| |
| fn mk_method_call(&mut self, |
| ident: ast::SpannedIdent, |
| tps: Vec<P<Ty>>, |
| args: Vec<P<Expr>>) |
| -> ast::Expr_ { |
| ExprMethodCall(ident, tps, args) |
| } |
| |
| pub fn mk_index(&mut self, expr: P<Expr>, idx: P<Expr>) -> ast::Expr_ { |
| ExprIndex(expr, idx) |
| } |
| |
| pub fn mk_range(&mut self, |
| start: Option<P<Expr>>, |
| end: Option<P<Expr>>) |
| -> ast::Expr_ { |
| ExprRange(start, end) |
| } |
| |
| pub fn mk_field(&mut self, expr: P<Expr>, ident: ast::SpannedIdent) -> ast::Expr_ { |
| ExprField(expr, ident) |
| } |
| |
| pub fn mk_tup_field(&mut self, expr: P<Expr>, idx: codemap::Spanned<uint>) -> ast::Expr_ { |
| ExprTupField(expr, idx) |
| } |
| |
| pub fn mk_assign_op(&mut self, binop: ast::BinOp, |
| lhs: P<Expr>, rhs: P<Expr>) -> ast::Expr_ { |
| ExprAssignOp(binop, lhs, rhs) |
| } |
| |
| pub fn mk_mac_expr(&mut self, lo: BytePos, hi: BytePos, m: Mac_) -> P<Expr> { |
| P(Expr { |
| id: ast::DUMMY_NODE_ID, |
| node: ExprMac(codemap::Spanned {node: m, span: mk_sp(lo, hi)}), |
| span: mk_sp(lo, hi), |
| }) |
| } |
| |
| pub fn mk_lit_u32(&mut self, i: u32) -> P<Expr> { |
| let span = &self.span; |
| let lv_lit = P(codemap::Spanned { |
| node: LitInt(i as u64, ast::UnsignedIntLit(TyU32)), |
| span: *span |
| }); |
| |
| P(Expr { |
| id: ast::DUMMY_NODE_ID, |
| node: ExprLit(lv_lit), |
| span: *span, |
| }) |
| } |
| |
| fn expect_open_delim(&mut self) -> token::DelimToken { |
| match self.token { |
| token::OpenDelim(delim) => { |
| self.bump(); |
| delim |
| }, |
| _ => self.fatal("expected open delimiter"), |
| } |
| } |
| |
| /// At the bottom (top?) of the precedence hierarchy, |
| /// parse things like parenthesized exprs, |
| /// macros, return, etc. |
| pub fn parse_bottom_expr(&mut self) -> P<Expr> { |
| maybe_whole_expr!(self); |
| |
| let lo = self.span.lo; |
| let mut hi = self.span.hi; |
| |
| let ex: Expr_; |
| |
| match self.token { |
| token::OpenDelim(token::Paren) => { |
| self.bump(); |
| |
| // (e) is parenthesized e |
| // (e,) is a tuple with only one field, e |
| let mut es = vec![]; |
| let mut trailing_comma = false; |
| while self.token != token::CloseDelim(token::Paren) { |
| es.push(self.parse_expr()); |
| self.commit_expr(&**es.last().unwrap(), &[], |
| &[token::Comma, token::CloseDelim(token::Paren)]); |
| if self.check(&token::Comma) { |
| trailing_comma = true; |
| |
| self.bump(); |
| } else { |
| trailing_comma = false; |
| break; |
| } |
| } |
| self.bump(); |
| |
| hi = self.span.hi; |
| return if es.len() == 1 && !trailing_comma { |
| self.mk_expr(lo, hi, ExprParen(es.into_iter().nth(0).unwrap())) |
| } else { |
| self.mk_expr(lo, hi, ExprTup(es)) |
| } |
| }, |
| token::OpenDelim(token::Brace) => { |
| self.bump(); |
| let blk = self.parse_block_tail(lo, DefaultBlock); |
| return self.mk_expr(blk.span.lo, blk.span.hi, |
| ExprBlock(blk)); |
| }, |
| token::BinOp(token::Or) | token::OrOr => { |
| return self.parse_lambda_expr(CaptureByRef); |
| }, |
| // FIXME #13626: Should be able to stick in |
| // token::SELF_KEYWORD_NAME |
| token::Ident(id @ ast::Ident { |
| name: ast::Name(token::SELF_KEYWORD_NAME_NUM), |
| ctxt: _ |
| }, token::Plain) => { |
| self.bump(); |
| let path = ast_util::ident_to_path(mk_sp(lo, hi), id); |
| ex = ExprPath(path); |
| hi = self.last_span.hi; |
| } |
| token::OpenDelim(token::Bracket) => { |
| self.bump(); |
| |
| if self.check(&token::CloseDelim(token::Bracket)) { |
| // Empty vector. |
| self.bump(); |
| ex = ExprVec(Vec::new()); |
| } else { |
| // Nonempty vector. |
| let first_expr = self.parse_expr(); |
| if self.check(&token::Semi) { |
| // Repeating vector syntax: [ 0; 512 ] |
| self.bump(); |
| let count = self.parse_expr(); |
| self.expect(&token::CloseDelim(token::Bracket)); |
| ex = ExprRepeat(first_expr, count); |
| } else if self.check(&token::Comma) { |
| // Vector with two or more elements. |
| self.bump(); |
| let remaining_exprs = self.parse_seq_to_end( |
| &token::CloseDelim(token::Bracket), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_expr() |
| ); |
| let mut exprs = vec!(first_expr); |
| exprs.extend(remaining_exprs.into_iter()); |
| ex = ExprVec(exprs); |
| } else { |
| // Vector with one element. |
| self.expect(&token::CloseDelim(token::Bracket)); |
| ex = ExprVec(vec!(first_expr)); |
| } |
| } |
| hi = self.last_span.hi; |
| } |
| _ => { |
| if self.eat_keyword(keywords::Move) { |
| return self.parse_lambda_expr(CaptureByValue); |
| } |
| if self.eat_keyword(keywords::Proc) { |
| let span = self.last_span; |
| let _ = self.parse_proc_decl(); |
| let _ = self.parse_expr(); |
| return self.obsolete_expr(span, ObsoleteSyntax::ProcExpr); |
| } |
| if self.eat_keyword(keywords::If) { |
| return self.parse_if_expr(); |
| } |
| if self.eat_keyword(keywords::For) { |
| return self.parse_for_expr(None); |
| } |
| if self.eat_keyword(keywords::While) { |
| return self.parse_while_expr(None); |
| } |
| if self.token.is_lifetime() { |
| let lifetime = self.get_lifetime(); |
| self.bump(); |
| self.expect(&token::Colon); |
| if self.eat_keyword(keywords::While) { |
| return self.parse_while_expr(Some(lifetime)) |
| } |
| if self.eat_keyword(keywords::For) { |
| return self.parse_for_expr(Some(lifetime)) |
| } |
| if self.eat_keyword(keywords::Loop) { |
| return self.parse_loop_expr(Some(lifetime)) |
| } |
| self.fatal("expected `while`, `for`, or `loop` after a label") |
| } |
| if self.eat_keyword(keywords::Loop) { |
| return self.parse_loop_expr(None); |
| } |
| if self.eat_keyword(keywords::Continue) { |
| let lo = self.span.lo; |
| let ex = if self.token.is_lifetime() { |
| let lifetime = self.get_lifetime(); |
| self.bump(); |
| ExprAgain(Some(lifetime)) |
| } else { |
| ExprAgain(None) |
| }; |
| let hi = self.span.hi; |
| return self.mk_expr(lo, hi, ex); |
| } |
| if self.eat_keyword(keywords::Match) { |
| return self.parse_match_expr(); |
| } |
| if self.eat_keyword(keywords::Unsafe) { |
| return self.parse_block_expr( |
| lo, |
| UnsafeBlock(ast::UserProvided)); |
| } |
| if self.eat_keyword(keywords::Return) { |
| // RETURN expression |
| if self.token.can_begin_expr() { |
| let e = self.parse_expr(); |
| hi = e.span.hi; |
| ex = ExprRet(Some(e)); |
| } else { |
| ex = ExprRet(None); |
| } |
| } else if self.eat_keyword(keywords::Break) { |
| // BREAK expression |
| if self.token.is_lifetime() { |
| let lifetime = self.get_lifetime(); |
| self.bump(); |
| ex = ExprBreak(Some(lifetime)); |
| } else { |
| ex = ExprBreak(None); |
| } |
| hi = self.span.hi; |
| } else if self.check(&token::ModSep) || |
| self.token.is_ident() && |
| !self.token.is_keyword(keywords::True) && |
| !self.token.is_keyword(keywords::False) { |
| let pth = |
| self.parse_path(LifetimeAndTypesWithColons); |
| |
| // `!`, as an operator, is prefix, so we know this isn't that |
| if self.check(&token::Not) { |
| // MACRO INVOCATION expression |
| self.bump(); |
| |
| let delim = self.expect_open_delim(); |
| let tts = self.parse_seq_to_end( |
| &token::CloseDelim(delim), |
| seq_sep_none(), |
| |p| p.parse_token_tree()); |
| let hi = self.span.hi; |
| |
| return self.mk_mac_expr(lo, |
| hi, |
| MacInvocTT(pth, |
| tts, |
| EMPTY_CTXT)); |
| } |
| if self.check(&token::OpenDelim(token::Brace)) { |
| // This is a struct literal, unless we're prohibited |
| // from parsing struct literals here. |
| if !self.restrictions.contains(RESTRICTION_NO_STRUCT_LITERAL) { |
| // It's a struct literal. |
| self.bump(); |
| let mut fields = Vec::new(); |
| let mut base = None; |
| |
| while self.token != token::CloseDelim(token::Brace) { |
| if self.eat(&token::DotDot) { |
| base = Some(self.parse_expr()); |
| break; |
| } |
| |
| fields.push(self.parse_field()); |
| self.commit_expr(&*fields.last().unwrap().expr, |
| &[token::Comma], |
| &[token::CloseDelim(token::Brace)]); |
| } |
| |
| if fields.len() == 0 && base.is_none() { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| "structure literal must either \ |
| have at least one field or use \ |
| functional structure update \ |
| syntax"); |
| } |
| |
| hi = self.span.hi; |
| self.expect(&token::CloseDelim(token::Brace)); |
| ex = ExprStruct(pth, fields, base); |
| return self.mk_expr(lo, hi, ex); |
| } |
| } |
| |
| hi = pth.span.hi; |
| ex = ExprPath(pth); |
| } else { |
| // other literal expression |
| let lit = self.parse_lit(); |
| hi = lit.span.hi; |
| ex = ExprLit(P(lit)); |
| } |
| } |
| } |
| |
| return self.mk_expr(lo, hi, ex); |
| } |
| |
| /// Parse a block or unsafe block |
| pub fn parse_block_expr(&mut self, lo: BytePos, blk_mode: BlockCheckMode) |
| -> P<Expr> { |
| self.expect(&token::OpenDelim(token::Brace)); |
| let blk = self.parse_block_tail(lo, blk_mode); |
| return self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk)); |
| } |
| |
| /// parse a.b or a(13) or a[4] or just a |
| pub fn parse_dot_or_call_expr(&mut self) -> P<Expr> { |
| let b = self.parse_bottom_expr(); |
| self.parse_dot_or_call_expr_with(b) |
| } |
| |
| pub fn parse_dot_or_call_expr_with(&mut self, e0: P<Expr>) -> P<Expr> { |
| let mut e = e0; |
| let lo = e.span.lo; |
| let mut hi; |
| loop { |
| // expr.f |
| if self.eat(&token::Dot) { |
| match self.token { |
| token::Ident(i, _) => { |
| let dot = self.last_span.hi; |
| hi = self.span.hi; |
| self.bump(); |
| let (_, tys, bindings) = if self.eat(&token::ModSep) { |
| self.expect_lt(); |
| self.parse_generic_values_after_lt() |
| } else { |
| (Vec::new(), Vec::new(), Vec::new()) |
| }; |
| |
| if bindings.len() > 0 { |
| let last_span = self.last_span; |
| self.span_err(last_span, "type bindings are only permitted on trait paths"); |
| } |
| |
| // expr.f() method call |
| match self.token { |
| token::OpenDelim(token::Paren) => { |
| let mut es = self.parse_unspanned_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_expr() |
| ); |
| hi = self.last_span.hi; |
| |
| es.insert(0, e); |
| let id = spanned(dot, hi, i); |
| let nd = self.mk_method_call(id, tys, es); |
| e = self.mk_expr(lo, hi, nd); |
| } |
| _ => { |
| if !tys.is_empty() { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| "field expressions may not \ |
| have type parameters"); |
| } |
| |
| let id = spanned(dot, hi, i); |
| let field = self.mk_field(e, id); |
| e = self.mk_expr(lo, hi, field); |
| } |
| } |
| } |
| token::Literal(token::Integer(n), suf) => { |
| let sp = self.span; |
| |
| // A tuple index may not have a suffix |
| self.expect_no_suffix(sp, "tuple index", suf); |
| |
| let dot = self.last_span.hi; |
| hi = self.span.hi; |
| self.bump(); |
| |
| let index = n.as_str().parse::<uint>(); |
| match index { |
| Some(n) => { |
| let id = spanned(dot, hi, n); |
| let field = self.mk_tup_field(e, id); |
| e = self.mk_expr(lo, hi, field); |
| } |
| None => { |
| let last_span = self.last_span; |
| self.span_err(last_span, "invalid tuple or tuple struct index"); |
| } |
| } |
| } |
| token::Literal(token::Float(n), _suf) => { |
| self.bump(); |
| let last_span = self.last_span; |
| let fstr = n.as_str(); |
| self.span_err(last_span, |
| &format!("unexpected token: `{}`", n.as_str())[]); |
| if fstr.chars().all(|x| "0123456789.".contains_char(x)) { |
| let float = match fstr.parse::<f64>() { |
| Some(f) => f, |
| None => continue, |
| }; |
| self.span_help(last_span, |
| &format!("try parenthesizing the first index; e.g., `(foo.{}){}`", |
| float.trunc() as uint, |
| &float.fract().to_string()[1..])[]); |
| } |
| self.abort_if_errors(); |
| |
| } |
| _ => self.unexpected() |
| } |
| continue; |
| } |
| if self.expr_is_complete(&*e) { break; } |
| match self.token { |
| // expr(...) |
| token::OpenDelim(token::Paren) => { |
| let es = self.parse_unspanned_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_expr() |
| ); |
| hi = self.last_span.hi; |
| |
| let nd = self.mk_call(e, es); |
| e = self.mk_expr(lo, hi, nd); |
| } |
| |
| // expr[...] |
| // An index expression. |
| token::OpenDelim(token::Bracket) => { |
| let bracket_pos = self.span.lo; |
| self.bump(); |
| |
| let mut found_dotdot = false; |
| if self.token == token::DotDot && |
| self.look_ahead(1, |t| t == &token::CloseDelim(token::Bracket)) { |
| // Using expr[..], which is a mistake, should be expr[] |
| self.bump(); |
| self.bump(); |
| found_dotdot = true; |
| } |
| |
| if found_dotdot || self.eat(&token::CloseDelim(token::Bracket)) { |
| // No expression, expand to a FullRange |
| // FIXME(#20516) It would be better to use a lang item or |
| // something for FullRange. |
| hi = self.last_span.hi; |
| let range = ExprStruct(ident_to_path(mk_sp(lo, hi), |
| token::special_idents::FullRange), |
| vec![], |
| None); |
| let ix = self.mk_expr(bracket_pos, hi, range); |
| let index = self.mk_index(e, ix); |
| e = self.mk_expr(lo, hi, index) |
| } else { |
| let ix = self.parse_expr(); |
| hi = self.span.hi; |
| self.commit_expr_expecting(&*ix, token::CloseDelim(token::Bracket)); |
| let index = self.mk_index(e, ix); |
| e = self.mk_expr(lo, hi, index) |
| } |
| |
| if found_dotdot { |
| self.span_err(e.span, "incorrect slicing expression: `[..]`"); |
| self.span_note(e.span, |
| "use `&expr[]` to construct a slice of the whole of expr"); |
| } |
| } |
| |
| // A range expression, either `expr..expr` or `expr..`. |
| token::DotDot if !self.restrictions.contains(RESTRICTION_NO_DOTS) => { |
| self.bump(); |
| |
| let opt_end = if self.token.can_begin_expr() { |
| let end = self.parse_expr_res(RESTRICTION_NO_DOTS); |
| Some(end) |
| } else { |
| None |
| }; |
| |
| let hi = self.span.hi; |
| let range = self.mk_range(Some(e), opt_end); |
| return self.mk_expr(lo, hi, range); |
| } |
| _ => return e |
| } |
| } |
| return e; |
| } |
| |
| // Parse unquoted tokens after a `$` in a token tree |
| fn parse_unquoted(&mut self) -> TokenTree { |
| let mut sp = self.span; |
| let (name, namep) = match self.token { |
| token::Dollar => { |
| self.bump(); |
| |
| if self.token == token::OpenDelim(token::Paren) { |
| let Spanned { node: seq, span: seq_span } = self.parse_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| seq_sep_none(), |
| |p| p.parse_token_tree() |
| ); |
| let (sep, repeat) = self.parse_sep_and_kleene_op(); |
| let name_num = macro_parser::count_names(seq.as_slice()); |
| return TtSequence(mk_sp(sp.lo, seq_span.hi), |
| Rc::new(SequenceRepetition { |
| tts: seq, |
| separator: sep, |
| op: repeat, |
| num_captures: name_num |
| })); |
| } else if self.token.is_keyword_allow_following_colon(keywords::Crate) { |
| self.bump(); |
| return TtToken(sp, SpecialVarNt(SpecialMacroVar::CrateMacroVar)); |
| } else { |
| sp = mk_sp(sp.lo, self.span.hi); |
| let namep = match self.token { token::Ident(_, p) => p, _ => token::Plain }; |
| let name = self.parse_ident(); |
| (name, namep) |
| } |
| } |
| token::SubstNt(name, namep) => { |
| self.bump(); |
| (name, namep) |
| } |
| _ => unreachable!() |
| }; |
| // continue by trying to parse the `:ident` after `$name` |
| if self.token == token::Colon && self.look_ahead(1, |t| t.is_ident() && |
| !t.is_strict_keyword() && |
| !t.is_reserved_keyword()) { |
| self.bump(); |
| sp = mk_sp(sp.lo, self.span.hi); |
| let kindp = match self.token { token::Ident(_, p) => p, _ => token::Plain }; |
| let nt_kind = self.parse_ident(); |
| TtToken(sp, MatchNt(name, nt_kind, namep, kindp)) |
| } else { |
| TtToken(sp, SubstNt(name, namep)) |
| } |
| } |
| |
| pub fn check_unknown_macro_variable(&mut self) { |
| if self.quote_depth == 0u { |
| match self.token { |
| token::SubstNt(name, _) => |
| self.fatal(&format!("unknown macro variable `{}`", |
| token::get_ident(name))[]), |
| _ => {} |
| } |
| } |
| } |
| |
| /// Parse an optional separator followed by a Kleene-style |
| /// repetition token (+ or *). |
| pub fn parse_sep_and_kleene_op(&mut self) -> (Option<token::Token>, ast::KleeneOp) { |
| fn parse_kleene_op(parser: &mut Parser) -> Option<ast::KleeneOp> { |
| match parser.token { |
| token::BinOp(token::Star) => { |
| parser.bump(); |
| Some(ast::ZeroOrMore) |
| }, |
| token::BinOp(token::Plus) => { |
| parser.bump(); |
| Some(ast::OneOrMore) |
| }, |
| _ => None |
| } |
| }; |
| |
| match parse_kleene_op(self) { |
| Some(kleene_op) => return (None, kleene_op), |
| None => {} |
| } |
| |
| let separator = self.bump_and_get(); |
| match parse_kleene_op(self) { |
| Some(zerok) => (Some(separator), zerok), |
| None => self.fatal("expected `*` or `+`") |
| } |
| } |
| |
| /// parse a single token tree from the input. |
| pub fn parse_token_tree(&mut self) -> TokenTree { |
| // FIXME #6994: currently, this is too eager. It |
| // parses token trees but also identifies TtSequence's |
| // and token::SubstNt's; it's too early to know yet |
| // whether something will be a nonterminal or a seq |
| // yet. |
| maybe_whole!(deref self, NtTT); |
| |
| // this is the fall-through for the 'match' below. |
| // invariants: the current token is not a left-delimiter, |
| // not an EOF, and not the desired right-delimiter (if |
| // it were, parse_seq_to_before_end would have prevented |
| // reaching this point. |
| fn parse_non_delim_tt_tok(p: &mut Parser) -> TokenTree { |
| maybe_whole!(deref p, NtTT); |
| match p.token { |
| token::CloseDelim(_) => { |
| // This is a conservative error: only report the last unclosed delimiter. The |
| // previous unclosed delimiters could actually be closed! The parser just hasn't |
| // gotten to them yet. |
| match p.open_braces.last() { |
| None => {} |
| Some(&sp) => p.span_note(sp, "unclosed delimiter"), |
| }; |
| let token_str = p.this_token_to_string(); |
| p.fatal(&format!("incorrect close delimiter: `{}`", |
| token_str)[]) |
| }, |
| /* we ought to allow different depths of unquotation */ |
| token::Dollar | token::SubstNt(..) if p.quote_depth > 0u => { |
| p.parse_unquoted() |
| } |
| _ => { |
| TtToken(p.span, p.bump_and_get()) |
| } |
| } |
| } |
| |
| match self.token { |
| token::Eof => { |
| let open_braces = self.open_braces.clone(); |
| for sp in open_braces.iter() { |
| self.span_help(*sp, "did you mean to close this delimiter?"); |
| } |
| // There shouldn't really be a span, but it's easier for the test runner |
| // if we give it one |
| self.fatal("this file contains an un-closed delimiter "); |
| }, |
| token::OpenDelim(delim) => { |
| // The span for beginning of the delimited section |
| let pre_span = self.span; |
| |
| // Parse the open delimiter. |
| self.open_braces.push(self.span); |
| let open_span = self.span; |
| self.bump(); |
| |
| // Parse the token trees within the delimiters |
| let tts = self.parse_seq_to_before_end( |
| &token::CloseDelim(delim), |
| seq_sep_none(), |
| |p| p.parse_token_tree() |
| ); |
| |
| // Parse the close delimiter. |
| let close_span = self.span; |
| self.bump(); |
| self.open_braces.pop().unwrap(); |
| |
| // Expand to cover the entire delimited token tree |
| let span = Span { hi: self.span.hi, ..pre_span }; |
| |
| TtDelimited(span, Rc::new(Delimited { |
| delim: delim, |
| open_span: open_span, |
| tts: tts, |
| close_span: close_span, |
| })) |
| }, |
| _ => parse_non_delim_tt_tok(self), |
| } |
| } |
| |
| // parse a stream of tokens into a list of TokenTree's, |
| // up to EOF. |
| pub fn parse_all_token_trees(&mut self) -> Vec<TokenTree> { |
| let mut tts = Vec::new(); |
| while self.token != token::Eof { |
| tts.push(self.parse_token_tree()); |
| } |
| tts |
| } |
| |
| /// Parse a prefix-operator expr |
| pub fn parse_prefix_expr(&mut self) -> P<Expr> { |
| let lo = self.span.lo; |
| let hi; |
| |
| let ex; |
| match self.token { |
| token::Not => { |
| self.bump(); |
| let e = self.parse_prefix_expr(); |
| hi = e.span.hi; |
| ex = self.mk_unary(UnNot, e); |
| } |
| token::BinOp(token::Minus) => { |
| self.bump(); |
| let e = self.parse_prefix_expr(); |
| hi = e.span.hi; |
| ex = self.mk_unary(UnNeg, e); |
| } |
| token::BinOp(token::Star) => { |
| self.bump(); |
| let e = self.parse_prefix_expr(); |
| hi = e.span.hi; |
| ex = self.mk_unary(UnDeref, e); |
| } |
| token::BinOp(token::And) | token::AndAnd => { |
| self.expect_and(); |
| let m = self.parse_mutability(); |
| let e = self.parse_prefix_expr(); |
| hi = e.span.hi; |
| ex = ExprAddrOf(m, e); |
| } |
| token::Tilde => { |
| self.bump(); |
| let last_span = self.last_span; |
| match self.token { |
| token::OpenDelim(token::Bracket) => { |
| self.obsolete(last_span, ObsoleteSyntax::OwnedVector) |
| }, |
| _ => self.obsolete(last_span, ObsoleteSyntax::OwnedExpr) |
| } |
| |
| let e = self.parse_prefix_expr(); |
| hi = e.span.hi; |
| ex = self.mk_unary(UnUniq, e); |
| } |
| token::DotDot if !self.restrictions.contains(RESTRICTION_NO_DOTS) => { |
| // A range, closed above: `..expr`. |
| self.bump(); |
| let e = self.parse_prefix_expr(); |
| hi = e.span.hi; |
| ex = self.mk_range(None, Some(e)); |
| } |
| token::Ident(_, _) => { |
| if !self.token.is_keyword(keywords::Box) { |
| return self.parse_dot_or_call_expr(); |
| } |
| |
| let lo = self.span.lo; |
| |
| self.bump(); |
| |
| // Check for a place: `box(PLACE) EXPR`. |
| if self.eat(&token::OpenDelim(token::Paren)) { |
| // Support `box() EXPR` as the default. |
| if !self.eat(&token::CloseDelim(token::Paren)) { |
| let place = self.parse_expr(); |
| self.expect(&token::CloseDelim(token::Paren)); |
| // Give a suggestion to use `box()` when a parenthesised expression is used |
| if !self.token.can_begin_expr() { |
| let span = self.span; |
| let this_token_to_string = self.this_token_to_string(); |
| self.span_err(span, |
| &format!("expected expression, found `{}`", |
| this_token_to_string)[]); |
| let box_span = mk_sp(lo, self.last_span.hi); |
| self.span_help(box_span, |
| "perhaps you meant `box() (foo)` instead?"); |
| self.abort_if_errors(); |
| } |
| let subexpression = self.parse_prefix_expr(); |
| hi = subexpression.span.hi; |
| ex = ExprBox(Some(place), subexpression); |
| return self.mk_expr(lo, hi, ex); |
| } |
| } |
| |
| // Otherwise, we use the unique pointer default. |
| let subexpression = self.parse_prefix_expr(); |
| hi = subexpression.span.hi; |
| // FIXME (pnkfelix): After working out kinks with box |
| // desugaring, should be `ExprBox(None, subexpression)` |
| // instead. |
| ex = self.mk_unary(UnUniq, subexpression); |
| } |
| _ => return self.parse_dot_or_call_expr() |
| } |
| return self.mk_expr(lo, hi, ex); |
| } |
| |
| /// Parse an expression of binops |
| pub fn parse_binops(&mut self) -> P<Expr> { |
| let prefix_expr = self.parse_prefix_expr(); |
| self.parse_more_binops(prefix_expr, 0) |
| } |
| |
| /// Parse an expression of binops of at least min_prec precedence |
| pub fn parse_more_binops(&mut self, lhs: P<Expr>, min_prec: uint) -> P<Expr> { |
| if self.expr_is_complete(&*lhs) { return lhs; } |
| |
| // Prevent dynamic borrow errors later on by limiting the |
| // scope of the borrows. |
| if self.token == token::BinOp(token::Or) && |
| self.restrictions.contains(RESTRICTION_NO_BAR_OP) { |
| return lhs; |
| } |
| self.expected_tokens.push(TokenType::Operator); |
| |
| let cur_opt = self.token.to_binop(); |
| match cur_opt { |
| Some(cur_op) => { |
| let cur_prec = operator_prec(cur_op); |
| if cur_prec > min_prec { |
| self.bump(); |
| let expr = self.parse_prefix_expr(); |
| let rhs = self.parse_more_binops(expr, cur_prec); |
| let lhs_span = lhs.span; |
| let rhs_span = rhs.span; |
| let binary = self.mk_binary(cur_op, lhs, rhs); |
| let bin = self.mk_expr(lhs_span.lo, rhs_span.hi, binary); |
| self.parse_more_binops(bin, min_prec) |
| } else { |
| lhs |
| } |
| } |
| None => { |
| if as_prec > min_prec && self.eat_keyword(keywords::As) { |
| let rhs = self.parse_ty(); |
| let _as = self.mk_expr(lhs.span.lo, |
| rhs.span.hi, |
| ExprCast(lhs, rhs)); |
| self.parse_more_binops(_as, min_prec) |
| } else { |
| lhs |
| } |
| } |
| } |
| } |
| |
| /// Parse an assignment expression.... |
| /// actually, this seems to be the main entry point for |
| /// parsing an arbitrary expression. |
| pub fn parse_assign_expr(&mut self) -> P<Expr> { |
| let lhs = self.parse_binops(); |
| self.parse_assign_expr_with(lhs) |
| } |
| |
| pub fn parse_assign_expr_with(&mut self, lhs: P<Expr>) -> P<Expr> { |
| let restrictions = self.restrictions & RESTRICTION_NO_STRUCT_LITERAL; |
| match self.token { |
| token::Eq => { |
| self.bump(); |
| let rhs = self.parse_expr_res(restrictions); |
| self.mk_expr(lhs.span.lo, rhs.span.hi, ExprAssign(lhs, rhs)) |
| } |
| token::BinOpEq(op) => { |
| self.bump(); |
| let rhs = self.parse_expr_res(restrictions); |
| let aop = match op { |
| token::Plus => BiAdd, |
| token::Minus => BiSub, |
| token::Star => BiMul, |
| token::Slash => BiDiv, |
| token::Percent => BiRem, |
| token::Caret => BiBitXor, |
| token::And => BiBitAnd, |
| token::Or => BiBitOr, |
| token::Shl => BiShl, |
| token::Shr => BiShr |
| }; |
| let rhs_span = rhs.span; |
| let span = lhs.span; |
| let assign_op = self.mk_assign_op(aop, lhs, rhs); |
| self.mk_expr(span.lo, rhs_span.hi, assign_op) |
| } |
| _ => { |
| lhs |
| } |
| } |
| } |
| |
| /// Parse an 'if' or 'if let' expression ('if' token already eaten) |
| pub fn parse_if_expr(&mut self) -> P<Expr> { |
| if self.token.is_keyword(keywords::Let) { |
| return self.parse_if_let_expr(); |
| } |
| let lo = self.last_span.lo; |
| let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); |
| let thn = self.parse_block(); |
| let mut els: Option<P<Expr>> = None; |
| let mut hi = thn.span.hi; |
| if self.eat_keyword(keywords::Else) { |
| let elexpr = self.parse_else_expr(); |
| hi = elexpr.span.hi; |
| els = Some(elexpr); |
| } |
| self.mk_expr(lo, hi, ExprIf(cond, thn, els)) |
| } |
| |
| /// Parse an 'if let' expression ('if' token already eaten) |
| pub fn parse_if_let_expr(&mut self) -> P<Expr> { |
| let lo = self.last_span.lo; |
| self.expect_keyword(keywords::Let); |
| let pat = self.parse_pat(); |
| self.expect(&token::Eq); |
| let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); |
| let thn = self.parse_block(); |
| let (hi, els) = if self.eat_keyword(keywords::Else) { |
| let expr = self.parse_else_expr(); |
| (expr.span.hi, Some(expr)) |
| } else { |
| (thn.span.hi, None) |
| }; |
| self.mk_expr(lo, hi, ExprIfLet(pat, expr, thn, els)) |
| } |
| |
| // `|args| expr` |
| pub fn parse_lambda_expr(&mut self, capture_clause: CaptureClause) |
| -> P<Expr> |
| { |
| let lo = self.span.lo; |
| let (decl, optional_unboxed_closure_kind) = |
| self.parse_fn_block_decl(); |
| let body = self.parse_expr(); |
| let fakeblock = P(ast::Block { |
| id: ast::DUMMY_NODE_ID, |
| view_items: Vec::new(), |
| stmts: Vec::new(), |
| span: body.span, |
| expr: Some(body), |
| rules: DefaultBlock, |
| }); |
| |
| self.mk_expr( |
| lo, |
| fakeblock.span.hi, |
| ExprClosure(capture_clause, optional_unboxed_closure_kind, decl, fakeblock)) |
| } |
| |
| pub fn parse_else_expr(&mut self) -> P<Expr> { |
| if self.eat_keyword(keywords::If) { |
| return self.parse_if_expr(); |
| } else { |
| let blk = self.parse_block(); |
| return self.mk_expr(blk.span.lo, blk.span.hi, ExprBlock(blk)); |
| } |
| } |
| |
| /// Parse a 'for' .. 'in' expression ('for' token already eaten) |
| pub fn parse_for_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> { |
| // Parse: `for <src_pat> in <src_expr> <src_loop_block>` |
| |
| let lo = self.last_span.lo; |
| let pat = self.parse_pat(); |
| self.expect_keyword(keywords::In); |
| let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); |
| let loop_block = self.parse_block(); |
| let hi = self.span.hi; |
| |
| self.mk_expr(lo, hi, ExprForLoop(pat, expr, loop_block, opt_ident)) |
| } |
| |
| /// Parse a 'while' or 'while let' expression ('while' token already eaten) |
| pub fn parse_while_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> { |
| if self.token.is_keyword(keywords::Let) { |
| return self.parse_while_let_expr(opt_ident); |
| } |
| let lo = self.last_span.lo; |
| let cond = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); |
| let body = self.parse_block(); |
| let hi = body.span.hi; |
| return self.mk_expr(lo, hi, ExprWhile(cond, body, opt_ident)); |
| } |
| |
| /// Parse a 'while let' expression ('while' token already eaten) |
| pub fn parse_while_let_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> { |
| let lo = self.last_span.lo; |
| self.expect_keyword(keywords::Let); |
| let pat = self.parse_pat(); |
| self.expect(&token::Eq); |
| let expr = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); |
| let body = self.parse_block(); |
| let hi = body.span.hi; |
| return self.mk_expr(lo, hi, ExprWhileLet(pat, expr, body, opt_ident)); |
| } |
| |
| pub fn parse_loop_expr(&mut self, opt_ident: Option<ast::Ident>) -> P<Expr> { |
| let lo = self.last_span.lo; |
| let body = self.parse_block(); |
| let hi = body.span.hi; |
| self.mk_expr(lo, hi, ExprLoop(body, opt_ident)) |
| } |
| |
| fn parse_match_expr(&mut self) -> P<Expr> { |
| let lo = self.last_span.lo; |
| let discriminant = self.parse_expr_res(RESTRICTION_NO_STRUCT_LITERAL); |
| self.commit_expr_expecting(&*discriminant, token::OpenDelim(token::Brace)); |
| let mut arms: Vec<Arm> = Vec::new(); |
| while self.token != token::CloseDelim(token::Brace) { |
| arms.push(self.parse_arm()); |
| } |
| let hi = self.span.hi; |
| self.bump(); |
| return self.mk_expr(lo, hi, ExprMatch(discriminant, arms, MatchSource::Normal)); |
| } |
| |
| pub fn parse_arm(&mut self) -> Arm { |
| let attrs = self.parse_outer_attributes(); |
| let pats = self.parse_pats(); |
| let mut guard = None; |
| if self.eat_keyword(keywords::If) { |
| guard = Some(self.parse_expr()); |
| } |
| self.expect(&token::FatArrow); |
| let expr = self.parse_expr_res(RESTRICTION_STMT_EXPR); |
| |
| let require_comma = |
| !classify::expr_is_simple_block(&*expr) |
| && self.token != token::CloseDelim(token::Brace); |
| |
| if require_comma { |
| self.commit_expr(&*expr, &[token::Comma], &[token::CloseDelim(token::Brace)]); |
| } else { |
| self.eat(&token::Comma); |
| } |
| |
| ast::Arm { |
| attrs: attrs, |
| pats: pats, |
| guard: guard, |
| body: expr, |
| } |
| } |
| |
| /// Parse an expression |
| pub fn parse_expr(&mut self) -> P<Expr> { |
| return self.parse_expr_res(UNRESTRICTED); |
| } |
| |
| /// Parse an expression, subject to the given restrictions |
| pub fn parse_expr_res(&mut self, r: Restrictions) -> P<Expr> { |
| let old = self.restrictions; |
| self.restrictions = r; |
| let e = self.parse_assign_expr(); |
| self.restrictions = old; |
| return e; |
| } |
| |
| /// Parse the RHS of a local variable declaration (e.g. '= 14;') |
| fn parse_initializer(&mut self) -> Option<P<Expr>> { |
| if self.check(&token::Eq) { |
| self.bump(); |
| Some(self.parse_expr()) |
| } else { |
| None |
| } |
| } |
| |
| /// Parse patterns, separated by '|' s |
| fn parse_pats(&mut self) -> Vec<P<Pat>> { |
| let mut pats = Vec::new(); |
| loop { |
| pats.push(self.parse_pat()); |
| if self.check(&token::BinOp(token::Or)) { self.bump(); } |
| else { return pats; } |
| }; |
| } |
| |
| fn parse_pat_vec_elements( |
| &mut self, |
| ) -> (Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>) { |
| let mut before = Vec::new(); |
| let mut slice = None; |
| let mut after = Vec::new(); |
| let mut first = true; |
| let mut before_slice = true; |
| |
| while self.token != token::CloseDelim(token::Bracket) { |
| if first { |
| first = false; |
| } else { |
| self.expect(&token::Comma); |
| |
| if self.token == token::CloseDelim(token::Bracket) |
| && (before_slice || after.len() != 0) { |
| break |
| } |
| } |
| |
| if before_slice { |
| if self.check(&token::DotDot) { |
| self.bump(); |
| |
| if self.check(&token::Comma) || |
| self.check(&token::CloseDelim(token::Bracket)) { |
| slice = Some(P(ast::Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: PatWild(PatWildMulti), |
| span: self.span, |
| })); |
| before_slice = false; |
| } else { |
| let _ = self.parse_pat(); |
| let span = self.span; |
| self.obsolete(span, ObsoleteSyntax::SubsliceMatch); |
| } |
| continue |
| } |
| } |
| |
| let subpat = self.parse_pat(); |
| if before_slice && self.check(&token::DotDot) { |
| self.bump(); |
| slice = Some(subpat); |
| before_slice = false; |
| } else if before_slice { |
| before.push(subpat); |
| } else { |
| after.push(subpat); |
| } |
| } |
| |
| (before, slice, after) |
| } |
| |
| /// Parse the fields of a struct-like pattern |
| fn parse_pat_fields(&mut self) -> (Vec<codemap::Spanned<ast::FieldPat>> , bool) { |
| let mut fields = Vec::new(); |
| let mut etc = false; |
| let mut first = true; |
| while self.token != token::CloseDelim(token::Brace) { |
| if first { |
| first = false; |
| } else { |
| self.expect(&token::Comma); |
| // accept trailing commas |
| if self.check(&token::CloseDelim(token::Brace)) { break } |
| } |
| |
| let lo = self.span.lo; |
| let hi; |
| |
| if self.check(&token::DotDot) { |
| self.bump(); |
| if self.token != token::CloseDelim(token::Brace) { |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected `{}`, found `{}`", "}", |
| token_str)[]) |
| } |
| etc = true; |
| break; |
| } |
| |
| let bind_type = if self.eat_keyword(keywords::Mut) { |
| BindByValue(MutMutable) |
| } else if self.eat_keyword(keywords::Ref) { |
| BindByRef(self.parse_mutability()) |
| } else { |
| BindByValue(MutImmutable) |
| }; |
| |
| let fieldname = self.parse_ident(); |
| |
| let (subpat, is_shorthand) = if self.check(&token::Colon) { |
| match bind_type { |
| BindByRef(..) | BindByValue(MutMutable) => { |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("unexpected `{}`", |
| token_str)[]) |
| } |
| _ => {} |
| } |
| |
| self.bump(); |
| let pat = self.parse_pat(); |
| hi = pat.span.hi; |
| (pat, false) |
| } else { |
| hi = self.last_span.hi; |
| let fieldpath = codemap::Spanned{span:self.last_span, node: fieldname}; |
| (P(ast::Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: PatIdent(bind_type, fieldpath, None), |
| span: self.last_span |
| }), true) |
| }; |
| fields.push(codemap::Spanned { span: mk_sp(lo, hi), |
| node: ast::FieldPat { ident: fieldname, |
| pat: subpat, |
| is_shorthand: is_shorthand }}); |
| } |
| return (fields, etc); |
| } |
| |
| /// Parse a pattern. |
| pub fn parse_pat(&mut self) -> P<Pat> { |
| maybe_whole!(self, NtPat); |
| |
| let lo = self.span.lo; |
| let mut hi; |
| let pat; |
| match self.token { |
| // parse _ |
| token::Underscore => { |
| self.bump(); |
| pat = PatWild(PatWildSingle); |
| hi = self.last_span.hi; |
| return P(ast::Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: pat, |
| span: mk_sp(lo, hi) |
| }) |
| } |
| token::Tilde => { |
| // parse ~pat |
| self.bump(); |
| let sub = self.parse_pat(); |
| pat = PatBox(sub); |
| let last_span = self.last_span; |
| hi = last_span.hi; |
| self.obsolete(last_span, ObsoleteSyntax::OwnedPattern); |
| return P(ast::Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: pat, |
| span: mk_sp(lo, hi) |
| }) |
| } |
| token::BinOp(token::And) | token::AndAnd => { |
| // parse &pat and &mut pat |
| let lo = self.span.lo; |
| self.expect_and(); |
| let mutability = if self.eat_keyword(keywords::Mut) { |
| ast::MutMutable |
| } else { |
| ast::MutImmutable |
| }; |
| let sub = self.parse_pat(); |
| pat = PatRegion(sub, mutability); |
| hi = self.last_span.hi; |
| return P(ast::Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: pat, |
| span: mk_sp(lo, hi) |
| }) |
| } |
| token::OpenDelim(token::Paren) => { |
| // parse (pat,pat,pat,...) as tuple |
| self.bump(); |
| if self.check(&token::CloseDelim(token::Paren)) { |
| self.bump(); |
| pat = PatTup(vec![]); |
| } else { |
| let mut fields = vec!(self.parse_pat()); |
| if self.look_ahead(1, |t| *t != token::CloseDelim(token::Paren)) { |
| while self.check(&token::Comma) { |
| self.bump(); |
| if self.check(&token::CloseDelim(token::Paren)) { break; } |
| fields.push(self.parse_pat()); |
| } |
| } |
| if fields.len() == 1 { self.expect(&token::Comma); } |
| self.expect(&token::CloseDelim(token::Paren)); |
| pat = PatTup(fields); |
| } |
| hi = self.last_span.hi; |
| return P(ast::Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: pat, |
| span: mk_sp(lo, hi) |
| }) |
| } |
| token::OpenDelim(token::Bracket) => { |
| // parse [pat,pat,...] as vector pattern |
| self.bump(); |
| let (before, slice, after) = |
| self.parse_pat_vec_elements(); |
| |
| self.expect(&token::CloseDelim(token::Bracket)); |
| pat = ast::PatVec(before, slice, after); |
| hi = self.last_span.hi; |
| return P(ast::Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: pat, |
| span: mk_sp(lo, hi) |
| }) |
| } |
| _ => {} |
| } |
| // at this point, token != _, ~, &, &&, (, [ |
| |
| if (!(self.token.is_ident() || self.token.is_path()) |
| && self.token != token::ModSep) |
| || self.token.is_keyword(keywords::True) |
| || self.token.is_keyword(keywords::False) { |
| // Parse an expression pattern or exp .. exp. |
| // |
| // These expressions are limited to literals (possibly |
| // preceded by unary-minus) or identifiers. |
| let val = self.parse_literal_maybe_minus(); |
| if (self.check(&token::DotDotDot)) && |
| self.look_ahead(1, |t| { |
| *t != token::Comma && *t != token::CloseDelim(token::Bracket) |
| }) { |
| self.bump(); |
| let end = if self.token.is_ident() || self.token.is_path() { |
| let path = self.parse_path(LifetimeAndTypesWithColons); |
| let hi = self.span.hi; |
| self.mk_expr(lo, hi, ExprPath(path)) |
| } else { |
| self.parse_literal_maybe_minus() |
| }; |
| pat = PatRange(val, end); |
| } else { |
| pat = PatLit(val); |
| } |
| } else if self.eat_keyword(keywords::Mut) { |
| pat = self.parse_pat_ident(BindByValue(MutMutable)); |
| } else if self.eat_keyword(keywords::Ref) { |
| // parse ref pat |
| let mutbl = self.parse_mutability(); |
| pat = self.parse_pat_ident(BindByRef(mutbl)); |
| } else if self.eat_keyword(keywords::Box) { |
| // `box PAT` |
| // |
| // FIXME(#13910): Rename to `PatBox` and extend to full DST |
| // support. |
| let sub = self.parse_pat(); |
| pat = PatBox(sub); |
| hi = self.last_span.hi; |
| return P(ast::Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: pat, |
| span: mk_sp(lo, hi) |
| }) |
| } else { |
| let can_be_enum_or_struct = self.look_ahead(1, |t| { |
| match *t { |
| token::OpenDelim(_) | token::Lt | token::ModSep => true, |
| _ => false, |
| } |
| }); |
| |
| if self.look_ahead(1, |t| *t == token::DotDotDot) && |
| self.look_ahead(2, |t| { |
| *t != token::Comma && *t != token::CloseDelim(token::Bracket) |
| }) { |
| let start = self.parse_expr_res(RESTRICTION_NO_BAR_OP); |
| self.eat(&token::DotDotDot); |
| let end = self.parse_expr_res(RESTRICTION_NO_BAR_OP); |
| pat = PatRange(start, end); |
| } else if self.token.is_plain_ident() && !can_be_enum_or_struct { |
| let id = self.parse_ident(); |
| let id_span = self.last_span; |
| let pth1 = codemap::Spanned{span:id_span, node: id}; |
| if self.eat(&token::Not) { |
| // macro invocation |
| let delim = self.expect_open_delim(); |
| let tts = self.parse_seq_to_end(&token::CloseDelim(delim), |
| seq_sep_none(), |
| |p| p.parse_token_tree()); |
| |
| let mac = MacInvocTT(ident_to_path(id_span,id), tts, EMPTY_CTXT); |
| pat = ast::PatMac(codemap::Spanned {node: mac, span: self.span}); |
| } else { |
| let sub = if self.eat(&token::At) { |
| // parse foo @ pat |
| Some(self.parse_pat()) |
| } else { |
| // or just foo |
| None |
| }; |
| pat = PatIdent(BindByValue(MutImmutable), pth1, sub); |
| } |
| } else { |
| // parse an enum pat |
| let enum_path = self.parse_path(LifetimeAndTypesWithColons); |
| match self.token { |
| token::OpenDelim(token::Brace) => { |
| self.bump(); |
| let (fields, etc) = |
| self.parse_pat_fields(); |
| self.bump(); |
| pat = PatStruct(enum_path, fields, etc); |
| } |
| _ => { |
| let mut args: Vec<P<Pat>> = Vec::new(); |
| match self.token { |
| token::OpenDelim(token::Paren) => { |
| let is_dotdot = self.look_ahead(1, |t| { |
| match *t { |
| token::DotDot => true, |
| _ => false, |
| } |
| }); |
| if is_dotdot { |
| // This is a "top constructor only" pat |
| self.bump(); |
| self.bump(); |
| self.expect(&token::CloseDelim(token::Paren)); |
| pat = PatEnum(enum_path, None); |
| } else { |
| args = self.parse_enum_variant_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_pat() |
| ); |
| pat = PatEnum(enum_path, Some(args)); |
| } |
| }, |
| _ => { |
| if !enum_path.global && |
| enum_path.segments.len() == 1 && |
| enum_path.segments[0].parameters.is_empty() |
| { |
| // it could still be either an enum |
| // or an identifier pattern, resolve |
| // will sort it out: |
| pat = PatIdent(BindByValue(MutImmutable), |
| codemap::Spanned{ |
| span: enum_path.span, |
| node: enum_path.segments[0] |
| .identifier}, |
| None); |
| } else { |
| pat = PatEnum(enum_path, Some(args)); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| hi = self.last_span.hi; |
| P(ast::Pat { |
| id: ast::DUMMY_NODE_ID, |
| node: pat, |
| span: mk_sp(lo, hi), |
| }) |
| } |
| |
| /// Parse ident or ident @ pat |
| /// used by the copy foo and ref foo patterns to give a good |
| /// error message when parsing mistakes like ref foo(a,b) |
| fn parse_pat_ident(&mut self, |
| binding_mode: ast::BindingMode) |
| -> ast::Pat_ { |
| if !self.token.is_plain_ident() { |
| let span = self.span; |
| let tok_str = self.this_token_to_string(); |
| self.span_fatal(span, |
| &format!("expected identifier, found `{}`", tok_str)[]); |
| } |
| let ident = self.parse_ident(); |
| let last_span = self.last_span; |
| let name = codemap::Spanned{span: last_span, node: ident}; |
| let sub = if self.eat(&token::At) { |
| Some(self.parse_pat()) |
| } else { |
| None |
| }; |
| |
| // just to be friendly, if they write something like |
| // ref Some(i) |
| // we end up here with ( as the current token. This shortly |
| // leads to a parse error. Note that if there is no explicit |
| // binding mode then we do not end up here, because the lookahead |
| // will direct us over to parse_enum_variant() |
| if self.token == token::OpenDelim(token::Paren) { |
| let last_span = self.last_span; |
| self.span_fatal( |
| last_span, |
| "expected identifier, found enum pattern"); |
| } |
| |
| PatIdent(binding_mode, name, sub) |
| } |
| |
| /// Parse a local variable declaration |
| fn parse_local(&mut self) -> P<Local> { |
| let lo = self.span.lo; |
| let pat = self.parse_pat(); |
| |
| let mut ty = None; |
| if self.eat(&token::Colon) { |
| ty = Some(self.parse_ty_sum()); |
| } |
| let init = self.parse_initializer(); |
| P(ast::Local { |
| ty: ty, |
| pat: pat, |
| init: init, |
| id: ast::DUMMY_NODE_ID, |
| span: mk_sp(lo, self.last_span.hi), |
| source: LocalLet, |
| }) |
| } |
| |
| /// Parse a "let" stmt |
| fn parse_let(&mut self) -> P<Decl> { |
| let lo = self.span.lo; |
| let local = self.parse_local(); |
| P(spanned(lo, self.last_span.hi, DeclLocal(local))) |
| } |
| |
| /// Parse a structure field |
| fn parse_name_and_ty(&mut self, pr: Visibility, |
| attrs: Vec<Attribute> ) -> StructField { |
| let lo = self.span.lo; |
| if !self.token.is_plain_ident() { |
| self.fatal("expected ident"); |
| } |
| let name = self.parse_ident(); |
| self.expect(&token::Colon); |
| let ty = self.parse_ty_sum(); |
| spanned(lo, self.last_span.hi, ast::StructField_ { |
| kind: NamedField(name, pr), |
| id: ast::DUMMY_NODE_ID, |
| ty: ty, |
| attrs: attrs, |
| }) |
| } |
| |
| /// Get an expected item after attributes error message. |
| fn expected_item_err(attrs: &[Attribute]) -> &'static str { |
| match attrs.last() { |
| Some(&Attribute { node: ast::Attribute_ { is_sugared_doc: true, .. }, .. }) => { |
| "expected item after doc comment" |
| } |
| _ => "expected item after attributes", |
| } |
| } |
| |
| /// Parse a statement. may include decl. |
| /// Precondition: any attributes are parsed already |
| pub fn parse_stmt(&mut self, item_attrs: Vec<Attribute>) -> P<Stmt> { |
| maybe_whole!(self, NtStmt); |
| |
| fn check_expected_item(p: &mut Parser, attrs: &[Attribute]) { |
| // If we have attributes then we should have an item |
| if !attrs.is_empty() { |
| let last_span = p.last_span; |
| p.span_err(last_span, Parser::expected_item_err(attrs)); |
| } |
| } |
| |
| let lo = self.span.lo; |
| if self.token.is_keyword(keywords::Let) { |
| check_expected_item(self, &item_attrs[]); |
| self.expect_keyword(keywords::Let); |
| let decl = self.parse_let(); |
| P(spanned(lo, decl.span.hi, StmtDecl(decl, ast::DUMMY_NODE_ID))) |
| } else if self.token.is_ident() |
| && !self.token.is_any_keyword() |
| && self.look_ahead(1, |t| *t == token::Not) { |
| // it's a macro invocation: |
| |
| check_expected_item(self, &item_attrs[]); |
| |
| // Potential trouble: if we allow macros with paths instead of |
| // idents, we'd need to look ahead past the whole path here... |
| let pth = self.parse_path(NoTypesAllowed); |
| self.bump(); |
| |
| let id = match self.token { |
| token::OpenDelim(_) => token::special_idents::invalid, // no special identifier |
| _ => self.parse_ident(), |
| }; |
| |
| // check that we're pointing at delimiters (need to check |
| // again after the `if`, because of `parse_ident` |
| // consuming more tokens). |
| let delim = match self.token { |
| token::OpenDelim(delim) => delim, |
| _ => { |
| // we only expect an ident if we didn't parse one |
| // above. |
| let ident_str = if id.name == token::special_idents::invalid.name { |
| "identifier, " |
| } else { |
| "" |
| }; |
| let tok_str = self.this_token_to_string(); |
| self.fatal(&format!("expected {}`(` or `{{`, found `{}`", |
| ident_str, |
| tok_str)[]) |
| }, |
| }; |
| |
| let tts = self.parse_unspanned_seq( |
| &token::OpenDelim(delim), |
| &token::CloseDelim(delim), |
| seq_sep_none(), |
| |p| p.parse_token_tree() |
| ); |
| let hi = self.span.hi; |
| |
| let style = if delim == token::Brace { |
| MacStmtWithBraces |
| } else { |
| MacStmtWithoutBraces |
| }; |
| |
| if id.name == token::special_idents::invalid.name { |
| P(spanned(lo, |
| hi, |
| StmtMac(P(spanned(lo, |
| hi, |
| MacInvocTT(pth, tts, EMPTY_CTXT))), |
| style))) |
| } else { |
| // if it has a special ident, it's definitely an item |
| // |
| // Require a semicolon or braces. |
| if style != MacStmtWithBraces { |
| if !self.eat(&token::Semi) { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| "macros that expand to items must \ |
| either be surrounded with braces or \ |
| followed by a semicolon"); |
| } |
| } |
| P(spanned(lo, hi, StmtDecl( |
| P(spanned(lo, hi, DeclItem( |
| self.mk_item( |
| lo, hi, id /*id is good here*/, |
| ItemMac(spanned(lo, hi, MacInvocTT(pth, tts, EMPTY_CTXT))), |
| Inherited, Vec::new(/*no attrs*/))))), |
| ast::DUMMY_NODE_ID))) |
| } |
| } else { |
| let found_attrs = !item_attrs.is_empty(); |
| let item_err = Parser::expected_item_err(&item_attrs[]); |
| match self.parse_item_or_view_item(item_attrs, false) { |
| IoviItem(i) => { |
| let hi = i.span.hi; |
| let decl = P(spanned(lo, hi, DeclItem(i))); |
| P(spanned(lo, hi, StmtDecl(decl, ast::DUMMY_NODE_ID))) |
| } |
| IoviViewItem(vi) => { |
| self.span_fatal(vi.span, |
| "view items must be declared at the top of the block"); |
| } |
| IoviForeignItem(_) => { |
| self.fatal("foreign items are not allowed here"); |
| } |
| IoviNone(_) => { |
| if found_attrs { |
| let last_span = self.last_span; |
| self.span_err(last_span, item_err); |
| } |
| |
| // Remainder are line-expr stmts. |
| let e = self.parse_expr_res(RESTRICTION_STMT_EXPR); |
| P(spanned(lo, e.span.hi, StmtExpr(e, ast::DUMMY_NODE_ID))) |
| } |
| } |
| } |
| } |
| |
| /// Is this expression a successfully-parsed statement? |
| fn expr_is_complete(&mut self, e: &Expr) -> bool { |
| self.restrictions.contains(RESTRICTION_STMT_EXPR) && |
| !classify::expr_requires_semi_to_be_stmt(e) |
| } |
| |
| /// Parse a block. No inner attrs are allowed. |
| pub fn parse_block(&mut self) -> P<Block> { |
| maybe_whole!(no_clone self, NtBlock); |
| |
| let lo = self.span.lo; |
| |
| if !self.eat(&token::OpenDelim(token::Brace)) { |
| let sp = self.span; |
| let tok = self.this_token_to_string(); |
| self.span_fatal_help(sp, |
| &format!("expected `{{`, found `{}`", tok)[], |
| "place this code inside a block"); |
| } |
| |
| return self.parse_block_tail_(lo, DefaultBlock, Vec::new()); |
| } |
| |
| /// Parse a block. Inner attrs are allowed. |
| fn parse_inner_attrs_and_block(&mut self) |
| -> (Vec<Attribute> , P<Block>) { |
| |
| maybe_whole!(pair_empty self, NtBlock); |
| |
| let lo = self.span.lo; |
| self.expect(&token::OpenDelim(token::Brace)); |
| let (inner, next) = self.parse_inner_attrs_and_next(); |
| |
| (inner, self.parse_block_tail_(lo, DefaultBlock, next)) |
| } |
| |
| /// Precondition: already parsed the '{' or '#{' |
| /// I guess that also means "already parsed the 'impure'" if |
| /// necessary, and this should take a qualifier. |
| /// Some blocks start with "#{"... |
| fn parse_block_tail(&mut self, lo: BytePos, s: BlockCheckMode) -> P<Block> { |
| self.parse_block_tail_(lo, s, Vec::new()) |
| } |
| |
| /// Parse the rest of a block expression or function body |
| fn parse_block_tail_(&mut self, lo: BytePos, s: BlockCheckMode, |
| first_item_attrs: Vec<Attribute> ) -> P<Block> { |
| let mut stmts = Vec::new(); |
| let mut expr = None; |
| |
| // wouldn't it be more uniform to parse view items only, here? |
| let ParsedItemsAndViewItems { |
| attrs_remaining, |
| view_items, |
| items, |
| .. |
| } = self.parse_items_and_view_items(first_item_attrs, |
| false, false); |
| |
| for item in items.into_iter() { |
| let span = item.span; |
| let decl = P(spanned(span.lo, span.hi, DeclItem(item))); |
| stmts.push(P(spanned(span.lo, span.hi, StmtDecl(decl, ast::DUMMY_NODE_ID)))); |
| } |
| |
| let mut attributes_box = attrs_remaining; |
| |
| while self.token != token::CloseDelim(token::Brace) { |
| // parsing items even when they're not allowed lets us give |
| // better error messages and recover more gracefully. |
| attributes_box.push_all(&self.parse_outer_attributes()[]); |
| match self.token { |
| token::Semi => { |
| if !attributes_box.is_empty() { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| Parser::expected_item_err(&attributes_box[])); |
| attributes_box = Vec::new(); |
| } |
| self.bump(); // empty |
| } |
| token::CloseDelim(token::Brace) => { |
| // fall through and out. |
| } |
| _ => { |
| let stmt = self.parse_stmt(attributes_box); |
| attributes_box = Vec::new(); |
| stmt.and_then(|Spanned {node, span}| match node { |
| StmtExpr(e, stmt_id) => { |
| self.handle_expression_like_statement(e, |
| stmt_id, |
| span, |
| &mut stmts, |
| &mut expr); |
| } |
| StmtMac(mac, MacStmtWithoutBraces) => { |
| // statement macro without braces; might be an |
| // expr depending on whether a semicolon follows |
| match self.token { |
| token::Semi => { |
| stmts.push(P(Spanned { |
| node: StmtMac(mac, |
| MacStmtWithSemicolon), |
| span: span, |
| })); |
| self.bump(); |
| } |
| _ => { |
| let e = self.mk_mac_expr(span.lo, |
| span.hi, |
| mac.and_then(|m| m.node)); |
| let e = self.parse_dot_or_call_expr_with(e); |
| let e = self.parse_more_binops(e, 0); |
| let e = self.parse_assign_expr_with(e); |
| self.handle_expression_like_statement( |
| e, |
| ast::DUMMY_NODE_ID, |
| span, |
| &mut stmts, |
| &mut expr); |
| } |
| } |
| } |
| StmtMac(m, style) => { |
| // statement macro; might be an expr |
| match self.token { |
| token::Semi => { |
| stmts.push(P(Spanned { |
| node: StmtMac(m, |
| MacStmtWithSemicolon), |
| span: span, |
| })); |
| self.bump(); |
| } |
| token::CloseDelim(token::Brace) => { |
| // if a block ends in `m!(arg)` without |
| // a `;`, it must be an expr |
| expr = Some( |
| self.mk_mac_expr(span.lo, |
| span.hi, |
| m.and_then(|x| x.node))); |
| } |
| _ => { |
| stmts.push(P(Spanned { |
| node: StmtMac(m, style), |
| span: span |
| })); |
| } |
| } |
| } |
| _ => { // all other kinds of statements: |
| if classify::stmt_ends_with_semi(&node) { |
| self.commit_stmt_expecting(token::Semi); |
| } |
| |
| stmts.push(P(Spanned { |
| node: node, |
| span: span |
| })); |
| } |
| }) |
| } |
| } |
| } |
| |
| if !attributes_box.is_empty() { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| Parser::expected_item_err(&attributes_box[])); |
| } |
| |
| let hi = self.span.hi; |
| self.bump(); |
| P(ast::Block { |
| view_items: view_items, |
| stmts: stmts, |
| expr: expr, |
| id: ast::DUMMY_NODE_ID, |
| rules: s, |
| span: mk_sp(lo, hi), |
| }) |
| } |
| |
| fn handle_expression_like_statement( |
| &mut self, |
| e: P<Expr>, |
| stmt_id: NodeId, |
| span: Span, |
| stmts: &mut Vec<P<Stmt>>, |
| last_block_expr: &mut Option<P<Expr>>) { |
| // expression without semicolon |
| if classify::expr_requires_semi_to_be_stmt(&*e) { |
| // Just check for errors and recover; do not eat semicolon yet. |
| self.commit_stmt(&[], |
| &[token::Semi, token::CloseDelim(token::Brace)]); |
| } |
| |
| match self.token { |
| token::Semi => { |
| self.bump(); |
| let span_with_semi = Span { |
| lo: span.lo, |
| hi: self.last_span.hi, |
| expn_id: span.expn_id, |
| }; |
| stmts.push(P(Spanned { |
| node: StmtSemi(e, stmt_id), |
| span: span_with_semi, |
| })); |
| } |
| token::CloseDelim(token::Brace) => *last_block_expr = Some(e), |
| _ => { |
| stmts.push(P(Spanned { |
| node: StmtExpr(e, stmt_id), |
| span: span |
| })); |
| } |
| } |
| } |
| |
| // Parses a sequence of bounds if a `:` is found, |
| // otherwise returns empty list. |
| fn parse_colon_then_ty_param_bounds(&mut self, |
| mode: BoundParsingMode) |
| -> OwnedSlice<TyParamBound> |
| { |
| if !self.eat(&token::Colon) { |
| OwnedSlice::empty() |
| } else { |
| self.parse_ty_param_bounds(mode) |
| } |
| } |
| |
| // matches bounds = ( boundseq )? |
| // where boundseq = ( polybound + boundseq ) | polybound |
| // and polybound = ( 'for' '<' 'region '>' )? bound |
| // and bound = 'region | trait_ref |
| fn parse_ty_param_bounds(&mut self, |
| mode: BoundParsingMode) |
| -> OwnedSlice<TyParamBound> |
| { |
| let mut result = vec!(); |
| loop { |
| let question_span = self.span; |
| let ate_question = self.eat(&token::Question); |
| match self.token { |
| token::Lifetime(lifetime) => { |
| if ate_question { |
| self.span_err(question_span, |
| "`?` may only modify trait bounds, not lifetime bounds"); |
| } |
| result.push(RegionTyParamBound(ast::Lifetime { |
| id: ast::DUMMY_NODE_ID, |
| span: self.span, |
| name: lifetime.name |
| })); |
| self.bump(); |
| } |
| token::ModSep | token::Ident(..) => { |
| let poly_trait_ref = self.parse_poly_trait_ref(); |
| let modifier = if ate_question { |
| if mode == BoundParsingMode::Modified { |
| TraitBoundModifier::Maybe |
| } else { |
| self.span_err(question_span, |
| "unexpected `?`"); |
| TraitBoundModifier::None |
| } |
| } else { |
| TraitBoundModifier::None |
| }; |
| result.push(TraitTyParamBound(poly_trait_ref, modifier)) |
| } |
| _ => break, |
| } |
| |
| if !self.eat(&token::BinOp(token::Plus)) { |
| break; |
| } |
| } |
| |
| return OwnedSlice::from_vec(result); |
| } |
| |
| fn trait_ref_from_ident(ident: Ident, span: Span) -> TraitRef { |
| let segment = ast::PathSegment { |
| identifier: ident, |
| parameters: ast::PathParameters::none() |
| }; |
| let path = ast::Path { |
| span: span, |
| global: false, |
| segments: vec![segment], |
| }; |
| ast::TraitRef { |
| path: path, |
| ref_id: ast::DUMMY_NODE_ID, |
| } |
| } |
| |
| /// Matches typaram = (unbound `?`)? IDENT (`?` unbound)? optbounds ( EQ ty )? |
| fn parse_ty_param(&mut self) -> TyParam { |
| // This is a bit hacky. Currently we are only interested in a single |
| // unbound, and it may only be `Sized`. To avoid backtracking and other |
| // complications, we parse an ident, then check for `?`. If we find it, |
| // we use the ident as the unbound, otherwise, we use it as the name of |
| // type param. Even worse, we need to check for `?` before or after the |
| // bound. |
| let mut span = self.span; |
| let mut ident = self.parse_ident(); |
| let mut unbound = None; |
| if self.eat(&token::Question) { |
| let tref = Parser::trait_ref_from_ident(ident, span); |
| unbound = Some(tref); |
| span = self.span; |
| ident = self.parse_ident(); |
| self.obsolete(span, ObsoleteSyntax::Sized); |
| } |
| |
| let mut bounds = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Modified); |
| if let Some(unbound) = unbound { |
| let mut bounds_as_vec = bounds.into_vec(); |
| bounds_as_vec.push(TraitTyParamBound(PolyTraitRef { bound_lifetimes: vec![], |
| trait_ref: unbound }, |
| TraitBoundModifier::Maybe)); |
| bounds = OwnedSlice::from_vec(bounds_as_vec); |
| }; |
| |
| let default = if self.check(&token::Eq) { |
| self.bump(); |
| Some(self.parse_ty_sum()) |
| } |
| else { None }; |
| |
| TyParam { |
| ident: ident, |
| id: ast::DUMMY_NODE_ID, |
| bounds: bounds, |
| default: default, |
| span: span, |
| } |
| } |
| |
| /// Parse a set of optional generic type parameter declarations. Where |
| /// clauses are not parsed here, and must be added later via |
| /// `parse_where_clause()`. |
| /// |
| /// matches generics = ( ) | ( < > ) | ( < typaramseq ( , )? > ) | ( < lifetimes ( , )? > ) |
| /// | ( < lifetimes , typaramseq ( , )? > ) |
| /// where typaramseq = ( typaram ) | ( typaram , typaramseq ) |
| pub fn parse_generics(&mut self) -> ast::Generics { |
| if self.eat(&token::Lt) { |
| let lifetime_defs = self.parse_lifetime_defs(); |
| let mut seen_default = false; |
| let ty_params = self.parse_seq_to_gt(Some(token::Comma), |p| { |
| p.forbid_lifetime(); |
| let ty_param = p.parse_ty_param(); |
| if ty_param.default.is_some() { |
| seen_default = true; |
| } else if seen_default { |
| let last_span = p.last_span; |
| p.span_err(last_span, |
| "type parameters with a default must be trailing"); |
| } |
| ty_param |
| }); |
| ast::Generics { |
| lifetimes: lifetime_defs, |
| ty_params: ty_params, |
| where_clause: WhereClause { |
| id: ast::DUMMY_NODE_ID, |
| predicates: Vec::new(), |
| } |
| } |
| } else { |
| ast_util::empty_generics() |
| } |
| } |
| |
| fn parse_generic_values_after_lt(&mut self) |
| -> (Vec<ast::Lifetime>, Vec<P<Ty>>, Vec<P<TypeBinding>>) { |
| let lifetimes = self.parse_lifetimes(token::Comma); |
| |
| // First parse types. |
| let (types, returned) = self.parse_seq_to_gt_or_return( |
| Some(token::Comma), |
| |p| { |
| p.forbid_lifetime(); |
| if p.look_ahead(1, |t| t == &token::Eq) { |
| None |
| } else { |
| Some(p.parse_ty_sum()) |
| } |
| } |
| ); |
| |
| // If we found the `>`, don't continue. |
| if !returned { |
| return (lifetimes, types.into_vec(), Vec::new()); |
| } |
| |
| // Then parse type bindings. |
| let bindings = self.parse_seq_to_gt( |
| Some(token::Comma), |
| |p| { |
| p.forbid_lifetime(); |
| let lo = p.span.lo; |
| let ident = p.parse_ident(); |
| let found_eq = p.eat(&token::Eq); |
| if !found_eq { |
| let span = p.span; |
| p.span_warn(span, "whoops, no =?"); |
| } |
| let ty = p.parse_ty(); |
| let hi = p.span.hi; |
| let span = mk_sp(lo, hi); |
| return P(TypeBinding{id: ast::DUMMY_NODE_ID, |
| ident: ident, |
| ty: ty, |
| span: span, |
| }); |
| } |
| ); |
| (lifetimes, types.into_vec(), bindings.into_vec()) |
| } |
| |
| fn forbid_lifetime(&mut self) { |
| if self.token.is_lifetime() { |
| let span = self.span; |
| self.span_fatal(span, "lifetime parameters must be declared \ |
| prior to type parameters"); |
| } |
| } |
| |
| /// Parses an optional `where` clause and places it in `generics`. |
| /// |
| /// ``` |
| /// where T : Trait<U, V> + 'b, 'a : 'b |
| /// ``` |
| fn parse_where_clause(&mut self, generics: &mut ast::Generics) { |
| if !self.eat_keyword(keywords::Where) { |
| return |
| } |
| |
| let mut parsed_something = false; |
| loop { |
| let lo = self.span.lo; |
| match self.token { |
| token::OpenDelim(token::Brace) => { |
| break |
| } |
| |
| token::Lifetime(..) => { |
| let bounded_lifetime = |
| self.parse_lifetime(); |
| |
| self.eat(&token::Colon); |
| |
| let bounds = |
| self.parse_lifetimes(token::BinOp(token::Plus)); |
| |
| let hi = self.span.hi; |
| let span = mk_sp(lo, hi); |
| |
| generics.where_clause.predicates.push(ast::WherePredicate::RegionPredicate( |
| ast::WhereRegionPredicate { |
| span: span, |
| lifetime: bounded_lifetime, |
| bounds: bounds |
| } |
| )); |
| |
| parsed_something = true; |
| } |
| |
| _ => { |
| let bounded_ty = self.parse_ty(); |
| |
| if self.eat(&token::Colon) { |
| let bounds = self.parse_ty_param_bounds(BoundParsingMode::Bare); |
| let hi = self.span.hi; |
| let span = mk_sp(lo, hi); |
| |
| if bounds.len() == 0 { |
| self.span_err(span, |
| "each predicate in a `where` clause must have \ |
| at least one bound in it"); |
| } |
| |
| generics.where_clause.predicates.push(ast::WherePredicate::BoundPredicate( |
| ast::WhereBoundPredicate { |
| span: span, |
| bounded_ty: bounded_ty, |
| bounds: bounds, |
| })); |
| |
| parsed_something = true; |
| } else if self.eat(&token::Eq) { |
| // let ty = self.parse_ty(); |
| let hi = self.span.hi; |
| let span = mk_sp(lo, hi); |
| // generics.where_clause.predicates.push( |
| // ast::WherePredicate::EqPredicate(ast::WhereEqPredicate { |
| // id: ast::DUMMY_NODE_ID, |
| // span: span, |
| // path: panic!("NYI"), //bounded_ty, |
| // ty: ty, |
| // })); |
| // parsed_something = true; |
| // // FIXME(#18433) |
| self.span_err(span, |
| "equality constraints are not yet supported \ |
| in where clauses (#20041)"); |
| } else { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| "unexpected token in `where` clause"); |
| } |
| } |
| }; |
| |
| if !self.eat(&token::Comma) { |
| break |
| } |
| } |
| |
| if !parsed_something { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| "a `where` clause must have at least one predicate \ |
| in it"); |
| } |
| } |
| |
| fn parse_fn_args(&mut self, named_args: bool, allow_variadic: bool) |
| -> (Vec<Arg> , bool) { |
| let sp = self.span; |
| let mut args: Vec<Option<Arg>> = |
| self.parse_unspanned_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| { |
| if p.token == token::DotDotDot { |
| p.bump(); |
| if allow_variadic { |
| if p.token != token::CloseDelim(token::Paren) { |
| let span = p.span; |
| p.span_fatal(span, |
| "`...` must be last in argument list for variadic function"); |
| } |
| } else { |
| let span = p.span; |
| p.span_fatal(span, |
| "only foreign functions are allowed to be variadic"); |
| } |
| None |
| } else { |
| Some(p.parse_arg_general(named_args)) |
| } |
| } |
| ); |
| |
| let variadic = match args.pop() { |
| Some(None) => true, |
| Some(x) => { |
| // Need to put back that last arg |
| args.push(x); |
| false |
| } |
| None => false |
| }; |
| |
| if variadic && args.is_empty() { |
| self.span_err(sp, |
| "variadic function must be declared with at least one named argument"); |
| } |
| |
| let args = args.into_iter().map(|x| x.unwrap()).collect(); |
| |
| (args, variadic) |
| } |
| |
| /// Parse the argument list and result type of a function declaration |
| pub fn parse_fn_decl(&mut self, allow_variadic: bool) -> P<FnDecl> { |
| |
| let (args, variadic) = self.parse_fn_args(true, allow_variadic); |
| let ret_ty = self.parse_ret_ty(); |
| |
| P(FnDecl { |
| inputs: args, |
| output: ret_ty, |
| variadic: variadic |
| }) |
| } |
| |
| fn is_self_ident(&mut self) -> bool { |
| match self.token { |
| token::Ident(id, token::Plain) => id.name == special_idents::self_.name, |
| _ => false |
| } |
| } |
| |
| fn expect_self_ident(&mut self) -> ast::Ident { |
| match self.token { |
| token::Ident(id, token::Plain) if id.name == special_idents::self_.name => { |
| self.bump(); |
| id |
| }, |
| _ => { |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected `self`, found `{}`", |
| token_str)[]) |
| } |
| } |
| } |
| |
| /// Parse the argument list and result type of a function |
| /// that may have a self type. |
| fn parse_fn_decl_with_self<F>(&mut self, parse_arg_fn: F) -> (ExplicitSelf, P<FnDecl>) where |
| F: FnMut(&mut Parser) -> Arg, |
| { |
| fn maybe_parse_borrowed_explicit_self(this: &mut Parser) |
| -> ast::ExplicitSelf_ { |
| // The following things are possible to see here: |
| // |
| // fn(&mut self) |
| // fn(&mut self) |
| // fn(&'lt self) |
| // fn(&'lt mut self) |
| // |
| // We already know that the current token is `&`. |
| |
| if this.look_ahead(1, |t| t.is_keyword(keywords::Self)) { |
| this.bump(); |
| SelfRegion(None, MutImmutable, this.expect_self_ident()) |
| } else if this.look_ahead(1, |t| t.is_mutability()) && |
| this.look_ahead(2, |t| t.is_keyword(keywords::Self)) { |
| this.bump(); |
| let mutability = this.parse_mutability(); |
| SelfRegion(None, mutability, this.expect_self_ident()) |
| } else if this.look_ahead(1, |t| t.is_lifetime()) && |
| this.look_ahead(2, |t| t.is_keyword(keywords::Self)) { |
| this.bump(); |
| let lifetime = this.parse_lifetime(); |
| SelfRegion(Some(lifetime), MutImmutable, this.expect_self_ident()) |
| } else if this.look_ahead(1, |t| t.is_lifetime()) && |
| this.look_ahead(2, |t| t.is_mutability()) && |
| this.look_ahead(3, |t| t.is_keyword(keywords::Self)) { |
| this.bump(); |
| let lifetime = this.parse_lifetime(); |
| let mutability = this.parse_mutability(); |
| SelfRegion(Some(lifetime), mutability, this.expect_self_ident()) |
| } else { |
| SelfStatic |
| } |
| } |
| |
| self.expect(&token::OpenDelim(token::Paren)); |
| |
| // A bit of complexity and lookahead is needed here in order to be |
| // backwards compatible. |
| let lo = self.span.lo; |
| let mut self_ident_lo = self.span.lo; |
| let mut self_ident_hi = self.span.hi; |
| |
| let mut mutbl_self = MutImmutable; |
| let explicit_self = match self.token { |
| token::BinOp(token::And) => { |
| let eself = maybe_parse_borrowed_explicit_self(self); |
| self_ident_lo = self.last_span.lo; |
| self_ident_hi = self.last_span.hi; |
| eself |
| } |
| token::Tilde => { |
| // We need to make sure it isn't a type |
| if self.look_ahead(1, |t| t.is_keyword(keywords::Self)) { |
| self.bump(); |
| drop(self.expect_self_ident()); |
| let last_span = self.last_span; |
| self.obsolete(last_span, ObsoleteSyntax::OwnedSelf) |
| } |
| SelfStatic |
| } |
| token::BinOp(token::Star) => { |
| // Possibly "*self" or "*mut self" -- not supported. Try to avoid |
| // emitting cryptic "unexpected token" errors. |
| self.bump(); |
| let _mutability = if self.token.is_mutability() { |
| self.parse_mutability() |
| } else { |
| MutImmutable |
| }; |
| if self.is_self_ident() { |
| let span = self.span; |
| self.span_err(span, "cannot pass self by unsafe pointer"); |
| self.bump(); |
| } |
| // error case, making bogus self ident: |
| SelfValue(special_idents::self_) |
| } |
| token::Ident(..) => { |
| if self.is_self_ident() { |
| let self_ident = self.expect_self_ident(); |
| |
| // Determine whether this is the fully explicit form, `self: |
| // TYPE`. |
| if self.eat(&token::Colon) { |
| SelfExplicit(self.parse_ty_sum(), self_ident) |
| } else { |
| SelfValue(self_ident) |
| } |
| } else if self.token.is_mutability() && |
| self.look_ahead(1, |t| t.is_keyword(keywords::Self)) { |
| mutbl_self = self.parse_mutability(); |
| let self_ident = self.expect_self_ident(); |
| |
| // Determine whether this is the fully explicit form, |
| // `self: TYPE`. |
| if self.eat(&token::Colon) { |
| SelfExplicit(self.parse_ty_sum(), self_ident) |
| } else { |
| SelfValue(self_ident) |
| } |
| } else if self.token.is_mutability() && |
| self.look_ahead(1, |t| *t == token::Tilde) && |
| self.look_ahead(2, |t| t.is_keyword(keywords::Self)) { |
| mutbl_self = self.parse_mutability(); |
| self.bump(); |
| drop(self.expect_self_ident()); |
| let last_span = self.last_span; |
| self.obsolete(last_span, ObsoleteSyntax::OwnedSelf); |
| SelfStatic |
| } else { |
| SelfStatic |
| } |
| } |
| _ => SelfStatic, |
| }; |
| |
| let explicit_self_sp = mk_sp(self_ident_lo, self_ident_hi); |
| |
| // shared fall-through for the three cases below. borrowing prevents simply |
| // writing this as a closure |
| macro_rules! parse_remaining_arguments { |
| ($self_id:ident) => |
| { |
| // If we parsed a self type, expect a comma before the argument list. |
| match self.token { |
| token::Comma => { |
| self.bump(); |
| let sep = seq_sep_trailing_allowed(token::Comma); |
| let mut fn_inputs = self.parse_seq_to_before_end( |
| &token::CloseDelim(token::Paren), |
| sep, |
| parse_arg_fn |
| ); |
| fn_inputs.insert(0, Arg::new_self(explicit_self_sp, mutbl_self, $self_id)); |
| fn_inputs |
| } |
| token::CloseDelim(token::Paren) => { |
| vec!(Arg::new_self(explicit_self_sp, mutbl_self, $self_id)) |
| } |
| _ => { |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected `,` or `)`, found `{}`", |
| token_str)[]) |
| } |
| } |
| } |
| } |
| |
| let fn_inputs = match explicit_self { |
| SelfStatic => { |
| let sep = seq_sep_trailing_allowed(token::Comma); |
| self.parse_seq_to_before_end(&token::CloseDelim(token::Paren), sep, parse_arg_fn) |
| } |
| SelfValue(id) => parse_remaining_arguments!(id), |
| SelfRegion(_,_,id) => parse_remaining_arguments!(id), |
| SelfExplicit(_,id) => parse_remaining_arguments!(id), |
| }; |
| |
| |
| self.expect(&token::CloseDelim(token::Paren)); |
| |
| let hi = self.span.hi; |
| |
| let ret_ty = self.parse_ret_ty(); |
| |
| let fn_decl = P(FnDecl { |
| inputs: fn_inputs, |
| output: ret_ty, |
| variadic: false |
| }); |
| |
| (spanned(lo, hi, explicit_self), fn_decl) |
| } |
| |
| // parse the |arg, arg| header on a lambda |
| fn parse_fn_block_decl(&mut self) |
| -> (P<FnDecl>, Option<UnboxedClosureKind>) { |
| let (optional_unboxed_closure_kind, inputs_captures) = { |
| if self.eat(&token::OrOr) { |
| (None, Vec::new()) |
| } else { |
| self.expect(&token::BinOp(token::Or)); |
| let optional_unboxed_closure_kind = |
| self.parse_optional_unboxed_closure_kind(); |
| let args = self.parse_seq_to_before_end( |
| &token::BinOp(token::Or), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_fn_block_arg() |
| ); |
| self.bump(); |
| (optional_unboxed_closure_kind, args) |
| } |
| }; |
| let output = if self.check(&token::RArrow) { |
| self.parse_ret_ty() |
| } else { |
| Return(P(Ty { |
| id: ast::DUMMY_NODE_ID, |
| node: TyInfer, |
| span: self.span, |
| })) |
| }; |
| |
| (P(FnDecl { |
| inputs: inputs_captures, |
| output: output, |
| variadic: false |
| }), optional_unboxed_closure_kind) |
| } |
| |
| /// Parses the `(arg, arg) -> return_type` header on a procedure. |
| fn parse_proc_decl(&mut self) -> P<FnDecl> { |
| let inputs = |
| self.parse_unspanned_seq(&token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_fn_block_arg()); |
| |
| let output = if self.check(&token::RArrow) { |
| self.parse_ret_ty() |
| } else { |
| Return(P(Ty { |
| id: ast::DUMMY_NODE_ID, |
| node: TyInfer, |
| span: self.span, |
| })) |
| }; |
| |
| P(FnDecl { |
| inputs: inputs, |
| output: output, |
| variadic: false |
| }) |
| } |
| |
| /// Parse the name and optional generic types of a function header. |
| fn parse_fn_header(&mut self) -> (Ident, ast::Generics) { |
| let id = self.parse_ident(); |
| let generics = self.parse_generics(); |
| (id, generics) |
| } |
| |
| fn mk_item(&mut self, lo: BytePos, hi: BytePos, ident: Ident, |
| node: Item_, vis: Visibility, |
| attrs: Vec<Attribute>) -> P<Item> { |
| P(Item { |
| ident: ident, |
| attrs: attrs, |
| id: ast::DUMMY_NODE_ID, |
| node: node, |
| vis: vis, |
| span: mk_sp(lo, hi) |
| }) |
| } |
| |
| /// Parse an item-position function declaration. |
| fn parse_item_fn(&mut self, unsafety: Unsafety, abi: abi::Abi) -> ItemInfo { |
| let (ident, mut generics) = self.parse_fn_header(); |
| let decl = self.parse_fn_decl(false); |
| self.parse_where_clause(&mut generics); |
| let (inner_attrs, body) = self.parse_inner_attrs_and_block(); |
| (ident, ItemFn(decl, unsafety, abi, generics, body), Some(inner_attrs)) |
| } |
| |
| /// Parse a method in a trait impl |
| pub fn parse_method_with_outer_attributes(&mut self) -> P<Method> { |
| let attrs = self.parse_outer_attributes(); |
| let visa = self.parse_visibility(); |
| self.parse_method(attrs, visa) |
| } |
| |
| /// Parse a method in a trait impl, starting with `attrs` attributes. |
| pub fn parse_method(&mut self, |
| attrs: Vec<Attribute>, |
| visa: Visibility) |
| -> P<Method> { |
| let lo = self.span.lo; |
| |
| // code copied from parse_macro_use_or_failure... abstraction! |
| let (method_, hi, new_attrs) = { |
| if !self.token.is_any_keyword() |
| && self.look_ahead(1, |t| *t == token::Not) |
| && (self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren)) |
| || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) { |
| // method macro. |
| let pth = self.parse_path(NoTypesAllowed); |
| self.expect(&token::Not); |
| |
| // eat a matched-delimiter token tree: |
| let delim = self.expect_open_delim(); |
| let tts = self.parse_seq_to_end(&token::CloseDelim(delim), |
| seq_sep_none(), |
| |p| p.parse_token_tree()); |
| let m_ = ast::MacInvocTT(pth, tts, EMPTY_CTXT); |
| let m: ast::Mac = codemap::Spanned { node: m_, |
| span: mk_sp(self.span.lo, |
| self.span.hi) }; |
| if delim != token::Brace { |
| self.expect(&token::Semi) |
| } |
| (ast::MethMac(m), self.span.hi, attrs) |
| } else { |
| let unsafety = self.parse_unsafety(); |
| let abi = if self.eat_keyword(keywords::Extern) { |
| self.parse_opt_abi().unwrap_or(abi::C) |
| } else { |
| abi::Rust |
| }; |
| self.expect_keyword(keywords::Fn); |
| let ident = self.parse_ident(); |
| let mut generics = self.parse_generics(); |
| let (explicit_self, decl) = self.parse_fn_decl_with_self(|p| { |
| p.parse_arg() |
| }); |
| self.parse_where_clause(&mut generics); |
| let (inner_attrs, body) = self.parse_inner_attrs_and_block(); |
| let body_span = body.span; |
| let mut new_attrs = attrs; |
| new_attrs.push_all(&inner_attrs[]); |
| (ast::MethDecl(ident, |
| generics, |
| abi, |
| explicit_self, |
| unsafety, |
| decl, |
| body, |
| visa), |
| body_span.hi, new_attrs) |
| } |
| }; |
| P(ast::Method { |
| attrs: new_attrs, |
| id: ast::DUMMY_NODE_ID, |
| span: mk_sp(lo, hi), |
| node: method_, |
| }) |
| } |
| |
| /// Parse trait Foo { ... } |
| fn parse_item_trait(&mut self, unsafety: Unsafety) -> ItemInfo { |
| let ident = self.parse_ident(); |
| let mut tps = self.parse_generics(); |
| let unbound = self.parse_for_sized(); |
| |
| // Parse supertrait bounds. |
| let mut bounds = self.parse_colon_then_ty_param_bounds(BoundParsingMode::Bare); |
| |
| if let Some(unbound) = unbound { |
| let mut bounds_as_vec = bounds.into_vec(); |
| bounds_as_vec.push(TraitTyParamBound(PolyTraitRef { bound_lifetimes: vec![], |
| trait_ref: unbound }, |
| TraitBoundModifier::Maybe)); |
| bounds = OwnedSlice::from_vec(bounds_as_vec); |
| }; |
| |
| self.parse_where_clause(&mut tps); |
| |
| let meths = self.parse_trait_items(); |
| (ident, ItemTrait(unsafety, tps, bounds, meths), None) |
| } |
| |
| fn parse_impl_items(&mut self) -> (Vec<ImplItem>, Vec<Attribute>) { |
| let mut impl_items = Vec::new(); |
| self.expect(&token::OpenDelim(token::Brace)); |
| let (inner_attrs, mut method_attrs) = |
| self.parse_inner_attrs_and_next(); |
| while !self.eat(&token::CloseDelim(token::Brace)) { |
| method_attrs.extend(self.parse_outer_attributes().into_iter()); |
| let vis = self.parse_visibility(); |
| if self.eat_keyword(keywords::Type) { |
| impl_items.push(TypeImplItem(P(self.parse_typedef( |
| method_attrs, |
| vis)))) |
| } else { |
| impl_items.push(MethodImplItem(self.parse_method( |
| method_attrs, |
| vis))); |
| } |
| method_attrs = self.parse_outer_attributes(); |
| } |
| (impl_items, inner_attrs) |
| } |
| |
| /// Parses two variants (with the region/type params always optional): |
| /// impl<T> Foo { ... } |
| /// impl<T> ToString for ~[T] { ... } |
| fn parse_item_impl(&mut self, unsafety: ast::Unsafety) -> ItemInfo { |
| // First, parse type parameters if necessary. |
| let mut generics = self.parse_generics(); |
| |
| // Special case: if the next identifier that follows is '(', don't |
| // allow this to be parsed as a trait. |
| let could_be_trait = self.token != token::OpenDelim(token::Paren); |
| |
| let neg_span = self.span; |
| let polarity = if self.eat(&token::Not) { |
| ast::ImplPolarity::Negative |
| } else { |
| ast::ImplPolarity::Positive |
| }; |
| |
| // Parse the trait. |
| let mut ty = self.parse_ty_sum(); |
| |
| // Parse traits, if necessary. |
| let opt_trait = if could_be_trait && self.eat_keyword(keywords::For) { |
| // New-style trait. Reinterpret the type as a trait. |
| let opt_trait_ref = match ty.node { |
| TyPath(ref path, node_id) => { |
| Some(TraitRef { |
| path: (*path).clone(), |
| ref_id: node_id, |
| }) |
| } |
| _ => { |
| self.span_err(ty.span, "not a trait"); |
| None |
| } |
| }; |
| |
| ty = self.parse_ty_sum(); |
| opt_trait_ref |
| } else { |
| match polarity { |
| ast::ImplPolarity::Negative => { |
| // This is a negated type implementation |
| // `impl !MyType {}`, which is not allowed. |
| self.span_err(neg_span, "inherent implementation can't be negated"); |
| }, |
| _ => {} |
| } |
| None |
| }; |
| |
| self.parse_where_clause(&mut generics); |
| let (impl_items, attrs) = self.parse_impl_items(); |
| |
| let ident = ast_util::impl_pretty_name(&opt_trait, &*ty); |
| |
| (ident, |
| ItemImpl(unsafety, polarity, generics, opt_trait, ty, impl_items), |
| Some(attrs)) |
| } |
| |
| /// Parse a::B<String,int> |
| fn parse_trait_ref(&mut self) -> TraitRef { |
| ast::TraitRef { |
| path: self.parse_path(LifetimeAndTypesWithoutColons), |
| ref_id: ast::DUMMY_NODE_ID, |
| } |
| } |
| |
| fn parse_late_bound_lifetime_defs(&mut self) -> Vec<ast::LifetimeDef> { |
| if self.eat_keyword(keywords::For) { |
| self.expect(&token::Lt); |
| let lifetime_defs = self.parse_lifetime_defs(); |
| self.expect_gt(); |
| lifetime_defs |
| } else { |
| Vec::new() |
| } |
| } |
| |
| /// Parse for<'l> a::B<String,int> |
| fn parse_poly_trait_ref(&mut self) -> PolyTraitRef { |
| let lifetime_defs = self.parse_late_bound_lifetime_defs(); |
| |
| ast::PolyTraitRef { |
| bound_lifetimes: lifetime_defs, |
| trait_ref: self.parse_trait_ref() |
| } |
| } |
| |
| /// Parse struct Foo { ... } |
| fn parse_item_struct(&mut self) -> ItemInfo { |
| let class_name = self.parse_ident(); |
| let mut generics = self.parse_generics(); |
| |
| if self.eat(&token::Colon) { |
| let ty = self.parse_ty_sum(); |
| self.span_err(ty.span, "`virtual` structs have been removed from the language"); |
| } |
| |
| // There is a special case worth noting here, as reported in issue #17904. |
| // If we are parsing a tuple struct it is the case that the where clause |
| // should follow the field list. Like so: |
| // |
| // struct Foo<T>(T) where T: Copy; |
| // |
| // If we are parsing a normal record-style struct it is the case |
| // that the where clause comes before the body, and after the generics. |
| // So if we look ahead and see a brace or a where-clause we begin |
| // parsing a record style struct. |
| // |
| // Otherwise if we look ahead and see a paren we parse a tuple-style |
| // struct. |
| |
| let (fields, ctor_id) = if self.token.is_keyword(keywords::Where) { |
| self.parse_where_clause(&mut generics); |
| if self.eat(&token::Semi) { |
| // If we see a: `struct Foo<T> where T: Copy;` style decl. |
| (Vec::new(), Some(ast::DUMMY_NODE_ID)) |
| } else { |
| // If we see: `struct Foo<T> where T: Copy { ... }` |
| (self.parse_record_struct_body(&class_name), None) |
| } |
| // No `where` so: `struct Foo<T>;` |
| } else if self.eat(&token::Semi) { |
| (Vec::new(), Some(ast::DUMMY_NODE_ID)) |
| // Record-style struct definition |
| } else if self.token == token::OpenDelim(token::Brace) { |
| let fields = self.parse_record_struct_body(&class_name); |
| (fields, None) |
| // Tuple-style struct definition with optional where-clause. |
| } else { |
| let fields = self.parse_tuple_struct_body(&class_name, &mut generics); |
| (fields, Some(ast::DUMMY_NODE_ID)) |
| }; |
| |
| (class_name, |
| ItemStruct(P(ast::StructDef { |
| fields: fields, |
| ctor_id: ctor_id, |
| }), generics), |
| None) |
| } |
| |
| pub fn parse_record_struct_body(&mut self, class_name: &ast::Ident) -> Vec<StructField> { |
| let mut fields = Vec::new(); |
| if self.eat(&token::OpenDelim(token::Brace)) { |
| while self.token != token::CloseDelim(token::Brace) { |
| fields.push(self.parse_struct_decl_field(true)); |
| } |
| |
| if fields.len() == 0 { |
| self.fatal(&format!("unit-like struct definition should be \ |
| written as `struct {};`", |
| token::get_ident(class_name.clone()))[]); |
| } |
| |
| self.bump(); |
| } else { |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected `where`, or `{}` after struct \ |
| name, found `{}`", "{", |
| token_str)[]); |
| } |
| |
| fields |
| } |
| |
| pub fn parse_tuple_struct_body(&mut self, |
| class_name: &ast::Ident, |
| generics: &mut ast::Generics) |
| -> Vec<StructField> { |
| // This is the case where we find `struct Foo<T>(T) where T: Copy;` |
| if self.check(&token::OpenDelim(token::Paren)) { |
| let fields = self.parse_unspanned_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| { |
| let attrs = p.parse_outer_attributes(); |
| let lo = p.span.lo; |
| let struct_field_ = ast::StructField_ { |
| kind: UnnamedField(p.parse_visibility()), |
| id: ast::DUMMY_NODE_ID, |
| ty: p.parse_ty_sum(), |
| attrs: attrs, |
| }; |
| spanned(lo, p.span.hi, struct_field_) |
| }); |
| |
| if fields.len() == 0 { |
| self.fatal(&format!("unit-like struct definition should be \ |
| written as `struct {};`", |
| token::get_ident(class_name.clone()))[]); |
| } |
| |
| self.parse_where_clause(generics); |
| self.expect(&token::Semi); |
| fields |
| // This is the case where we just see struct Foo<T> where T: Copy; |
| } else if self.token.is_keyword(keywords::Where) { |
| self.parse_where_clause(generics); |
| self.expect(&token::Semi); |
| Vec::new() |
| // This case is where we see: `struct Foo<T>;` |
| } else { |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected `where`, `{}`, `(`, or `;` after struct \ |
| name, found `{}`", "{", token_str)[]); |
| } |
| } |
| |
| /// Parse a structure field declaration |
| pub fn parse_single_struct_field(&mut self, |
| vis: Visibility, |
| attrs: Vec<Attribute> ) |
| -> StructField { |
| let a_var = self.parse_name_and_ty(vis, attrs); |
| match self.token { |
| token::Comma => { |
| self.bump(); |
| } |
| token::CloseDelim(token::Brace) => {} |
| _ => { |
| let span = self.span; |
| let token_str = self.this_token_to_string(); |
| self.span_fatal_help(span, |
| &format!("expected `,`, or `}}`, found `{}`", |
| token_str)[], |
| "struct fields should be separated by commas") |
| } |
| } |
| a_var |
| } |
| |
| /// Parse an element of a struct definition |
| fn parse_struct_decl_field(&mut self, allow_pub: bool) -> StructField { |
| |
| let attrs = self.parse_outer_attributes(); |
| |
| if self.eat_keyword(keywords::Pub) { |
| if !allow_pub { |
| let span = self.last_span; |
| self.span_err(span, "`pub` is not allowed here"); |
| } |
| return self.parse_single_struct_field(Public, attrs); |
| } |
| |
| return self.parse_single_struct_field(Inherited, attrs); |
| } |
| |
| /// Parse visibility: PUB, PRIV, or nothing |
| fn parse_visibility(&mut self) -> Visibility { |
| if self.eat_keyword(keywords::Pub) { Public } |
| else { Inherited } |
| } |
| |
| fn parse_for_sized(&mut self) -> Option<ast::TraitRef> { |
| // FIXME, this should really use TraitBoundModifier, but it will get |
| // re-jigged shortly in any case, so leaving the hacky version for now. |
| if self.eat_keyword(keywords::For) { |
| let span = self.span; |
| |
| let mut ate_question = false; |
| if self.eat(&token::Question) { |
| ate_question = true; |
| } |
| let ident = self.parse_ident(); |
| if self.eat(&token::Question) { |
| if ate_question { |
| self.span_err(span, |
| "unexpected `?`"); |
| } |
| ate_question = true; |
| } |
| if !ate_question { |
| self.span_err(span, |
| "expected `?Sized` after `for` in trait item"); |
| return None; |
| } |
| let _tref = Parser::trait_ref_from_ident(ident, span); |
| |
| self.obsolete(span, ObsoleteSyntax::ForSized); |
| |
| None |
| } else { |
| None |
| } |
| } |
| |
| /// Given a termination token and a vector of already-parsed |
| /// attributes (of length 0 or 1), parse all of the items in a module |
| fn parse_mod_items(&mut self, |
| term: token::Token, |
| first_item_attrs: Vec<Attribute>, |
| inner_lo: BytePos) |
| -> Mod { |
| // parse all of the items up to closing or an attribute. |
| // view items are legal here. |
| let ParsedItemsAndViewItems { |
| attrs_remaining, |
| view_items, |
| items: starting_items, |
| .. |
| } = self.parse_items_and_view_items(first_item_attrs, true, true); |
| let mut items: Vec<P<Item>> = starting_items; |
| let attrs_remaining_len = attrs_remaining.len(); |
| |
| // don't think this other loop is even necessary.... |
| |
| let mut first = true; |
| while self.token != term { |
| let mut attrs = self.parse_outer_attributes(); |
| if first { |
| let mut tmp = attrs_remaining.clone(); |
| tmp.push_all(&attrs[]); |
| attrs = tmp; |
| first = false; |
| } |
| debug!("parse_mod_items: parse_item_or_view_item(attrs={:?})", |
| attrs); |
| match self.parse_item_or_view_item(attrs, |
| true /* macros allowed */) { |
| IoviItem(item) => items.push(item), |
| IoviViewItem(view_item) => { |
| self.span_fatal(view_item.span, |
| "view items must be declared at the top of \ |
| the module"); |
| } |
| _ => { |
| let token_str = self.this_token_to_string(); |
| self.fatal(&format!("expected item, found `{}`", |
| token_str)[]) |
| } |
| } |
| } |
| |
| if first && attrs_remaining_len > 0u { |
| // We parsed attributes for the first item but didn't find it |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| Parser::expected_item_err(&attrs_remaining[])); |
| } |
| |
| ast::Mod { |
| inner: mk_sp(inner_lo, self.span.lo), |
| view_items: view_items, |
| items: items |
| } |
| } |
| |
| fn parse_item_const(&mut self, m: Option<Mutability>) -> ItemInfo { |
| let id = self.parse_ident(); |
| self.expect(&token::Colon); |
| let ty = self.parse_ty_sum(); |
| self.expect(&token::Eq); |
| let e = self.parse_expr(); |
| self.commit_expr_expecting(&*e, token::Semi); |
| let item = match m { |
| Some(m) => ItemStatic(ty, m, e), |
| None => ItemConst(ty, e), |
| }; |
| (id, item, None) |
| } |
| |
| /// Parse a `mod <foo> { ... }` or `mod <foo>;` item |
| fn parse_item_mod(&mut self, outer_attrs: &[Attribute]) -> ItemInfo { |
| let id_span = self.span; |
| let id = self.parse_ident(); |
| if self.check(&token::Semi) { |
| self.bump(); |
| // This mod is in an external file. Let's go get it! |
| let (m, attrs) = self.eval_src_mod(id, outer_attrs, id_span); |
| (id, m, Some(attrs)) |
| } else { |
| self.push_mod_path(id, outer_attrs); |
| self.expect(&token::OpenDelim(token::Brace)); |
| let mod_inner_lo = self.span.lo; |
| let old_owns_directory = self.owns_directory; |
| self.owns_directory = true; |
| let (inner, next) = self.parse_inner_attrs_and_next(); |
| let m = self.parse_mod_items(token::CloseDelim(token::Brace), next, mod_inner_lo); |
| self.expect(&token::CloseDelim(token::Brace)); |
| self.owns_directory = old_owns_directory; |
| self.pop_mod_path(); |
| (id, ItemMod(m), Some(inner)) |
| } |
| } |
| |
| fn push_mod_path(&mut self, id: Ident, attrs: &[Attribute]) { |
| let default_path = self.id_to_interned_str(id); |
| let file_path = match ::attr::first_attr_value_str_by_name(attrs, |
| "path") { |
| Some(d) => d, |
| None => default_path, |
| }; |
| self.mod_path_stack.push(file_path) |
| } |
| |
| fn pop_mod_path(&mut self) { |
| self.mod_path_stack.pop().unwrap(); |
| } |
| |
| /// Read a module from a source file. |
| fn eval_src_mod(&mut self, |
| id: ast::Ident, |
| outer_attrs: &[ast::Attribute], |
| id_sp: Span) |
| -> (ast::Item_, Vec<ast::Attribute> ) { |
| let mut prefix = Path::new(self.sess.span_diagnostic.cm.span_to_filename(self.span)); |
| prefix.pop(); |
| let mod_path = Path::new(".").join_many(&self.mod_path_stack[]); |
| let dir_path = prefix.join(&mod_path); |
| let mod_string = token::get_ident(id); |
| let (file_path, owns_directory) = match ::attr::first_attr_value_str_by_name( |
| outer_attrs, "path") { |
| Some(d) => (dir_path.join(d), true), |
| None => { |
| let mod_name = mod_string.get().to_string(); |
| let default_path_str = format!("{}.rs", mod_name); |
| let secondary_path_str = format!("{}/mod.rs", mod_name); |
| let default_path = dir_path.join(&default_path_str[]); |
| let secondary_path = dir_path.join(&secondary_path_str[]); |
| let default_exists = default_path.exists(); |
| let secondary_exists = secondary_path.exists(); |
| |
| if !self.owns_directory { |
| self.span_err(id_sp, |
| "cannot declare a new module at this location"); |
| let this_module = match self.mod_path_stack.last() { |
| Some(name) => name.get().to_string(), |
| None => self.root_module_name.as_ref().unwrap().clone(), |
| }; |
| self.span_note(id_sp, |
| &format!("maybe move this module `{0}` \ |
| to its own directory via \ |
| `{0}/mod.rs`", |
| this_module)[]); |
| if default_exists || secondary_exists { |
| self.span_note(id_sp, |
| &format!("... or maybe `use` the module \ |
| `{}` instead of possibly \ |
| redeclaring it", |
| mod_name)[]); |
| } |
| self.abort_if_errors(); |
| } |
| |
| match (default_exists, secondary_exists) { |
| (true, false) => (default_path, false), |
| (false, true) => (secondary_path, true), |
| (false, false) => { |
| self.span_fatal_help(id_sp, |
| &format!("file not found for module `{}`", |
| mod_name)[], |
| &format!("name the file either {} or {} inside \ |
| the directory {:?}", |
| default_path_str, |
| secondary_path_str, |
| dir_path.display())[]); |
| } |
| (true, true) => { |
| self.span_fatal_help( |
| id_sp, |
| &format!("file for module `{}` found at both {} \ |
| and {}", |
| mod_name, |
| default_path_str, |
| secondary_path_str)[], |
| "delete or rename one of them to remove the ambiguity"); |
| } |
| } |
| } |
| }; |
| |
| self.eval_src_mod_from_path(file_path, owns_directory, |
| mod_string.get().to_string(), id_sp) |
| } |
| |
| fn eval_src_mod_from_path(&mut self, |
| path: Path, |
| owns_directory: bool, |
| name: String, |
| id_sp: Span) -> (ast::Item_, Vec<ast::Attribute> ) { |
| let mut included_mod_stack = self.sess.included_mod_stack.borrow_mut(); |
| match included_mod_stack.iter().position(|p| *p == path) { |
| Some(i) => { |
| let mut err = String::from_str("circular modules: "); |
| let len = included_mod_stack.len(); |
| for p in included_mod_stack.slice(i, len).iter() { |
| err.push_str(&p.display().as_cow()[]); |
| err.push_str(" -> "); |
| } |
| err.push_str(&path.display().as_cow()[]); |
| self.span_fatal(id_sp, &err[]); |
| } |
| None => () |
| } |
| included_mod_stack.push(path.clone()); |
| drop(included_mod_stack); |
| |
| let mut p0 = |
| new_sub_parser_from_file(self.sess, |
| self.cfg.clone(), |
| &path, |
| owns_directory, |
| Some(name), |
| id_sp); |
| let mod_inner_lo = p0.span.lo; |
| let (mod_attrs, next) = p0.parse_inner_attrs_and_next(); |
| let first_item_outer_attrs = next; |
| let m0 = p0.parse_mod_items(token::Eof, first_item_outer_attrs, mod_inner_lo); |
| self.sess.included_mod_stack.borrow_mut().pop(); |
| return (ast::ItemMod(m0), mod_attrs); |
| } |
| |
| /// Parse a function declaration from a foreign module |
| fn parse_item_foreign_fn(&mut self, vis: ast::Visibility, |
| attrs: Vec<Attribute>) -> P<ForeignItem> { |
| let lo = self.span.lo; |
| self.expect_keyword(keywords::Fn); |
| |
| let (ident, mut generics) = self.parse_fn_header(); |
| let decl = self.parse_fn_decl(true); |
| self.parse_where_clause(&mut generics); |
| let hi = self.span.hi; |
| self.expect(&token::Semi); |
| P(ast::ForeignItem { |
| ident: ident, |
| attrs: attrs, |
| node: ForeignItemFn(decl, generics), |
| id: ast::DUMMY_NODE_ID, |
| span: mk_sp(lo, hi), |
| vis: vis |
| }) |
| } |
| |
| /// Parse a static item from a foreign module |
| fn parse_item_foreign_static(&mut self, vis: ast::Visibility, |
| attrs: Vec<Attribute>) -> P<ForeignItem> { |
| let lo = self.span.lo; |
| |
| self.expect_keyword(keywords::Static); |
| let mutbl = self.eat_keyword(keywords::Mut); |
| |
| let ident = self.parse_ident(); |
| self.expect(&token::Colon); |
| let ty = self.parse_ty_sum(); |
| let hi = self.span.hi; |
| self.expect(&token::Semi); |
| P(ForeignItem { |
| ident: ident, |
| attrs: attrs, |
| node: ForeignItemStatic(ty, mutbl), |
| id: ast::DUMMY_NODE_ID, |
| span: mk_sp(lo, hi), |
| vis: vis |
| }) |
| } |
| |
| /// At this point, this is essentially a wrapper for |
| /// parse_foreign_items. |
| fn parse_foreign_mod_items(&mut self, |
| abi: abi::Abi, |
| first_item_attrs: Vec<Attribute> ) |
| -> ForeignMod { |
| let ParsedItemsAndViewItems { |
| attrs_remaining, |
| view_items, |
| items: _, |
| foreign_items, |
| } = self.parse_foreign_items(first_item_attrs, true); |
| if !attrs_remaining.is_empty() { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| Parser::expected_item_err(&attrs_remaining[])); |
| } |
| assert!(self.token == token::CloseDelim(token::Brace)); |
| ast::ForeignMod { |
| abi: abi, |
| view_items: view_items, |
| items: foreign_items |
| } |
| } |
| |
| /// Parse extern crate links |
| /// |
| /// # Example |
| /// |
| /// extern crate url; |
| /// extern crate foo = "bar"; //deprecated |
| /// extern crate "bar" as foo; |
| fn parse_item_extern_crate(&mut self, |
| lo: BytePos, |
| visibility: Visibility, |
| attrs: Vec<Attribute> ) |
| -> ItemOrViewItem { |
| |
| let span = self.span; |
| let (maybe_path, ident) = match self.token { |
| token::Ident(..) => { |
| let the_ident = self.parse_ident(); |
| let path = if self.token == token::Eq { |
| self.bump(); |
| let path = self.parse_str(); |
| let span = self.span; |
| self.obsolete(span, ObsoleteSyntax::ExternCrateRenaming); |
| Some(path) |
| } else if self.eat_keyword(keywords::As) { |
| // skip the ident if there is one |
| if self.token.is_ident() { self.bump(); } |
| |
| self.span_err(span, "expected `;`, found `as`"); |
| self.span_help(span, |
| &format!("perhaps you meant to enclose the crate name `{}` in \ |
| a string?", |
| the_ident.as_str())[]); |
| None |
| } else { |
| None |
| }; |
| self.expect(&token::Semi); |
| (path, the_ident) |
| }, |
| token::Literal(token::Str_(..), suf) | token::Literal(token::StrRaw(..), suf) => { |
| let sp = self.span; |
| self.expect_no_suffix(sp, "extern crate name", suf); |
| // forgo the internal suffix check of `parse_str` to |
| // avoid repeats (this unwrap will always succeed due |
| // to the restriction of the `match`) |
| let (s, style, _) = self.parse_optional_str().unwrap(); |
| self.expect_keyword(keywords::As); |
| let the_ident = self.parse_ident(); |
| self.expect(&token::Semi); |
| (Some((s, style)), the_ident) |
| }, |
| _ => { |
| let span = self.span; |
| let token_str = self.this_token_to_string(); |
| self.span_fatal(span, |
| &format!("expected extern crate name but \ |
| found `{}`", |
| token_str)[]); |
| } |
| }; |
| |
| IoviViewItem(ast::ViewItem { |
| node: ViewItemExternCrate(ident, maybe_path, ast::DUMMY_NODE_ID), |
| attrs: attrs, |
| vis: visibility, |
| span: mk_sp(lo, self.last_span.hi) |
| }) |
| } |
| |
| /// Parse `extern` for foreign ABIs |
| /// modules. |
| /// |
| /// `extern` is expected to have been |
| /// consumed before calling this method |
| /// |
| /// # Examples: |
| /// |
| /// extern "C" {} |
| /// extern {} |
| fn parse_item_foreign_mod(&mut self, |
| lo: BytePos, |
| opt_abi: Option<abi::Abi>, |
| visibility: Visibility, |
| attrs: Vec<Attribute> ) |
| -> ItemOrViewItem { |
| |
| self.expect(&token::OpenDelim(token::Brace)); |
| |
| let abi = opt_abi.unwrap_or(abi::C); |
| |
| let (inner, next) = self.parse_inner_attrs_and_next(); |
| let m = self.parse_foreign_mod_items(abi, next); |
| self.expect(&token::CloseDelim(token::Brace)); |
| |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| special_idents::invalid, |
| ItemForeignMod(m), |
| visibility, |
| maybe_append(attrs, Some(inner))); |
| return IoviItem(item); |
| } |
| |
| /// Parse type Foo = Bar; |
| fn parse_item_type(&mut self) -> ItemInfo { |
| let ident = self.parse_ident(); |
| let mut tps = self.parse_generics(); |
| self.parse_where_clause(&mut tps); |
| self.expect(&token::Eq); |
| let ty = self.parse_ty_sum(); |
| self.expect(&token::Semi); |
| (ident, ItemTy(ty, tps), None) |
| } |
| |
| /// Parse a structure-like enum variant definition |
| /// this should probably be renamed or refactored... |
| fn parse_struct_def(&mut self) -> P<StructDef> { |
| let mut fields: Vec<StructField> = Vec::new(); |
| while self.token != token::CloseDelim(token::Brace) { |
| fields.push(self.parse_struct_decl_field(false)); |
| } |
| self.bump(); |
| |
| P(StructDef { |
| fields: fields, |
| ctor_id: None, |
| }) |
| } |
| |
| /// Parse the part of an "enum" decl following the '{' |
| fn parse_enum_def(&mut self, _generics: &ast::Generics) -> EnumDef { |
| let mut variants = Vec::new(); |
| let mut all_nullary = true; |
| let mut any_disr = None; |
| while self.token != token::CloseDelim(token::Brace) { |
| let variant_attrs = self.parse_outer_attributes(); |
| let vlo = self.span.lo; |
| |
| let vis = self.parse_visibility(); |
| |
| let ident; |
| let kind; |
| let mut args = Vec::new(); |
| let mut disr_expr = None; |
| ident = self.parse_ident(); |
| if self.eat(&token::OpenDelim(token::Brace)) { |
| // Parse a struct variant. |
| all_nullary = false; |
| let start_span = self.span; |
| let struct_def = self.parse_struct_def(); |
| if struct_def.fields.len() == 0 { |
| self.span_err(start_span, |
| &format!("unit-like struct variant should be written \ |
| without braces, as `{},`", |
| token::get_ident(ident))[]); |
| } |
| kind = StructVariantKind(struct_def); |
| } else if self.check(&token::OpenDelim(token::Paren)) { |
| all_nullary = false; |
| let arg_tys = self.parse_enum_variant_seq( |
| &token::OpenDelim(token::Paren), |
| &token::CloseDelim(token::Paren), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_ty_sum() |
| ); |
| for ty in arg_tys.into_iter() { |
| args.push(ast::VariantArg { |
| ty: ty, |
| id: ast::DUMMY_NODE_ID, |
| }); |
| } |
| kind = TupleVariantKind(args); |
| } else if self.eat(&token::Eq) { |
| disr_expr = Some(self.parse_expr()); |
| any_disr = disr_expr.as_ref().map(|expr| expr.span); |
| kind = TupleVariantKind(args); |
| } else { |
| kind = TupleVariantKind(Vec::new()); |
| } |
| |
| let vr = ast::Variant_ { |
| name: ident, |
| attrs: variant_attrs, |
| kind: kind, |
| id: ast::DUMMY_NODE_ID, |
| disr_expr: disr_expr, |
| vis: vis, |
| }; |
| variants.push(P(spanned(vlo, self.last_span.hi, vr))); |
| |
| if !self.eat(&token::Comma) { break; } |
| } |
| self.expect(&token::CloseDelim(token::Brace)); |
| match any_disr { |
| Some(disr_span) if !all_nullary => |
| self.span_err(disr_span, |
| "discriminator values can only be used with a c-like enum"), |
| _ => () |
| } |
| |
| ast::EnumDef { variants: variants } |
| } |
| |
| /// Parse an "enum" declaration |
| fn parse_item_enum(&mut self) -> ItemInfo { |
| let id = self.parse_ident(); |
| let mut generics = self.parse_generics(); |
| self.parse_where_clause(&mut generics); |
| self.expect(&token::OpenDelim(token::Brace)); |
| |
| let enum_definition = self.parse_enum_def(&generics); |
| (id, ItemEnum(enum_definition, generics), None) |
| } |
| |
| fn fn_expr_lookahead(tok: &token::Token) -> bool { |
| match *tok { |
| token::OpenDelim(token::Paren) | token::At | token::Tilde | token::BinOp(_) => true, |
| _ => false |
| } |
| } |
| |
| /// Parses a string as an ABI spec on an extern type or module. Consumes |
| /// the `extern` keyword, if one is found. |
| fn parse_opt_abi(&mut self) -> Option<abi::Abi> { |
| match self.token { |
| token::Literal(token::Str_(s), suf) | token::Literal(token::StrRaw(s, _), suf) => { |
| let sp = self.span; |
| self.expect_no_suffix(sp, "ABI spec", suf); |
| self.bump(); |
| let the_string = s.as_str(); |
| match abi::lookup(the_string) { |
| Some(abi) => Some(abi), |
| None => { |
| let last_span = self.last_span; |
| self.span_err( |
| last_span, |
| &format!("illegal ABI: expected one of [{}], \ |
| found `{}`", |
| abi::all_names().connect(", "), |
| the_string)[]); |
| None |
| } |
| } |
| } |
| |
| _ => None, |
| } |
| } |
| |
| /// Parse one of the items or view items allowed by the |
| /// flags; on failure, return IoviNone. |
| /// NB: this function no longer parses the items inside an |
| /// extern crate. |
| fn parse_item_or_view_item(&mut self, |
| attrs: Vec<Attribute> , |
| macros_allowed: bool) |
| -> ItemOrViewItem { |
| let nt_item = match self.token { |
| token::Interpolated(token::NtItem(ref item)) => { |
| Some((**item).clone()) |
| } |
| _ => None |
| }; |
| match nt_item { |
| Some(mut item) => { |
| self.bump(); |
| let mut attrs = attrs; |
| mem::swap(&mut item.attrs, &mut attrs); |
| item.attrs.extend(attrs.into_iter()); |
| return IoviItem(P(item)); |
| } |
| None => {} |
| } |
| |
| let lo = self.span.lo; |
| |
| let visibility = self.parse_visibility(); |
| |
| // must be a view item: |
| if self.eat_keyword(keywords::Use) { |
| // USE ITEM (IoviViewItem) |
| let view_item = self.parse_use(); |
| self.expect(&token::Semi); |
| return IoviViewItem(ast::ViewItem { |
| node: view_item, |
| attrs: attrs, |
| vis: visibility, |
| span: mk_sp(lo, self.last_span.hi) |
| }); |
| } |
| // either a view item or an item: |
| if self.eat_keyword(keywords::Extern) { |
| let next_is_mod = self.eat_keyword(keywords::Mod); |
| |
| if next_is_mod || self.eat_keyword(keywords::Crate) { |
| if next_is_mod { |
| let last_span = self.last_span; |
| self.span_err(mk_sp(lo, last_span.hi), |
| &format!("`extern mod` is obsolete, use \ |
| `extern crate` instead \ |
| to refer to external \ |
| crates.")[]) |
| } |
| return self.parse_item_extern_crate(lo, visibility, attrs); |
| } |
| |
| let opt_abi = self.parse_opt_abi(); |
| |
| if self.eat_keyword(keywords::Fn) { |
| // EXTERN FUNCTION ITEM |
| let abi = opt_abi.unwrap_or(abi::C); |
| let (ident, item_, extra_attrs) = |
| self.parse_item_fn(Unsafety::Normal, abi); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } else if self.check(&token::OpenDelim(token::Brace)) { |
| return self.parse_item_foreign_mod(lo, opt_abi, visibility, attrs); |
| } |
| |
| let span = self.span; |
| let token_str = self.this_token_to_string(); |
| self.span_fatal(span, |
| &format!("expected `{}` or `fn`, found `{}`", "{", |
| token_str)[]); |
| } |
| |
| if self.eat_keyword(keywords::Virtual) { |
| let span = self.span; |
| self.span_err(span, "`virtual` structs have been removed from the language"); |
| } |
| |
| // the rest are all guaranteed to be items: |
| if self.token.is_keyword(keywords::Static) { |
| // STATIC ITEM |
| self.bump(); |
| let m = if self.eat_keyword(keywords::Mut) {MutMutable} else {MutImmutable}; |
| let (ident, item_, extra_attrs) = self.parse_item_const(Some(m)); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.token.is_keyword(keywords::Const) { |
| // CONST ITEM |
| self.bump(); |
| if self.eat_keyword(keywords::Mut) { |
| let last_span = self.last_span; |
| self.span_err(last_span, "const globals cannot be mutable"); |
| self.span_help(last_span, "did you mean to declare a static?"); |
| } |
| let (ident, item_, extra_attrs) = self.parse_item_const(None); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.token.is_keyword(keywords::Unsafe) && |
| self.look_ahead(1u, |t| t.is_keyword(keywords::Trait)) |
| { |
| // UNSAFE TRAIT ITEM |
| self.expect_keyword(keywords::Unsafe); |
| self.expect_keyword(keywords::Trait); |
| let (ident, item_, extra_attrs) = |
| self.parse_item_trait(ast::Unsafety::Unsafe); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.token.is_keyword(keywords::Unsafe) && |
| self.look_ahead(1u, |t| t.is_keyword(keywords::Impl)) |
| { |
| // IMPL ITEM |
| self.expect_keyword(keywords::Unsafe); |
| self.expect_keyword(keywords::Impl); |
| let (ident, item_, extra_attrs) = self.parse_item_impl(ast::Unsafety::Unsafe); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.token.is_keyword(keywords::Fn) && |
| self.look_ahead(1, |f| !Parser::fn_expr_lookahead(f)) { |
| // FUNCTION ITEM |
| self.bump(); |
| let (ident, item_, extra_attrs) = |
| self.parse_item_fn(Unsafety::Normal, abi::Rust); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.token.is_keyword(keywords::Unsafe) |
| && self.look_ahead(1u, |t| *t != token::OpenDelim(token::Brace)) { |
| // UNSAFE FUNCTION ITEM |
| self.bump(); |
| let abi = if self.eat_keyword(keywords::Extern) { |
| self.parse_opt_abi().unwrap_or(abi::C) |
| } else { |
| abi::Rust |
| }; |
| self.expect_keyword(keywords::Fn); |
| let (ident, item_, extra_attrs) = |
| self.parse_item_fn(Unsafety::Unsafe, abi); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.eat_keyword(keywords::Mod) { |
| // MODULE ITEM |
| let (ident, item_, extra_attrs) = |
| self.parse_item_mod(&attrs[]); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.eat_keyword(keywords::Type) { |
| // TYPE ITEM |
| let (ident, item_, extra_attrs) = self.parse_item_type(); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.eat_keyword(keywords::Enum) { |
| // ENUM ITEM |
| let (ident, item_, extra_attrs) = self.parse_item_enum(); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.eat_keyword(keywords::Trait) { |
| // TRAIT ITEM |
| let (ident, item_, extra_attrs) = |
| self.parse_item_trait(ast::Unsafety::Normal); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.eat_keyword(keywords::Impl) { |
| // IMPL ITEM |
| let (ident, item_, extra_attrs) = self.parse_item_impl(ast::Unsafety::Normal); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| if self.eat_keyword(keywords::Struct) { |
| // STRUCT ITEM |
| let (ident, item_, extra_attrs) = self.parse_item_struct(); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| ident, |
| item_, |
| visibility, |
| maybe_append(attrs, extra_attrs)); |
| return IoviItem(item); |
| } |
| self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility) |
| } |
| |
| /// Parse a foreign item; on failure, return IoviNone. |
| fn parse_foreign_item(&mut self, |
| attrs: Vec<Attribute> , |
| macros_allowed: bool) |
| -> ItemOrViewItem { |
| maybe_whole!(iovi self, NtItem); |
| let lo = self.span.lo; |
| |
| let visibility = self.parse_visibility(); |
| |
| if self.token.is_keyword(keywords::Static) { |
| // FOREIGN STATIC ITEM |
| let item = self.parse_item_foreign_static(visibility, attrs); |
| return IoviForeignItem(item); |
| } |
| if self.token.is_keyword(keywords::Fn) || self.token.is_keyword(keywords::Unsafe) { |
| // FOREIGN FUNCTION ITEM |
| let item = self.parse_item_foreign_fn(visibility, attrs); |
| return IoviForeignItem(item); |
| } |
| self.parse_macro_use_or_failure(attrs,macros_allowed,lo,visibility) |
| } |
| |
| /// This is the fall-through for parsing items. |
| fn parse_macro_use_or_failure( |
| &mut self, |
| attrs: Vec<Attribute> , |
| macros_allowed: bool, |
| lo: BytePos, |
| visibility: Visibility |
| ) -> ItemOrViewItem { |
| if macros_allowed && !self.token.is_any_keyword() |
| && self.look_ahead(1, |t| *t == token::Not) |
| && (self.look_ahead(2, |t| t.is_plain_ident()) |
| || self.look_ahead(2, |t| *t == token::OpenDelim(token::Paren)) |
| || self.look_ahead(2, |t| *t == token::OpenDelim(token::Brace))) { |
| // MACRO INVOCATION ITEM |
| |
| // item macro. |
| let pth = self.parse_path(NoTypesAllowed); |
| self.expect(&token::Not); |
| |
| // a 'special' identifier (like what `macro_rules!` uses) |
| // is optional. We should eventually unify invoc syntax |
| // and remove this. |
| let id = if self.token.is_plain_ident() { |
| self.parse_ident() |
| } else { |
| token::special_idents::invalid // no special identifier |
| }; |
| // eat a matched-delimiter token tree: |
| let delim = self.expect_open_delim(); |
| let tts = self.parse_seq_to_end(&token::CloseDelim(delim), |
| seq_sep_none(), |
| |p| p.parse_token_tree()); |
| // single-variant-enum... : |
| let m = ast::MacInvocTT(pth, tts, EMPTY_CTXT); |
| let m: ast::Mac = codemap::Spanned { node: m, |
| span: mk_sp(self.span.lo, |
| self.span.hi) }; |
| |
| if delim != token::Brace { |
| if !self.eat(&token::Semi) { |
| let last_span = self.last_span; |
| self.span_err(last_span, |
| "macros that expand to items must either \ |
| be surrounded with braces or followed by \ |
| a semicolon"); |
| } |
| } |
| |
| let item_ = ItemMac(m); |
| let last_span = self.last_span; |
| let item = self.mk_item(lo, |
| last_span.hi, |
| id, |
| item_, |
| visibility, |
| attrs); |
| return IoviItem(item); |
| } |
| |
| // FAILURE TO PARSE ITEM |
| match visibility { |
| Inherited => {} |
| Public => { |
| let last_span = self.last_span; |
| self.span_fatal(last_span, "unmatched visibility `pub`"); |
| } |
| } |
| return IoviNone(attrs); |
| } |
| |
| pub fn parse_item_with_outer_attributes(&mut self) -> Option<P<Item>> { |
| let attrs = self.parse_outer_attributes(); |
| self.parse_item(attrs) |
| } |
| |
| pub fn parse_item(&mut self, attrs: Vec<Attribute>) -> Option<P<Item>> { |
| match self.parse_item_or_view_item(attrs, true) { |
| IoviNone(_) => None, |
| IoviViewItem(_) => |
| self.fatal("view items are not allowed here"), |
| IoviForeignItem(_) => |
| self.fatal("foreign items are not allowed here"), |
| IoviItem(item) => Some(item) |
| } |
| } |
| |
| /// Parse a ViewItem, e.g. `use foo::bar` or `extern crate foo` |
| pub fn parse_view_item(&mut self, attrs: Vec<Attribute>) -> ViewItem { |
| match self.parse_item_or_view_item(attrs, false) { |
| IoviViewItem(vi) => vi, |
| _ => self.fatal("expected `use` or `extern crate`"), |
| } |
| } |
| |
| /// Parse, e.g., "use a::b::{z,y}" |
| fn parse_use(&mut self) -> ViewItem_ { |
| return ViewItemUse(self.parse_view_path()); |
| } |
| |
| |
| /// Matches view_path : MOD? non_global_path as IDENT |
| /// | MOD? non_global_path MOD_SEP LBRACE RBRACE |
| /// | MOD? non_global_path MOD_SEP LBRACE ident_seq RBRACE |
| /// | MOD? non_global_path MOD_SEP STAR |
| /// | MOD? non_global_path |
| fn parse_view_path(&mut self) -> P<ViewPath> { |
| let lo = self.span.lo; |
| |
| // Allow a leading :: because the paths are absolute either way. |
| // This occurs with "use $crate::..." in macros. |
| self.eat(&token::ModSep); |
| |
| if self.check(&token::OpenDelim(token::Brace)) { |
| // use {foo,bar} |
| let idents = self.parse_unspanned_seq( |
| &token::OpenDelim(token::Brace), |
| &token::CloseDelim(token::Brace), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_path_list_item()); |
| let path = ast::Path { |
| span: mk_sp(lo, self.span.hi), |
| global: false, |
| segments: Vec::new() |
| }; |
| return P(spanned(lo, self.span.hi, |
| ViewPathList(path, idents, ast::DUMMY_NODE_ID))); |
| } |
| |
| let first_ident = self.parse_ident(); |
| let mut path = vec!(first_ident); |
| match self.token { |
| token::Eq => { |
| // x = foo::bar |
| self.bump(); |
| let path_lo = self.span.lo; |
| path = vec!(self.parse_ident()); |
| while self.check(&token::ModSep) { |
| self.bump(); |
| let id = self.parse_ident(); |
| path.push(id); |
| } |
| let span = mk_sp(path_lo, self.span.hi); |
| self.obsolete(span, ObsoleteSyntax::ImportRenaming); |
| let path = ast::Path { |
| span: span, |
| global: false, |
| segments: path.into_iter().map(|identifier| { |
| ast::PathSegment { |
| identifier: identifier, |
| parameters: ast::PathParameters::none(), |
| } |
| }).collect() |
| }; |
| return P(spanned(lo, self.span.hi, |
| ViewPathSimple(first_ident, path, |
| ast::DUMMY_NODE_ID))); |
| } |
| |
| token::ModSep => { |
| // foo::bar or foo::{a,b,c} or foo::* |
| while self.check(&token::ModSep) { |
| self.bump(); |
| |
| match self.token { |
| token::Ident(i, _) => { |
| self.bump(); |
| path.push(i); |
| } |
| |
| // foo::bar::{a,b,c} |
| token::OpenDelim(token::Brace) => { |
| let idents = self.parse_unspanned_seq( |
| &token::OpenDelim(token::Brace), |
| &token::CloseDelim(token::Brace), |
| seq_sep_trailing_allowed(token::Comma), |
| |p| p.parse_path_list_item() |
| ); |
| let path = ast::Path { |
| span: mk_sp(lo, self.span.hi), |
| global: false, |
| segments: path.into_iter().map(|identifier| { |
| ast::PathSegment { |
| identifier: identifier, |
| parameters: ast::PathParameters::none(), |
| } |
| }).collect() |
| }; |
| return P(spanned(lo, self.span.hi, |
| ViewPathList(path, idents, ast::DUMMY_NODE_ID))); |
| } |
| |
| // foo::bar::* |
| token::BinOp(token::Star) => { |
| self.bump(); |
| let path = ast::Path { |
| span: mk_sp(lo, self.span.hi), |
| global: false, |
| segments: path.into_iter().map(|identifier| { |
| ast::PathSegment { |
| identifier: identifier, |
| parameters: ast::PathParameters::none(), |
| } |
| }).collect() |
| }; |
| return P(spanned(lo, self.span.hi, |
| ViewPathGlob(path, ast::DUMMY_NODE_ID))); |
| } |
| |
| _ => break |
| } |
| } |
| } |
| _ => () |
| } |
| let mut rename_to = path[path.len() - 1u]; |
| let path = ast::Path { |
| span: mk_sp(lo, self.last_span.hi), |
| global: false, |
| segments: path.into_iter().map(|identifier| { |
| ast::PathSegment { |
| identifier: identifier, |
| parameters: ast::PathParameters::none(), |
| } |
| }).collect() |
| }; |
| if self.eat_keyword(keywords::As) { |
| rename_to = self.parse_ident() |
| } |
| P(spanned(lo, |
| self.last_span.hi, |
| ViewPathSimple(rename_to, path, ast::DUMMY_NODE_ID))) |
| } |
| |
| /// Parses a sequence of items. Stops when it finds program |
| /// text that can't be parsed as an item |
| /// - mod_items uses extern_mod_allowed = true |
| /// - block_tail_ uses extern_mod_allowed = false |
| fn parse_items_and_view_items(&mut self, |
| first_item_attrs: Vec<Attribute> , |
| mut extern_mod_allowed: bool, |
| macros_allowed: bool) |
| -> ParsedItemsAndViewItems { |
| let mut attrs = first_item_attrs; |
| attrs.push_all(&self.parse_outer_attributes()[]); |
| // First, parse view items. |
| let mut view_items : Vec<ast::ViewItem> = Vec::new(); |
| let mut items = Vec::new(); |
| |
| // I think this code would probably read better as a single |
| // loop with a mutable three-state-variable (for extern crates, |
| // view items, and regular items) ... except that because |
| // of macros, I'd like to delay that entire check until later. |
| loop { |
| match self.parse_item_or_view_item(attrs, macros_allowed) { |
| IoviNone(attrs) => { |
| return ParsedItemsAndViewItems { |
| attrs_remaining: attrs, |
| view_items: view_items, |
| items: items, |
| foreign_items: Vec::new() |
| } |
| } |
| IoviViewItem(view_item) => { |
| match view_item.node { |
| ViewItemUse(..) => { |
| // `extern crate` must precede `use`. |
| extern_mod_allowed = false; |
| } |
| ViewItemExternCrate(..) if !extern_mod_allowed => { |
| self.span_err(view_item.span, |
| "\"extern crate\" declarations are \ |
| not allowed here"); |
| } |
| ViewItemExternCrate(..) => {} |
| } |
| view_items.push(view_item); |
| } |
| IoviItem(item) => { |
| items.push(item); |
| attrs = self.parse_outer_attributes(); |
| break; |
| } |
| IoviForeignItem(_) => { |
| panic!(); |
| } |
| } |
| attrs = self.parse_outer_attributes(); |
| } |
| |
| // Next, parse items. |
| loop { |
| match self.parse_item_or_view_item(attrs, macros_allowed) { |
| IoviNone(returned_attrs) => { |
| attrs = returned_attrs; |
| break |
| } |
| IoviViewItem(view_item) => { |
| attrs = self.parse_outer_attributes(); |
| self.span_err(view_item.span, |
| "`use` and `extern crate` declarations must precede items"); |
| } |
| IoviItem(item) => { |
| attrs = self.parse_outer_attributes(); |
| items.push(item) |
| } |
| IoviForeignItem(_) => { |
| panic!(); |
| } |
| } |
| } |
| |
| ParsedItemsAndViewItems { |
| attrs_remaining: attrs, |
| view_items: view_items, |
| items: items, |
| foreign_items: Vec::new() |
| } |
| } |
| |
| /// Parses a sequence of foreign items. Stops when it finds program |
| /// text that can't be parsed as an item |
| fn parse_foreign_items(&mut self, first_item_attrs: Vec<Attribute> , |
| macros_allowed: bool) |
| -> ParsedItemsAndViewItems { |
| let mut attrs = first_item_attrs; |
| attrs.push_all(&self.parse_outer_attributes()[]); |
| let mut foreign_items = Vec::new(); |
| loop { |
| match self.parse_foreign_item(attrs, macros_allowed) { |
| IoviNone(returned_attrs) => { |
| if self.check(&token::CloseDelim(token::Brace)) { |
| attrs = returned_attrs; |
| break |
| } |
| self.unexpected(); |
| }, |
| IoviViewItem(view_item) => { |
| // I think this can't occur: |
| self.span_err(view_item.span, |
| "`use` and `extern crate` declarations must precede items"); |
| } |
| IoviItem(item) => { |
| // FIXME #5668: this will occur for a macro invocation: |
| self.span_fatal(item.span, "macros cannot expand to foreign items"); |
| } |
| IoviForeignItem(foreign_item) => { |
| foreign_items.push(foreign_item); |
| } |
| } |
| attrs = self.parse_outer_attributes(); |
| } |
| |
| ParsedItemsAndViewItems { |
| attrs_remaining: attrs, |
| view_items: Vec::new(), |
| items: Vec::new(), |
| foreign_items: foreign_items |
| } |
| } |
| |
| /// Parses a source module as a crate. This is the main |
| /// entry point for the parser. |
| pub fn parse_crate_mod(&mut self) -> Crate { |
| let lo = self.span.lo; |
| // parse the crate's inner attrs, maybe (oops) one |
| // of the attrs of an item: |
| let (inner, next) = self.parse_inner_attrs_and_next(); |
| let first_item_outer_attrs = next; |
| // parse the items inside the crate: |
| let m = self.parse_mod_items(token::Eof, first_item_outer_attrs, lo); |
| |
| ast::Crate { |
| module: m, |
| attrs: inner, |
| config: self.cfg.clone(), |
| span: mk_sp(lo, self.span.lo), |
| exported_macros: Vec::new(), |
| } |
| } |
| |
| pub fn parse_optional_str(&mut self) |
| -> Option<(InternedString, ast::StrStyle, Option<ast::Name>)> { |
| let ret = match self.token { |
| token::Literal(token::Str_(s), suf) => { |
| (self.id_to_interned_str(s.ident()), ast::CookedStr, suf) |
| } |
| token::Literal(token::StrRaw(s, n), suf) => { |
| (self.id_to_interned_str(s.ident()), ast::RawStr(n), suf) |
| } |
| _ => return None |
| }; |
| self.bump(); |
| Some(ret) |
| } |
| |
| pub fn parse_str(&mut self) -> (InternedString, StrStyle) { |
| match self.parse_optional_str() { |
| Some((s, style, suf)) => { |
| let sp = self.last_span; |
| self.expect_no_suffix(sp, "str literal", suf); |
| (s, style) |
| } |
| _ => self.fatal("expected string literal") |
| } |
| } |
| } |