| // Copyright 2014 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! A growable list type, written `Vec<T>` but pronounced 'vector.' |
| //! |
| //! Vectors have `O(1)` indexing, push (to the end) and pop (from the end). |
| //! |
| //! # Examples |
| //! |
| //! Explicitly creating a `Vec<T>` with `new()`: |
| //! |
| //! ``` |
| //! let xs: Vec<i32> = Vec::new(); |
| //! ``` |
| //! |
| //! Using the `vec!` macro: |
| //! |
| //! ``` |
| //! let ys: Vec<i32> = vec![]; |
| //! |
| //! let zs = vec![1i32, 2, 3, 4, 5]; |
| //! ``` |
| //! |
| //! Push: |
| //! |
| //! ``` |
| //! let mut xs = vec![1i32, 2]; |
| //! |
| //! xs.push(3); |
| //! ``` |
| //! |
| //! And pop: |
| //! |
| //! ``` |
| //! let mut xs = vec![1i32, 2]; |
| //! |
| //! let two = xs.pop(); |
| //! ``` |
| |
| use core::prelude::*; |
| |
| use alloc::boxed::Box; |
| use alloc::heap::{EMPTY, allocate, reallocate, deallocate}; |
| use core::borrow::{Cow, IntoCow}; |
| use core::cmp::max; |
| use core::cmp::{Equiv, Ordering}; |
| use core::default::Default; |
| use core::fmt; |
| use core::hash::{mod, Hash}; |
| use core::iter::{repeat, FromIterator}; |
| use core::kinds::marker::{ContravariantLifetime, InvariantType}; |
| use core::mem; |
| use core::nonzero::NonZero; |
| use core::num::{Int, UnsignedInt}; |
| use core::ops::{Index, IndexMut, Deref, Add}; |
| use core::ops; |
| use core::ptr; |
| use core::raw::Slice as RawSlice; |
| use core::uint; |
| |
| use slice::CloneSliceExt; |
| |
| /// A growable list type, written `Vec<T>` but pronounced 'vector.' |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec = Vec::new(); |
| /// vec.push(1i); |
| /// vec.push(2i); |
| /// |
| /// assert_eq!(vec.len(), 2); |
| /// assert_eq!(vec[0], 1); |
| /// |
| /// assert_eq!(vec.pop(), Some(2)); |
| /// assert_eq!(vec.len(), 1); |
| /// |
| /// vec[0] = 7i; |
| /// assert_eq!(vec[0], 7); |
| /// |
| /// vec.push_all(&[1, 2, 3]); |
| /// |
| /// for x in vec.iter() { |
| /// println!("{}", x); |
| /// } |
| /// assert_eq!(vec, vec![7i, 1, 2, 3]); |
| /// ``` |
| /// |
| /// The `vec!` macro is provided to make initialization more convenient: |
| /// |
| /// ``` |
| /// let mut vec = vec![1i, 2i, 3i]; |
| /// vec.push(4); |
| /// assert_eq!(vec, vec![1, 2, 3, 4]); |
| /// ``` |
| /// |
| /// Use a `Vec<T>` as an efficient stack: |
| /// |
| /// ``` |
| /// let mut stack = Vec::new(); |
| /// |
| /// stack.push(1i); |
| /// stack.push(2i); |
| /// stack.push(3i); |
| /// |
| /// loop { |
| /// let top = match stack.pop() { |
| /// None => break, // empty |
| /// Some(x) => x, |
| /// }; |
| /// // Prints 3, 2, 1 |
| /// println!("{}", top); |
| /// } |
| /// ``` |
| /// |
| /// # Capacity and reallocation |
| /// |
| /// The capacity of a vector is the amount of space allocated for any future elements that will be |
| /// added onto the vector. This is not to be confused with the *length* of a vector, which |
| /// specifies the number of actual elements within the vector. If a vector's length exceeds its |
| /// capacity, its capacity will automatically be increased, but its elements will have to be |
| /// reallocated. |
| /// |
| /// For example, a vector with capacity 10 and length 0 would be an empty vector with space for 10 |
| /// more elements. Pushing 10 or fewer elements onto the vector will not change its capacity or |
| /// cause reallocation to occur. However, if the vector's length is increased to 11, it will have |
| /// to reallocate, which can be slow. For this reason, it is recommended to use |
| /// `Vec::with_capacity` whenever possible to specify how big the vector is expected to get. |
| #[unsafe_no_drop_flag] |
| #[stable] |
| pub struct Vec<T> { |
| ptr: NonZero<*mut T>, |
| len: uint, |
| cap: uint, |
| } |
| |
| unsafe impl<T: Send> Send for Vec<T> { } |
| unsafe impl<T: Sync> Sync for Vec<T> { } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Inherent methods |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| impl<T> Vec<T> { |
| /// Constructs a new, empty `Vec<T>`. |
| /// |
| /// The vector will not allocate until elements are pushed onto it. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec: Vec<int> = Vec::new(); |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn new() -> Vec<T> { |
| // We want ptr to never be NULL so instead we set it to some arbitrary |
| // non-null value which is fine since we never call deallocate on the ptr |
| // if cap is 0. The reason for this is because the pointer of a slice |
| // being NULL would break the null pointer optimization for enums. |
| Vec { ptr: unsafe { NonZero::new(EMPTY as *mut T) }, len: 0, cap: 0 } |
| } |
| |
| /// Constructs a new, empty `Vec<T>` with the specified capacity. |
| /// |
| /// The vector will be able to hold exactly `capacity` elements without reallocating. If |
| /// `capacity` is 0, the vector will not allocate. |
| /// |
| /// It is important to note that this function does not specify the *length* of the returned |
| /// vector, but only the *capacity*. (For an explanation of the difference between length and |
| /// capacity, see the main `Vec<T>` docs above, 'Capacity and reallocation'.) |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec: Vec<int> = Vec::with_capacity(10); |
| /// |
| /// // The vector contains no items, even though it has capacity for more |
| /// assert_eq!(vec.len(), 0); |
| /// |
| /// // These are all done without reallocating... |
| /// for i in range(0i, 10) { |
| /// vec.push(i); |
| /// } |
| /// |
| /// // ...but this may make the vector reallocate |
| /// vec.push(11); |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn with_capacity(capacity: uint) -> Vec<T> { |
| if mem::size_of::<T>() == 0 { |
| Vec { ptr: unsafe { NonZero::new(EMPTY as *mut T) }, len: 0, cap: uint::MAX } |
| } else if capacity == 0 { |
| Vec::new() |
| } else { |
| let size = capacity.checked_mul(mem::size_of::<T>()) |
| .expect("capacity overflow"); |
| let ptr = unsafe { allocate(size, mem::min_align_of::<T>()) }; |
| if ptr.is_null() { ::alloc::oom() } |
| Vec { ptr: unsafe { NonZero::new(ptr as *mut T) }, len: 0, cap: capacity } |
| } |
| } |
| |
| /// Deprecated: use `iter::range(0, length).map(op).collect()` instead |
| #[inline] |
| #[deprecated = "use iter::range(0, length).map(op).collect() instead"] |
| pub fn from_fn<F>(length: uint, op: F) -> Vec<T> where F: FnMut(uint) -> T { |
| range(0, length).map(op).collect() |
| } |
| |
| /// Creates a `Vec<T>` directly from the raw components of another vector. |
| /// |
| /// This is highly unsafe, due to the number of invariants that aren't checked. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use std::ptr; |
| /// use std::mem; |
| /// |
| /// fn main() { |
| /// let mut v = vec![1i, 2, 3]; |
| /// |
| /// // Pull out the various important pieces of information about `v` |
| /// let p = v.as_mut_ptr(); |
| /// let len = v.len(); |
| /// let cap = v.capacity(); |
| /// |
| /// unsafe { |
| /// // Cast `v` into the void: no destructor run, so we are in |
| /// // complete control of the allocation to which `p` points. |
| /// mem::forget(v); |
| /// |
| /// // Overwrite memory with 4, 5, 6 |
| /// for i in range(0, len as int) { |
| /// ptr::write(p.offset(i), 4 + i); |
| /// } |
| /// |
| /// // Put everything back together into a Vec |
| /// let rebuilt = Vec::from_raw_parts(p, len, cap); |
| /// assert_eq!(rebuilt, vec![4i, 5i, 6i]); |
| /// } |
| /// } |
| /// ``` |
| #[stable] |
| pub unsafe fn from_raw_parts(ptr: *mut T, length: uint, |
| capacity: uint) -> Vec<T> { |
| Vec { ptr: NonZero::new(ptr), len: length, cap: capacity } |
| } |
| |
| /// Creates a vector by copying the elements from a raw pointer. |
| /// |
| /// This function will copy `elts` contiguous elements starting at `ptr` into a new allocation |
| /// owned by the returned `Vec<T>`. The elements of the buffer are copied into the vector |
| /// without cloning, as if `ptr::read()` were called on them. |
| #[inline] |
| #[unstable = "may be better expressed via composition"] |
| pub unsafe fn from_raw_buf(ptr: *const T, elts: uint) -> Vec<T> { |
| let mut dst = Vec::with_capacity(elts); |
| dst.set_len(elts); |
| ptr::copy_nonoverlapping_memory(dst.as_mut_ptr(), ptr, elts); |
| dst |
| } |
| |
| /// Deprecated: use `into_iter().partition(f)` instead. |
| #[inline] |
| #[deprecated = "use into_iter().partition(f) instead"] |
| pub fn partition<F>(self, f: F) -> (Vec<T>, Vec<T>) where F: FnMut(&T) -> bool { |
| self.into_iter().partition(f) |
| } |
| |
| /// Returns the number of elements the vector can hold without |
| /// reallocating. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let vec: Vec<int> = Vec::with_capacity(10); |
| /// assert_eq!(vec.capacity(), 10); |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn capacity(&self) -> uint { |
| self.cap |
| } |
| |
| /// Deprecated: Renamed to `reserve`. |
| #[deprecated = "Renamed to `reserve`"] |
| pub fn reserve_additional(&mut self, extra: uint) { |
| self.reserve(extra) |
| } |
| |
| /// Reserves capacity for at least `additional` more elements to be inserted in the given |
| /// `Vec<T>`. The collection may reserve more space to avoid frequent reallocations. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the new capacity overflows `uint`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec: Vec<int> = vec![1]; |
| /// vec.reserve(10); |
| /// assert!(vec.capacity() >= 11); |
| /// ``` |
| #[stable] |
| pub fn reserve(&mut self, additional: uint) { |
| if self.cap - self.len < additional { |
| let err_msg = "Vec::reserve: `uint` overflow"; |
| let new_cap = self.len.checked_add(additional).expect(err_msg) |
| .checked_next_power_of_two().expect(err_msg); |
| self.grow_capacity(new_cap); |
| } |
| } |
| |
| /// Reserves the minimum capacity for exactly `additional` more elements to |
| /// be inserted in the given `Vec<T>`. Does nothing if the capacity is already |
| /// sufficient. |
| /// |
| /// Note that the allocator may give the collection more space than it |
| /// requests. Therefore capacity can not be relied upon to be precisely |
| /// minimal. Prefer `reserve` if future insertions are expected. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the new capacity overflows `uint`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec: Vec<int> = vec![1]; |
| /// vec.reserve_exact(10); |
| /// assert!(vec.capacity() >= 11); |
| /// ``` |
| #[stable] |
| pub fn reserve_exact(&mut self, additional: uint) { |
| if self.cap - self.len < additional { |
| match self.len.checked_add(additional) { |
| None => panic!("Vec::reserve: `uint` overflow"), |
| Some(new_cap) => self.grow_capacity(new_cap) |
| } |
| } |
| } |
| |
| /// Shrinks the capacity of the vector as much as possible. |
| /// |
| /// It will drop down as close as possible to the length but the allocator |
| /// may still inform the vector that there is space for a few more elements. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec: Vec<int> = Vec::with_capacity(10); |
| /// vec.push_all(&[1, 2, 3]); |
| /// assert_eq!(vec.capacity(), 10); |
| /// vec.shrink_to_fit(); |
| /// assert!(vec.capacity() >= 3); |
| /// ``` |
| #[stable] |
| pub fn shrink_to_fit(&mut self) { |
| if mem::size_of::<T>() == 0 { return } |
| |
| if self.len == 0 { |
| if self.cap != 0 { |
| unsafe { |
| dealloc(*self.ptr, self.cap) |
| } |
| self.cap = 0; |
| } |
| } else { |
| unsafe { |
| // Overflow check is unnecessary as the vector is already at |
| // least this large. |
| let ptr = reallocate(*self.ptr as *mut u8, |
| self.cap * mem::size_of::<T>(), |
| self.len * mem::size_of::<T>(), |
| mem::min_align_of::<T>()) as *mut T; |
| if ptr.is_null() { ::alloc::oom() } |
| self.ptr = NonZero::new(ptr); |
| } |
| self.cap = self.len; |
| } |
| } |
| |
| /// Convert the vector into Box<[T]>. |
| /// |
| /// Note that this will drop any excess capacity. Calling this and |
| /// converting back to a vector with `into_vec()` is equivalent to calling |
| /// `shrink_to_fit()`. |
| #[experimental] |
| pub fn into_boxed_slice(mut self) -> Box<[T]> { |
| self.shrink_to_fit(); |
| unsafe { |
| let xs: Box<[T]> = mem::transmute(self.as_mut_slice()); |
| mem::forget(self); |
| xs |
| } |
| } |
| |
| /// Shorten a vector, dropping excess elements. |
| /// |
| /// If `len` is greater than the vector's current length, this has no |
| /// effect. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec = vec![1i, 2, 3, 4]; |
| /// vec.truncate(2); |
| /// assert_eq!(vec, vec![1, 2]); |
| /// ``` |
| #[stable] |
| pub fn truncate(&mut self, len: uint) { |
| unsafe { |
| // drop any extra elements |
| while len < self.len { |
| // decrement len before the read(), so a panic on Drop doesn't |
| // re-drop the just-failed value. |
| self.len -= 1; |
| ptr::read(self.get_unchecked(self.len)); |
| } |
| } |
| } |
| |
| /// Returns a mutable slice of the elements of `self`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// fn foo(slice: &mut [int]) {} |
| /// |
| /// let mut vec = vec![1i, 2]; |
| /// foo(vec.as_mut_slice()); |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T] { |
| unsafe { |
| mem::transmute(RawSlice { |
| data: *self.ptr as *const T, |
| len: self.len, |
| }) |
| } |
| } |
| |
| /// Creates a consuming iterator, that is, one that moves each value out of |
| /// the vector (from start to end). The vector cannot be used after calling |
| /// this. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let v = vec!["a".to_string(), "b".to_string()]; |
| /// for s in v.into_iter() { |
| /// // s has type String, not &String |
| /// println!("{}", s); |
| /// } |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn into_iter(self) -> IntoIter<T> { |
| unsafe { |
| let ptr = *self.ptr; |
| let cap = self.cap; |
| let begin = ptr as *const T; |
| let end = if mem::size_of::<T>() == 0 { |
| (ptr as uint + self.len()) as *const T |
| } else { |
| ptr.offset(self.len() as int) as *const T |
| }; |
| mem::forget(self); |
| IntoIter { allocation: ptr, cap: cap, ptr: begin, end: end } |
| } |
| } |
| |
| /// Sets the length of a vector. |
| /// |
| /// This will explicitly set the size of the vector, without actually |
| /// modifying its buffers, so it is up to the caller to ensure that the |
| /// vector is actually the specified size. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = vec![1u, 2, 3, 4]; |
| /// unsafe { |
| /// v.set_len(1); |
| /// } |
| /// ``` |
| #[inline] |
| #[stable] |
| pub unsafe fn set_len(&mut self, len: uint) { |
| self.len = len; |
| } |
| |
| /// Removes an element from anywhere in the vector and return it, replacing |
| /// it with the last element. |
| /// |
| /// This does not preserve ordering, but is O(1). |
| /// |
| /// # Panics |
| /// |
| /// Panics if `index` is out of bounds. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = vec!["foo", "bar", "baz", "qux"]; |
| /// |
| /// assert_eq!(v.swap_remove(1), "bar"); |
| /// assert_eq!(v, vec!["foo", "qux", "baz"]); |
| /// |
| /// assert_eq!(v.swap_remove(0), "foo"); |
| /// assert_eq!(v, vec!["baz", "qux"]); |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn swap_remove(&mut self, index: uint) -> T { |
| let length = self.len(); |
| self.swap(index, length - 1); |
| self.pop().unwrap() |
| } |
| |
| /// Inserts an element at position `index` within the vector, shifting all |
| /// elements after position `i` one position to the right. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `index` is not between `0` and the vector's length (both |
| /// bounds inclusive). |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec = vec![1i, 2, 3]; |
| /// vec.insert(1, 4); |
| /// assert_eq!(vec, vec![1, 4, 2, 3]); |
| /// vec.insert(4, 5); |
| /// assert_eq!(vec, vec![1, 4, 2, 3, 5]); |
| /// ``` |
| #[stable] |
| pub fn insert(&mut self, index: uint, element: T) { |
| let len = self.len(); |
| assert!(index <= len); |
| // space for the new element |
| self.reserve(1); |
| |
| unsafe { // infallible |
| // The spot to put the new value |
| { |
| let p = self.as_mut_ptr().offset(index as int); |
| // Shift everything over to make space. (Duplicating the |
| // `index`th element into two consecutive places.) |
| ptr::copy_memory(p.offset(1), &*p, len - index); |
| // Write it in, overwriting the first copy of the `index`th |
| // element. |
| ptr::write(&mut *p, element); |
| } |
| self.set_len(len + 1); |
| } |
| } |
| |
| /// Removes and returns the element at position `index` within the vector, |
| /// shifting all elements after position `index` one position to the left. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `i` is out of bounds. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = vec![1i, 2, 3]; |
| /// assert_eq!(v.remove(1), 2); |
| /// assert_eq!(v, vec![1, 3]); |
| /// ``` |
| #[stable] |
| pub fn remove(&mut self, index: uint) -> T { |
| let len = self.len(); |
| assert!(index < len); |
| unsafe { // infallible |
| let ret; |
| { |
| // the place we are taking from. |
| let ptr = self.as_mut_ptr().offset(index as int); |
| // copy it out, unsafely having a copy of the value on |
| // the stack and in the vector at the same time. |
| ret = ptr::read(ptr as *const T); |
| |
| // Shift everything down to fill in that spot. |
| ptr::copy_memory(ptr, &*ptr.offset(1), len - index - 1); |
| } |
| self.set_len(len - 1); |
| ret |
| } |
| } |
| |
| /// Retains only the elements specified by the predicate. |
| /// |
| /// In other words, remove all elements `e` such that `f(&e)` returns false. |
| /// This method operates in place and preserves the order of the retained |
| /// elements. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec = vec![1i, 2, 3, 4]; |
| /// vec.retain(|&x| x%2 == 0); |
| /// assert_eq!(vec, vec![2, 4]); |
| /// ``` |
| #[stable] |
| pub fn retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool { |
| let len = self.len(); |
| let mut del = 0u; |
| { |
| let v = self.as_mut_slice(); |
| |
| for i in range(0u, len) { |
| if !f(&v[i]) { |
| del += 1; |
| } else if del > 0 { |
| v.swap(i-del, i); |
| } |
| } |
| } |
| if del > 0 { |
| self.truncate(len - del); |
| } |
| } |
| |
| /// Deprecated: use `extend(range(0, n).map(f))` instead. |
| #[deprecated = "use extend(range(0, n).map(f)) instead"] |
| pub fn grow_fn<F>(&mut self, n: uint, f: F) where F: FnMut(uint) -> T { |
| self.extend(range(0, n).map(f)); |
| } |
| |
| /// Appends an element to the back of a collection. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the number of elements in the vector overflows a `uint`. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// let mut vec = vec!(1i, 2); |
| /// vec.push(3); |
| /// assert_eq!(vec, vec!(1, 2, 3)); |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn push(&mut self, value: T) { |
| if mem::size_of::<T>() == 0 { |
| // zero-size types consume no memory, so we can't rely on the |
| // address space running out |
| self.len = self.len.checked_add(1).expect("length overflow"); |
| unsafe { mem::forget(value); } |
| return |
| } |
| if self.len == self.cap { |
| let old_size = self.cap * mem::size_of::<T>(); |
| let size = max(old_size, 2 * mem::size_of::<T>()) * 2; |
| if old_size > size { panic!("capacity overflow") } |
| unsafe { |
| let ptr = alloc_or_realloc(*self.ptr, old_size, size); |
| if ptr.is_null() { ::alloc::oom() } |
| self.ptr = NonZero::new(ptr); |
| } |
| self.cap = max(self.cap, 2) * 2; |
| } |
| |
| unsafe { |
| let end = (*self.ptr).offset(self.len as int); |
| ptr::write(&mut *end, value); |
| self.len += 1; |
| } |
| } |
| |
| /// Removes the last element from a vector and returns it, or `None` if it is empty. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// let mut vec = vec![1i, 2, 3]; |
| /// assert_eq!(vec.pop(), Some(3)); |
| /// assert_eq!(vec, vec![1, 2]); |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn pop(&mut self) -> Option<T> { |
| if self.len == 0 { |
| None |
| } else { |
| unsafe { |
| self.len -= 1; |
| Some(ptr::read(self.get_unchecked(self.len()))) |
| } |
| } |
| } |
| |
| /// Creates a draining iterator that clears the `Vec` and iterates over |
| /// the removed items from start to end. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = vec!["a".to_string(), "b".to_string()]; |
| /// for s in v.drain() { |
| /// // s has type String, not &String |
| /// println!("{}", s); |
| /// } |
| /// assert!(v.is_empty()); |
| /// ``` |
| #[inline] |
| #[unstable = "matches collection reform specification, waiting for dust to settle"] |
| pub fn drain<'a>(&'a mut self) -> Drain<'a, T> { |
| unsafe { |
| let begin = *self.ptr as *const T; |
| let end = if mem::size_of::<T>() == 0 { |
| (*self.ptr as uint + self.len()) as *const T |
| } else { |
| (*self.ptr).offset(self.len() as int) as *const T |
| }; |
| self.set_len(0); |
| Drain { |
| ptr: begin, |
| end: end, |
| marker: ContravariantLifetime, |
| } |
| } |
| } |
| |
| /// Clears the vector, removing all values. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = vec![1i, 2, 3]; |
| /// |
| /// v.clear(); |
| /// |
| /// assert!(v.is_empty()); |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn clear(&mut self) { |
| self.truncate(0) |
| } |
| |
| /// Returns the number of elements in the vector. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let a = vec![1i, 2, 3]; |
| /// assert_eq!(a.len(), 3); |
| /// ``` |
| #[inline] |
| #[stable] |
| pub fn len(&self) -> uint { self.len } |
| |
| /// Returns `true` if the vector contains no elements. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut v = Vec::new(); |
| /// assert!(v.is_empty()); |
| /// |
| /// v.push(1i); |
| /// assert!(!v.is_empty()); |
| /// ``` |
| #[stable] |
| pub fn is_empty(&self) -> bool { self.len() == 0 } |
| |
| /// Converts a `Vec<T>` to a `Vec<U>` where `T` and `U` have the same |
| /// size and in case they are not zero-sized the same minimal alignment. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `T` and `U` have differing sizes or are not zero-sized and |
| /// have differing minimal alignments. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let v = vec![0u, 1, 2]; |
| /// let w = v.map_in_place(|i| i + 3); |
| /// assert_eq!(w.as_slice(), [3, 4, 5].as_slice()); |
| /// |
| /// #[deriving(PartialEq, Show)] |
| /// struct Newtype(u8); |
| /// let bytes = vec![0x11, 0x22]; |
| /// let newtyped_bytes = bytes.map_in_place(|x| Newtype(x)); |
| /// assert_eq!(newtyped_bytes.as_slice(), [Newtype(0x11), Newtype(0x22)].as_slice()); |
| /// ``` |
| #[experimental = "API may change to provide stronger guarantees"] |
| pub fn map_in_place<U, F>(self, mut f: F) -> Vec<U> where F: FnMut(T) -> U { |
| // FIXME: Assert statically that the types `T` and `U` have the same |
| // size. |
| assert!(mem::size_of::<T>() == mem::size_of::<U>()); |
| |
| let mut vec = self; |
| |
| if mem::size_of::<T>() != 0 { |
| // FIXME: Assert statically that the types `T` and `U` have the |
| // same minimal alignment in case they are not zero-sized. |
| |
| // These asserts are necessary because the `min_align_of` of the |
| // types are passed to the allocator by `Vec`. |
| assert!(mem::min_align_of::<T>() == mem::min_align_of::<U>()); |
| |
| // This `as int` cast is safe, because the size of the elements of the |
| // vector is not 0, and: |
| // |
| // 1) If the size of the elements in the vector is 1, the `int` may |
| // overflow, but it has the correct bit pattern so that the |
| // `.offset()` function will work. |
| // |
| // Example: |
| // Address space 0x0-0xF. |
| // `u8` array at: 0x1. |
| // Size of `u8` array: 0x8. |
| // Calculated `offset`: -0x8. |
| // After `array.offset(offset)`: 0x9. |
| // (0x1 + 0x8 = 0x1 - 0x8) |
| // |
| // 2) If the size of the elements in the vector is >1, the `uint` -> |
| // `int` conversion can't overflow. |
| let offset = vec.len() as int; |
| let start = vec.as_mut_ptr(); |
| |
| let mut pv = PartialVecNonZeroSized { |
| vec: vec, |
| |
| start_t: start, |
| // This points inside the vector, as the vector has length |
| // `offset`. |
| end_t: unsafe { start.offset(offset) }, |
| start_u: start as *mut U, |
| end_u: start as *mut U, |
| }; |
| // start_t |
| // start_u |
| // | |
| // +-+-+-+-+-+-+ |
| // |T|T|T|...|T| |
| // +-+-+-+-+-+-+ |
| // | | |
| // end_u end_t |
| |
| while pv.end_u as *mut T != pv.end_t { |
| unsafe { |
| // start_u start_t |
| // | | |
| // +-+-+-+-+-+-+-+-+-+ |
| // |U|...|U|T|T|...|T| |
| // +-+-+-+-+-+-+-+-+-+ |
| // | | |
| // end_u end_t |
| |
| let t = ptr::read(pv.start_t as *const T); |
| // start_u start_t |
| // | | |
| // +-+-+-+-+-+-+-+-+-+ |
| // |U|...|U|X|T|...|T| |
| // +-+-+-+-+-+-+-+-+-+ |
| // | | |
| // end_u end_t |
| // We must not panic here, one cell is marked as `T` |
| // although it is not `T`. |
| |
| pv.start_t = pv.start_t.offset(1); |
| // start_u start_t |
| // | | |
| // +-+-+-+-+-+-+-+-+-+ |
| // |U|...|U|X|T|...|T| |
| // +-+-+-+-+-+-+-+-+-+ |
| // | | |
| // end_u end_t |
| // We may panic again. |
| |
| // The function given by the user might panic. |
| let u = f(t); |
| |
| ptr::write(pv.end_u, u); |
| // start_u start_t |
| // | | |
| // +-+-+-+-+-+-+-+-+-+ |
| // |U|...|U|U|T|...|T| |
| // +-+-+-+-+-+-+-+-+-+ |
| // | | |
| // end_u end_t |
| // We should not panic here, because that would leak the `U` |
| // pointed to by `end_u`. |
| |
| pv.end_u = pv.end_u.offset(1); |
| // start_u start_t |
| // | | |
| // +-+-+-+-+-+-+-+-+-+ |
| // |U|...|U|U|T|...|T| |
| // +-+-+-+-+-+-+-+-+-+ |
| // | | |
| // end_u end_t |
| // We may panic again. |
| } |
| } |
| |
| // start_u start_t |
| // | | |
| // +-+-+-+-+-+-+ |
| // |U|...|U|U|U| |
| // +-+-+-+-+-+-+ |
| // | |
| // end_t |
| // end_u |
| // Extract `vec` and prevent the destructor of |
| // `PartialVecNonZeroSized` from running. Note that none of the |
| // function calls can panic, thus no resources can be leaked (as the |
| // `vec` member of `PartialVec` is the only one which holds |
| // allocations -- and it is returned from this function. None of |
| // this can panic. |
| unsafe { |
| let vec_len = pv.vec.len(); |
| let vec_cap = pv.vec.capacity(); |
| let vec_ptr = pv.vec.as_mut_ptr() as *mut U; |
| mem::forget(pv); |
| Vec::from_raw_parts(vec_ptr, vec_len, vec_cap) |
| } |
| } else { |
| // Put the `Vec` into the `PartialVecZeroSized` structure and |
| // prevent the destructor of the `Vec` from running. Since the |
| // `Vec` contained zero-sized objects, it did not allocate, so we |
| // are not leaking memory here. |
| let mut pv = PartialVecZeroSized::<T,U> { |
| num_t: vec.len(), |
| num_u: 0, |
| marker_t: InvariantType, |
| marker_u: InvariantType, |
| }; |
| unsafe { mem::forget(vec); } |
| |
| while pv.num_t != 0 { |
| unsafe { |
| // Create a `T` out of thin air and decrement `num_t`. This |
| // must not panic between these steps, as otherwise a |
| // destructor of `T` which doesn't exist runs. |
| let t = mem::uninitialized(); |
| pv.num_t -= 1; |
| |
| // The function given by the user might panic. |
| let u = f(t); |
| |
| // Forget the `U` and increment `num_u`. This increment |
| // cannot overflow the `uint` as we only do this for a |
| // number of times that fits into a `uint` (and start with |
| // `0`). Again, we should not panic between these steps. |
| mem::forget(u); |
| pv.num_u += 1; |
| } |
| } |
| // Create a `Vec` from our `PartialVecZeroSized` and make sure the |
| // destructor of the latter will not run. None of this can panic. |
| let mut result = Vec::new(); |
| unsafe { |
| result.set_len(pv.num_u); |
| mem::forget(pv); |
| } |
| result |
| } |
| } |
| } |
| |
| impl<T: Clone> Vec<T> { |
| /// Deprecated: use `repeat(value).take(length).collect()` instead. |
| #[inline] |
| #[deprecated = "use repeat(value).take(length).collect() instead"] |
| pub fn from_elem(length: uint, value: T) -> Vec<T> { |
| repeat(value).take(length).collect() |
| } |
| |
| /// Resizes the `Vec` in-place so that `len()` is equal to `new_len`. |
| /// |
| /// Calls either `extend()` or `truncate()` depending on whether `new_len` |
| /// is larger than the current value of `len()` or not. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec = vec!["hello"]; |
| /// vec.resize(3, "world"); |
| /// assert_eq!(vec, vec!["hello", "world", "world"]); |
| /// |
| /// let mut vec = vec![1i, 2, 3, 4]; |
| /// vec.resize(2, 0); |
| /// assert_eq!(vec, vec![1, 2]); |
| /// ``` |
| #[unstable = "matches collection reform specification; waiting for dust to settle"] |
| pub fn resize(&mut self, new_len: uint, value: T) { |
| let len = self.len(); |
| |
| if new_len > len { |
| self.extend(repeat(value).take(new_len - len)); |
| } else { |
| self.truncate(new_len); |
| } |
| } |
| |
| /// Appends all elements in a slice to the `Vec`. |
| /// |
| /// Iterates over the slice `other`, clones each element, and then appends |
| /// it to this `Vec`. The `other` vector is traversed in-order. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec = vec![1i]; |
| /// vec.push_all(&[2i, 3, 4]); |
| /// assert_eq!(vec, vec![1, 2, 3, 4]); |
| /// ``` |
| #[inline] |
| #[experimental = "likely to be replaced by a more optimized extend"] |
| pub fn push_all(&mut self, other: &[T]) { |
| self.reserve(other.len()); |
| |
| for i in range(0, other.len()) { |
| let len = self.len(); |
| |
| // Unsafe code so this can be optimised to a memcpy (or something similarly |
| // fast) when T is Copy. LLVM is easily confused, so any extra operations |
| // during the loop can prevent this optimisation. |
| unsafe { |
| ptr::write( |
| self.get_unchecked_mut(len), |
| other.get_unchecked(i).clone()); |
| self.set_len(len + 1); |
| } |
| } |
| } |
| |
| /// Deprecated: use `extend(repeat(value).take(n))` instead |
| #[deprecated = "use extend(repeat(value).take(n)) instead"] |
| pub fn grow(&mut self, n: uint, value: T) { |
| self.extend(repeat(value).take(n)) |
| } |
| |
| /// Deprecated: use `iter().cloned().partition(f)` instead. |
| #[deprecated = "use iter().cloned().partition(f) instead"] |
| pub fn partitioned<F>(&self, f: F) -> (Vec<T>, Vec<T>) where F: FnMut(&T) -> bool { |
| self.iter().cloned().partition(f) |
| } |
| } |
| |
| impl<T: PartialEq> Vec<T> { |
| /// Removes consecutive repeated elements in the vector. |
| /// |
| /// If the vector is sorted, this removes all duplicates. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let mut vec = vec![1i, 2, 2, 3, 2]; |
| /// |
| /// vec.dedup(); |
| /// |
| /// assert_eq!(vec, vec![1i, 2, 3, 2]); |
| /// ``` |
| #[stable] |
| pub fn dedup(&mut self) { |
| unsafe { |
| // Although we have a mutable reference to `self`, we cannot make |
| // *arbitrary* changes. The `PartialEq` comparisons could panic, so we |
| // must ensure that the vector is in a valid state at all time. |
| // |
| // The way that we handle this is by using swaps; we iterate |
| // over all the elements, swapping as we go so that at the end |
| // the elements we wish to keep are in the front, and those we |
| // wish to reject are at the back. We can then truncate the |
| // vector. This operation is still O(n). |
| // |
| // Example: We start in this state, where `r` represents "next |
| // read" and `w` represents "next_write`. |
| // |
| // r |
| // +---+---+---+---+---+---+ |
| // | 0 | 1 | 1 | 2 | 3 | 3 | |
| // +---+---+---+---+---+---+ |
| // w |
| // |
| // Comparing self[r] against self[w-1], this is not a duplicate, so |
| // we swap self[r] and self[w] (no effect as r==w) and then increment both |
| // r and w, leaving us with: |
| // |
| // r |
| // +---+---+---+---+---+---+ |
| // | 0 | 1 | 1 | 2 | 3 | 3 | |
| // +---+---+---+---+---+---+ |
| // w |
| // |
| // Comparing self[r] against self[w-1], this value is a duplicate, |
| // so we increment `r` but leave everything else unchanged: |
| // |
| // r |
| // +---+---+---+---+---+---+ |
| // | 0 | 1 | 1 | 2 | 3 | 3 | |
| // +---+---+---+---+---+---+ |
| // w |
| // |
| // Comparing self[r] against self[w-1], this is not a duplicate, |
| // so swap self[r] and self[w] and advance r and w: |
| // |
| // r |
| // +---+---+---+---+---+---+ |
| // | 0 | 1 | 2 | 1 | 3 | 3 | |
| // +---+---+---+---+---+---+ |
| // w |
| // |
| // Not a duplicate, repeat: |
| // |
| // r |
| // +---+---+---+---+---+---+ |
| // | 0 | 1 | 2 | 3 | 1 | 3 | |
| // +---+---+---+---+---+---+ |
| // w |
| // |
| // Duplicate, advance r. End of vec. Truncate to w. |
| |
| let ln = self.len(); |
| if ln < 1 { return; } |
| |
| // Avoid bounds checks by using unsafe pointers. |
| let p = self.as_mut_ptr(); |
| let mut r = 1; |
| let mut w = 1; |
| |
| while r < ln { |
| let p_r = p.offset(r as int); |
| let p_wm1 = p.offset((w - 1) as int); |
| if *p_r != *p_wm1 { |
| if r != w { |
| let p_w = p_wm1.offset(1); |
| mem::swap(&mut *p_r, &mut *p_w); |
| } |
| w += 1; |
| } |
| r += 1; |
| } |
| |
| self.truncate(w); |
| } |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Public free fns |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /// Deprecated: use `unzip` directly on the iterator instead. |
| #[deprecated = "use unzip directly on the iterator instead"] |
| pub fn unzip<T, U, V: Iterator<(T, U)>>(iter: V) -> (Vec<T>, Vec<U>) { |
| iter.unzip() |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Internal methods and functions |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| impl<T> Vec<T> { |
| /// Reserves capacity for exactly `capacity` elements in the given vector. |
| /// |
| /// If the capacity for `self` is already equal to or greater than the |
| /// requested capacity, then no action is taken. |
| fn grow_capacity(&mut self, capacity: uint) { |
| if mem::size_of::<T>() == 0 { return } |
| |
| if capacity > self.cap { |
| let size = capacity.checked_mul(mem::size_of::<T>()) |
| .expect("capacity overflow"); |
| unsafe { |
| let ptr = alloc_or_realloc(*self.ptr, self.cap * mem::size_of::<T>(), size); |
| if ptr.is_null() { ::alloc::oom() } |
| self.ptr = NonZero::new(ptr); |
| } |
| self.cap = capacity; |
| } |
| } |
| } |
| |
| // FIXME: #13996: need a way to mark the return value as `noalias` |
| #[inline(never)] |
| unsafe fn alloc_or_realloc<T>(ptr: *mut T, old_size: uint, size: uint) -> *mut T { |
| if old_size == 0 { |
| allocate(size, mem::min_align_of::<T>()) as *mut T |
| } else { |
| reallocate(ptr as *mut u8, old_size, size, mem::min_align_of::<T>()) as *mut T |
| } |
| } |
| |
| #[inline] |
| unsafe fn dealloc<T>(ptr: *mut T, len: uint) { |
| if mem::size_of::<T>() != 0 { |
| deallocate(ptr as *mut u8, |
| len * mem::size_of::<T>(), |
| mem::min_align_of::<T>()) |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Common trait implementations for Vec |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #[unstable] |
| impl<T:Clone> Clone for Vec<T> { |
| fn clone(&self) -> Vec<T> { self.as_slice().to_vec() } |
| |
| fn clone_from(&mut self, other: &Vec<T>) { |
| // drop anything in self that will not be overwritten |
| if self.len() > other.len() { |
| self.truncate(other.len()) |
| } |
| |
| // reuse the contained values' allocations/resources. |
| for (place, thing) in self.iter_mut().zip(other.iter()) { |
| place.clone_from(thing) |
| } |
| |
| // self.len <= other.len due to the truncate above, so the |
| // slice here is always in-bounds. |
| let slice = other[self.len()..]; |
| self.push_all(slice); |
| } |
| } |
| |
| impl<S: hash::Writer, T: Hash<S>> Hash<S> for Vec<T> { |
| #[inline] |
| fn hash(&self, state: &mut S) { |
| self.as_slice().hash(state); |
| } |
| } |
| |
| #[experimental = "waiting on Index stability"] |
| impl<T> Index<uint,T> for Vec<T> { |
| #[inline] |
| fn index<'a>(&'a self, index: &uint) -> &'a T { |
| &self.as_slice()[*index] |
| } |
| } |
| |
| impl<T> IndexMut<uint,T> for Vec<T> { |
| #[inline] |
| fn index_mut<'a>(&'a mut self, index: &uint) -> &'a mut T { |
| &mut self.as_mut_slice()[*index] |
| } |
| } |
| |
| impl<T> ops::Slice<uint, [T]> for Vec<T> { |
| #[inline] |
| fn as_slice_<'a>(&'a self) -> &'a [T] { |
| self.as_slice() |
| } |
| |
| #[inline] |
| fn slice_from_or_fail<'a>(&'a self, start: &uint) -> &'a [T] { |
| self.as_slice().slice_from_or_fail(start) |
| } |
| |
| #[inline] |
| fn slice_to_or_fail<'a>(&'a self, end: &uint) -> &'a [T] { |
| self.as_slice().slice_to_or_fail(end) |
| } |
| #[inline] |
| fn slice_or_fail<'a>(&'a self, start: &uint, end: &uint) -> &'a [T] { |
| self.as_slice().slice_or_fail(start, end) |
| } |
| } |
| |
| impl<T> ops::SliceMut<uint, [T]> for Vec<T> { |
| #[inline] |
| fn as_mut_slice_<'a>(&'a mut self) -> &'a mut [T] { |
| self.as_mut_slice() |
| } |
| |
| #[inline] |
| fn slice_from_or_fail_mut<'a>(&'a mut self, start: &uint) -> &'a mut [T] { |
| self.as_mut_slice().slice_from_or_fail_mut(start) |
| } |
| |
| #[inline] |
| fn slice_to_or_fail_mut<'a>(&'a mut self, end: &uint) -> &'a mut [T] { |
| self.as_mut_slice().slice_to_or_fail_mut(end) |
| } |
| #[inline] |
| fn slice_or_fail_mut<'a>(&'a mut self, start: &uint, end: &uint) -> &'a mut [T] { |
| self.as_mut_slice().slice_or_fail_mut(start, end) |
| } |
| } |
| |
| #[experimental = "waiting on Deref stability"] |
| impl<T> ops::Deref<[T]> for Vec<T> { |
| fn deref<'a>(&'a self) -> &'a [T] { self.as_slice() } |
| } |
| |
| #[experimental = "waiting on DerefMut stability"] |
| impl<T> ops::DerefMut<[T]> for Vec<T> { |
| fn deref_mut<'a>(&'a mut self) -> &'a mut [T] { self.as_mut_slice() } |
| } |
| |
| #[experimental = "waiting on FromIterator stability"] |
| impl<T> FromIterator<T> for Vec<T> { |
| #[inline] |
| fn from_iter<I:Iterator<T>>(mut iterator: I) -> Vec<T> { |
| let (lower, _) = iterator.size_hint(); |
| let mut vector = Vec::with_capacity(lower); |
| for element in iterator { |
| vector.push(element) |
| } |
| vector |
| } |
| } |
| |
| #[experimental = "waiting on Extend stability"] |
| impl<T> Extend<T> for Vec<T> { |
| #[inline] |
| fn extend<I: Iterator<T>>(&mut self, mut iterator: I) { |
| let (lower, _) = iterator.size_hint(); |
| self.reserve(lower); |
| for element in iterator { |
| self.push(element) |
| } |
| } |
| } |
| |
| impl<A, B> PartialEq<Vec<B>> for Vec<A> where A: PartialEq<B> { |
| #[inline] |
| fn eq(&self, other: &Vec<B>) -> bool { PartialEq::eq(&**self, &**other) } |
| #[inline] |
| fn ne(&self, other: &Vec<B>) -> bool { PartialEq::ne(&**self, &**other) } |
| } |
| |
| macro_rules! impl_eq { |
| ($lhs:ty, $rhs:ty) => { |
| impl<'b, A, B> PartialEq<$rhs> for $lhs where A: PartialEq<B> { |
| #[inline] |
| fn eq(&self, other: &$rhs) -> bool { PartialEq::eq(&**self, &**other) } |
| #[inline] |
| fn ne(&self, other: &$rhs) -> bool { PartialEq::ne(&**self, &**other) } |
| } |
| |
| impl<'b, A, B> PartialEq<$lhs> for $rhs where B: PartialEq<A> { |
| #[inline] |
| fn eq(&self, other: &$lhs) -> bool { PartialEq::eq(&**self, &**other) } |
| #[inline] |
| fn ne(&self, other: &$lhs) -> bool { PartialEq::ne(&**self, &**other) } |
| } |
| } |
| } |
| |
| impl_eq! { Vec<A>, &'b [B] } |
| impl_eq! { Vec<A>, &'b mut [B] } |
| |
| impl<'a, A, B> PartialEq<Vec<B>> for CowVec<'a, A> where A: PartialEq<B> + Clone { |
| #[inline] |
| fn eq(&self, other: &Vec<B>) -> bool { PartialEq::eq(&**self, &**other) } |
| #[inline] |
| fn ne(&self, other: &Vec<B>) -> bool { PartialEq::ne(&**self, &**other) } |
| } |
| |
| impl<'a, A, B> PartialEq<CowVec<'a, A>> for Vec<B> where A: Clone, B: PartialEq<A> { |
| #[inline] |
| fn eq(&self, other: &CowVec<'a, A>) -> bool { PartialEq::eq(&**self, &**other) } |
| #[inline] |
| fn ne(&self, other: &CowVec<'a, A>) -> bool { PartialEq::ne(&**self, &**other) } |
| } |
| |
| macro_rules! impl_eq_for_cowvec { |
| ($rhs:ty) => { |
| impl<'a, 'b, A, B> PartialEq<$rhs> for CowVec<'a, A> where A: PartialEq<B> + Clone { |
| #[inline] |
| fn eq(&self, other: &$rhs) -> bool { PartialEq::eq(&**self, &**other) } |
| #[inline] |
| fn ne(&self, other: &$rhs) -> bool { PartialEq::ne(&**self, &**other) } |
| } |
| |
| impl<'a, 'b, A, B> PartialEq<CowVec<'a, A>> for $rhs where A: Clone, B: PartialEq<A> { |
| #[inline] |
| fn eq(&self, other: &CowVec<'a, A>) -> bool { PartialEq::eq(&**self, &**other) } |
| #[inline] |
| fn ne(&self, other: &CowVec<'a, A>) -> bool { PartialEq::ne(&**self, &**other) } |
| } |
| } |
| } |
| |
| impl_eq_for_cowvec! { &'b [B] } |
| impl_eq_for_cowvec! { &'b mut [B] } |
| |
| #[unstable = "waiting on PartialOrd stability"] |
| impl<T: PartialOrd> PartialOrd for Vec<T> { |
| #[inline] |
| fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> { |
| self.as_slice().partial_cmp(other.as_slice()) |
| } |
| } |
| |
| #[unstable = "waiting on Eq stability"] |
| impl<T: Eq> Eq for Vec<T> {} |
| |
| #[allow(deprecated)] |
| #[deprecated = "Use overloaded `core::cmp::PartialEq`"] |
| impl<T: PartialEq, Sized? V: AsSlice<T>> Equiv<V> for Vec<T> { |
| #[inline] |
| fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() } |
| } |
| |
| #[unstable = "waiting on Ord stability"] |
| impl<T: Ord> Ord for Vec<T> { |
| #[inline] |
| fn cmp(&self, other: &Vec<T>) -> Ordering { |
| self.as_slice().cmp(other.as_slice()) |
| } |
| } |
| |
| impl<T> AsSlice<T> for Vec<T> { |
| /// Returns a slice into `self`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// fn foo(slice: &[int]) {} |
| /// |
| /// let vec = vec![1i, 2]; |
| /// foo(vec.as_slice()); |
| /// ``` |
| #[inline] |
| #[stable] |
| fn as_slice<'a>(&'a self) -> &'a [T] { |
| unsafe { |
| mem::transmute(RawSlice { |
| data: *self.ptr as *const T, |
| len: self.len |
| }) |
| } |
| } |
| } |
| |
| impl<'a, T: Clone> Add<&'a [T], Vec<T>> for Vec<T> { |
| #[inline] |
| fn add(mut self, rhs: &[T]) -> Vec<T> { |
| self.push_all(rhs); |
| self |
| } |
| } |
| |
| #[unsafe_destructor] |
| impl<T> Drop for Vec<T> { |
| fn drop(&mut self) { |
| // This is (and should always remain) a no-op if the fields are |
| // zeroed (when moving out, because of #[unsafe_no_drop_flag]). |
| if self.cap != 0 { |
| unsafe { |
| for x in self.iter() { |
| ptr::read(x); |
| } |
| dealloc(*self.ptr, self.cap) |
| } |
| } |
| } |
| } |
| |
| #[stable] |
| impl<T> Default for Vec<T> { |
| #[stable] |
| fn default() -> Vec<T> { |
| Vec::new() |
| } |
| } |
| |
| #[experimental = "waiting on Show stability"] |
| impl<T:fmt::Show> fmt::Show for Vec<T> { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| self.as_slice().fmt(f) |
| } |
| } |
| |
| impl<'a> fmt::FormatWriter for Vec<u8> { |
| fn write(&mut self, buf: &[u8]) -> fmt::Result { |
| self.push_all(buf); |
| Ok(()) |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Clone-on-write |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #[experimental = "unclear how valuable this alias is"] |
| /// A clone-on-write vector |
| pub type CowVec<'a, T> = Cow<'a, Vec<T>, [T]>; |
| |
| impl<'a, T> FromIterator<T> for CowVec<'a, T> where T: Clone { |
| fn from_iter<I: Iterator<T>>(it: I) -> CowVec<'a, T> { |
| Cow::Owned(FromIterator::from_iter(it)) |
| } |
| } |
| |
| impl<'a, T: 'a> IntoCow<'a, Vec<T>, [T]> for Vec<T> where T: Clone { |
| fn into_cow(self) -> CowVec<'a, T> { |
| Cow::Owned(self) |
| } |
| } |
| |
| impl<'a, T> IntoCow<'a, Vec<T>, [T]> for &'a [T] where T: Clone { |
| fn into_cow(self) -> CowVec<'a, T> { |
| Cow::Borrowed(self) |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Iterators |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /// An iterator that moves out of a vector. |
| #[stable] |
| pub struct IntoIter<T> { |
| allocation: *mut T, // the block of memory allocated for the vector |
| cap: uint, // the capacity of the vector |
| ptr: *const T, |
| end: *const T |
| } |
| |
| #[deprecated = "use IntoIter instead"] |
| pub type MoveItems<T> = IntoIter<T>; |
| |
| impl<T> IntoIter<T> { |
| #[inline] |
| /// Drops all items that have not yet been moved and returns the empty vector. |
| #[unstable] |
| pub fn into_inner(mut self) -> Vec<T> { |
| unsafe { |
| for _x in self { } |
| let IntoIter { allocation, cap, ptr: _ptr, end: _end } = self; |
| mem::forget(self); |
| Vec { ptr: NonZero::new(allocation), cap: cap, len: 0 } |
| } |
| } |
| |
| /// Deprecated, use .into_inner() instead |
| #[deprecated = "use .into_inner() instead"] |
| pub fn unwrap(self) -> Vec<T> { self.into_inner() } |
| } |
| |
| impl<T> Iterator<T> for IntoIter<T> { |
| #[inline] |
| fn next<'a>(&'a mut self) -> Option<T> { |
| unsafe { |
| if self.ptr == self.end { |
| None |
| } else { |
| if mem::size_of::<T>() == 0 { |
| // purposefully don't use 'ptr.offset' because for |
| // vectors with 0-size elements this would return the |
| // same pointer. |
| self.ptr = mem::transmute(self.ptr as uint + 1); |
| |
| // Use a non-null pointer value |
| Some(ptr::read(mem::transmute(1u))) |
| } else { |
| let old = self.ptr; |
| self.ptr = self.ptr.offset(1); |
| |
| Some(ptr::read(old)) |
| } |
| } |
| } |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (uint, Option<uint>) { |
| let diff = (self.end as uint) - (self.ptr as uint); |
| let size = mem::size_of::<T>(); |
| let exact = diff / (if size == 0 {1} else {size}); |
| (exact, Some(exact)) |
| } |
| } |
| |
| impl<T> DoubleEndedIterator<T> for IntoIter<T> { |
| #[inline] |
| fn next_back<'a>(&'a mut self) -> Option<T> { |
| unsafe { |
| if self.end == self.ptr { |
| None |
| } else { |
| if mem::size_of::<T>() == 0 { |
| // See above for why 'ptr.offset' isn't used |
| self.end = mem::transmute(self.end as uint - 1); |
| |
| // Use a non-null pointer value |
| Some(ptr::read(mem::transmute(1u))) |
| } else { |
| self.end = self.end.offset(-1); |
| |
| Some(ptr::read(mem::transmute(self.end))) |
| } |
| } |
| } |
| } |
| } |
| |
| impl<T> ExactSizeIterator<T> for IntoIter<T> {} |
| |
| #[unsafe_destructor] |
| impl<T> Drop for IntoIter<T> { |
| fn drop(&mut self) { |
| // destroy the remaining elements |
| if self.cap != 0 { |
| for _x in *self {} |
| unsafe { |
| dealloc(self.allocation, self.cap); |
| } |
| } |
| } |
| } |
| |
| /// An iterator that drains a vector. |
| #[unsafe_no_drop_flag] |
| #[unstable = "recently added as part of collections reform 2"] |
| pub struct Drain<'a, T> { |
| ptr: *const T, |
| end: *const T, |
| marker: ContravariantLifetime<'a>, |
| } |
| |
| impl<'a, T> Iterator<T> for Drain<'a, T> { |
| #[inline] |
| fn next(&mut self) -> Option<T> { |
| unsafe { |
| if self.ptr == self.end { |
| None |
| } else { |
| if mem::size_of::<T>() == 0 { |
| // purposefully don't use 'ptr.offset' because for |
| // vectors with 0-size elements this would return the |
| // same pointer. |
| self.ptr = mem::transmute(self.ptr as uint + 1); |
| |
| // Use a non-null pointer value |
| Some(ptr::read(mem::transmute(1u))) |
| } else { |
| let old = self.ptr; |
| self.ptr = self.ptr.offset(1); |
| |
| Some(ptr::read(old)) |
| } |
| } |
| } |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (uint, Option<uint>) { |
| let diff = (self.end as uint) - (self.ptr as uint); |
| let size = mem::size_of::<T>(); |
| let exact = diff / (if size == 0 {1} else {size}); |
| (exact, Some(exact)) |
| } |
| } |
| |
| impl<'a, T> DoubleEndedIterator<T> for Drain<'a, T> { |
| #[inline] |
| fn next_back(&mut self) -> Option<T> { |
| unsafe { |
| if self.end == self.ptr { |
| None |
| } else { |
| if mem::size_of::<T>() == 0 { |
| // See above for why 'ptr.offset' isn't used |
| self.end = mem::transmute(self.end as uint - 1); |
| |
| // Use a non-null pointer value |
| Some(ptr::read(mem::transmute(1u))) |
| } else { |
| self.end = self.end.offset(-1); |
| |
| Some(ptr::read(self.end)) |
| } |
| } |
| } |
| } |
| } |
| |
| impl<'a, T> ExactSizeIterator<T> for Drain<'a, T> {} |
| |
| #[unsafe_destructor] |
| impl<'a, T> Drop for Drain<'a, T> { |
| fn drop(&mut self) { |
| // self.ptr == self.end == null if drop has already been called, |
| // so we can use #[unsafe_no_drop_flag]. |
| |
| // destroy the remaining elements |
| for _x in *self {} |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Conversion from &[T] to &Vec<T> |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /// Wrapper type providing a `&Vec<T>` reference via `Deref`. |
| #[experimental] |
| pub struct DerefVec<'a, T> { |
| x: Vec<T>, |
| l: ContravariantLifetime<'a> |
| } |
| |
| #[experimental] |
| impl<'a, T> Deref<Vec<T>> for DerefVec<'a, T> { |
| fn deref<'b>(&'b self) -> &'b Vec<T> { |
| &self.x |
| } |
| } |
| |
| // Prevent the inner `Vec<T>` from attempting to deallocate memory. |
| #[unsafe_destructor] |
| #[experimental] |
| impl<'a, T> Drop for DerefVec<'a, T> { |
| fn drop(&mut self) { |
| self.x.len = 0; |
| self.x.cap = 0; |
| } |
| } |
| |
| /// Convert a slice to a wrapper type providing a `&Vec<T>` reference. |
| #[experimental] |
| pub fn as_vec<'a, T>(x: &'a [T]) -> DerefVec<'a, T> { |
| unsafe { |
| DerefVec { |
| x: Vec::from_raw_parts(x.as_ptr() as *mut T, x.len(), x.len()), |
| l: ContravariantLifetime::<'a> |
| } |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Raw module (deprecated) |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /// Unsafe vector operations. |
| #[deprecated] |
| pub mod raw { |
| use super::Vec; |
| |
| /// Constructs a vector from an unsafe pointer to a buffer. |
| /// |
| /// The elements of the buffer are copied into the vector without cloning, |
| /// as if `ptr::read()` were called on them. |
| #[inline] |
| #[deprecated = "renamed to Vec::from_raw_buf"] |
| pub unsafe fn from_buf<T>(ptr: *const T, elts: uint) -> Vec<T> { |
| Vec::from_raw_buf(ptr, elts) |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Partial vec, used for map_in_place |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /// An owned, partially type-converted vector of elements with non-zero size. |
| /// |
| /// `T` and `U` must have the same, non-zero size. They must also have the same |
| /// alignment. |
| /// |
| /// When the destructor of this struct runs, all `U`s from `start_u` (incl.) to |
| /// `end_u` (excl.) and all `T`s from `start_t` (incl.) to `end_t` (excl.) are |
| /// destructed. Additionally the underlying storage of `vec` will be freed. |
| struct PartialVecNonZeroSized<T,U> { |
| vec: Vec<T>, |
| |
| start_u: *mut U, |
| end_u: *mut U, |
| start_t: *mut T, |
| end_t: *mut T, |
| } |
| |
| /// An owned, partially type-converted vector of zero-sized elements. |
| /// |
| /// When the destructor of this struct runs, all `num_t` `T`s and `num_u` `U`s |
| /// are destructed. |
| struct PartialVecZeroSized<T,U> { |
| num_t: uint, |
| num_u: uint, |
| marker_t: InvariantType<T>, |
| marker_u: InvariantType<U>, |
| } |
| |
| #[unsafe_destructor] |
| impl<T,U> Drop for PartialVecNonZeroSized<T,U> { |
| fn drop(&mut self) { |
| unsafe { |
| // `vec` hasn't been modified until now. As it has a length |
| // currently, this would run destructors of `T`s which might not be |
| // there. So at first, set `vec`s length to `0`. This must be done |
| // at first to remain memory-safe as the destructors of `U` or `T` |
| // might cause unwinding where `vec`s destructor would be executed. |
| self.vec.set_len(0); |
| |
| // We have instances of `U`s and `T`s in `vec`. Destruct them. |
| while self.start_u != self.end_u { |
| let _ = ptr::read(self.start_u as *const U); // Run a `U` destructor. |
| self.start_u = self.start_u.offset(1); |
| } |
| while self.start_t != self.end_t { |
| let _ = ptr::read(self.start_t as *const T); // Run a `T` destructor. |
| self.start_t = self.start_t.offset(1); |
| } |
| // After this destructor ran, the destructor of `vec` will run, |
| // deallocating the underlying memory. |
| } |
| } |
| } |
| |
| #[unsafe_destructor] |
| impl<T,U> Drop for PartialVecZeroSized<T,U> { |
| fn drop(&mut self) { |
| unsafe { |
| // Destruct the instances of `T` and `U` this struct owns. |
| while self.num_t != 0 { |
| let _: T = mem::uninitialized(); // Run a `T` destructor. |
| self.num_t -= 1; |
| } |
| while self.num_u != 0 { |
| let _: U = mem::uninitialized(); // Run a `U` destructor. |
| self.num_u -= 1; |
| } |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use prelude::*; |
| use core::mem::size_of; |
| use test::Bencher; |
| use super::{as_vec, unzip, raw}; |
| |
| struct DropCounter<'a> { |
| count: &'a mut int |
| } |
| |
| #[unsafe_destructor] |
| impl<'a> Drop for DropCounter<'a> { |
| fn drop(&mut self) { |
| *self.count += 1; |
| } |
| } |
| |
| #[test] |
| fn test_as_vec() { |
| let xs = [1u8, 2u8, 3u8]; |
| assert_eq!(as_vec(&xs).as_slice(), xs); |
| } |
| |
| #[test] |
| fn test_as_vec_dtor() { |
| let (mut count_x, mut count_y) = (0, 0); |
| { |
| let xs = &[DropCounter { count: &mut count_x }, DropCounter { count: &mut count_y }]; |
| assert_eq!(as_vec(xs).len(), 2); |
| } |
| assert_eq!(count_x, 1); |
| assert_eq!(count_y, 1); |
| } |
| |
| #[test] |
| fn test_small_vec_struct() { |
| assert!(size_of::<Vec<u8>>() == size_of::<uint>() * 3); |
| } |
| |
| #[test] |
| fn test_double_drop() { |
| struct TwoVec<T> { |
| x: Vec<T>, |
| y: Vec<T> |
| } |
| |
| let (mut count_x, mut count_y) = (0, 0); |
| { |
| let mut tv = TwoVec { |
| x: Vec::new(), |
| y: Vec::new() |
| }; |
| tv.x.push(DropCounter {count: &mut count_x}); |
| tv.y.push(DropCounter {count: &mut count_y}); |
| |
| // If Vec had a drop flag, here is where it would be zeroed. |
| // Instead, it should rely on its internal state to prevent |
| // doing anything significant when dropped multiple times. |
| drop(tv.x); |
| |
| // Here tv goes out of scope, tv.y should be dropped, but not tv.x. |
| } |
| |
| assert_eq!(count_x, 1); |
| assert_eq!(count_y, 1); |
| } |
| |
| #[test] |
| fn test_reserve() { |
| let mut v = Vec::new(); |
| assert_eq!(v.capacity(), 0); |
| |
| v.reserve(2); |
| assert!(v.capacity() >= 2); |
| |
| for i in range(0i, 16) { |
| v.push(i); |
| } |
| |
| assert!(v.capacity() >= 16); |
| v.reserve(16); |
| assert!(v.capacity() >= 32); |
| |
| v.push(16); |
| |
| v.reserve(16); |
| assert!(v.capacity() >= 33) |
| } |
| |
| #[test] |
| fn test_extend() { |
| let mut v = Vec::new(); |
| let mut w = Vec::new(); |
| |
| v.extend(range(0i, 3)); |
| for i in range(0i, 3) { w.push(i) } |
| |
| assert_eq!(v, w); |
| |
| v.extend(range(3i, 10)); |
| for i in range(3i, 10) { w.push(i) } |
| |
| assert_eq!(v, w); |
| } |
| |
| #[test] |
| fn test_slice_from_mut() { |
| let mut values = vec![1u8,2,3,4,5]; |
| { |
| let slice = values.slice_from_mut(2); |
| assert!(slice == [3, 4, 5]); |
| for p in slice.iter_mut() { |
| *p += 2; |
| } |
| } |
| |
| assert!(values == [1, 2, 5, 6, 7]); |
| } |
| |
| #[test] |
| fn test_slice_to_mut() { |
| let mut values = vec![1u8,2,3,4,5]; |
| { |
| let slice = values.slice_to_mut(2); |
| assert!(slice == [1, 2]); |
| for p in slice.iter_mut() { |
| *p += 1; |
| } |
| } |
| |
| assert!(values == [2, 3, 3, 4, 5]); |
| } |
| |
| #[test] |
| fn test_split_at_mut() { |
| let mut values = vec![1u8,2,3,4,5]; |
| { |
| let (left, right) = values.split_at_mut(2); |
| { |
| let left: &[_] = left; |
| assert!(left[0..left.len()] == [1, 2][]); |
| } |
| for p in left.iter_mut() { |
| *p += 1; |
| } |
| |
| { |
| let right: &[_] = right; |
| assert!(right[0..right.len()] == [3, 4, 5][]); |
| } |
| for p in right.iter_mut() { |
| *p += 2; |
| } |
| } |
| |
| assert!(values == vec![2u8, 3, 5, 6, 7]); |
| } |
| |
| #[test] |
| fn test_clone() { |
| let v: Vec<int> = vec!(); |
| let w = vec!(1i, 2, 3); |
| |
| assert_eq!(v, v.clone()); |
| |
| let z = w.clone(); |
| assert_eq!(w, z); |
| // they should be disjoint in memory. |
| assert!(w.as_ptr() != z.as_ptr()) |
| } |
| |
| #[test] |
| fn test_clone_from() { |
| let mut v = vec!(); |
| let three = vec!(box 1i, box 2, box 3); |
| let two = vec!(box 4i, box 5); |
| // zero, long |
| v.clone_from(&three); |
| assert_eq!(v, three); |
| |
| // equal |
| v.clone_from(&three); |
| assert_eq!(v, three); |
| |
| // long, short |
| v.clone_from(&two); |
| assert_eq!(v, two); |
| |
| // short, long |
| v.clone_from(&three); |
| assert_eq!(v, three) |
| } |
| |
| #[test] |
| fn test_grow_fn() { |
| let mut v = vec![0u, 1]; |
| v.grow_fn(3, |i| i); |
| assert!(v == vec![0u, 1, 0, 1, 2]); |
| } |
| |
| #[test] |
| fn test_retain() { |
| let mut vec = vec![1u, 2, 3, 4]; |
| vec.retain(|&x| x % 2 == 0); |
| assert!(vec == vec![2u, 4]); |
| } |
| |
| #[test] |
| fn zero_sized_values() { |
| let mut v = Vec::new(); |
| assert_eq!(v.len(), 0); |
| v.push(()); |
| assert_eq!(v.len(), 1); |
| v.push(()); |
| assert_eq!(v.len(), 2); |
| assert_eq!(v.pop(), Some(())); |
| assert_eq!(v.pop(), Some(())); |
| assert_eq!(v.pop(), None); |
| |
| assert_eq!(v.iter().count(), 0); |
| v.push(()); |
| assert_eq!(v.iter().count(), 1); |
| v.push(()); |
| assert_eq!(v.iter().count(), 2); |
| |
| for &() in v.iter() {} |
| |
| assert_eq!(v.iter_mut().count(), 2); |
| v.push(()); |
| assert_eq!(v.iter_mut().count(), 3); |
| v.push(()); |
| assert_eq!(v.iter_mut().count(), 4); |
| |
| for &() in v.iter_mut() {} |
| unsafe { v.set_len(0); } |
| assert_eq!(v.iter_mut().count(), 0); |
| } |
| |
| #[test] |
| fn test_partition() { |
| assert_eq!(vec![].partition(|x: &int| *x < 3), (vec![], vec![])); |
| assert_eq!(vec![1i, 2, 3].partition(|x: &int| *x < 4), (vec![1, 2, 3], vec![])); |
| assert_eq!(vec![1i, 2, 3].partition(|x: &int| *x < 2), (vec![1], vec![2, 3])); |
| assert_eq!(vec![1i, 2, 3].partition(|x: &int| *x < 0), (vec![], vec![1, 2, 3])); |
| } |
| |
| #[test] |
| fn test_partitioned() { |
| assert_eq!(vec![].partitioned(|x: &int| *x < 3), (vec![], vec![])); |
| assert_eq!(vec![1i, 2, 3].partitioned(|x: &int| *x < 4), (vec![1, 2, 3], vec![])); |
| assert_eq!(vec![1i, 2, 3].partitioned(|x: &int| *x < 2), (vec![1], vec![2, 3])); |
| assert_eq!(vec![1i, 2, 3].partitioned(|x: &int| *x < 0), (vec![], vec![1, 2, 3])); |
| } |
| |
| #[test] |
| fn test_zip_unzip() { |
| let z1 = vec![(1i, 4i), (2, 5), (3, 6)]; |
| |
| let (left, right) = unzip(z1.iter().map(|&x| x)); |
| |
| assert_eq!((1, 4), (left[0], right[0])); |
| assert_eq!((2, 5), (left[1], right[1])); |
| assert_eq!((3, 6), (left[2], right[2])); |
| } |
| |
| #[test] |
| fn test_unsafe_ptrs() { |
| unsafe { |
| // Test on-stack copy-from-buf. |
| let a = [1i, 2, 3]; |
| let ptr = a.as_ptr(); |
| let b = raw::from_buf(ptr, 3u); |
| assert_eq!(b, vec![1, 2, 3]); |
| |
| // Test on-heap copy-from-buf. |
| let c = vec![1i, 2, 3, 4, 5]; |
| let ptr = c.as_ptr(); |
| let d = raw::from_buf(ptr, 5u); |
| assert_eq!(d, vec![1, 2, 3, 4, 5]); |
| } |
| } |
| |
| #[test] |
| fn test_vec_truncate_drop() { |
| static mut drops: uint = 0; |
| struct Elem(int); |
| impl Drop for Elem { |
| fn drop(&mut self) { |
| unsafe { drops += 1; } |
| } |
| } |
| |
| let mut v = vec![Elem(1), Elem(2), Elem(3), Elem(4), Elem(5)]; |
| assert_eq!(unsafe { drops }, 0); |
| v.truncate(3); |
| assert_eq!(unsafe { drops }, 2); |
| v.truncate(0); |
| assert_eq!(unsafe { drops }, 5); |
| } |
| |
| #[test] |
| #[should_fail] |
| fn test_vec_truncate_fail() { |
| struct BadElem(int); |
| impl Drop for BadElem { |
| fn drop(&mut self) { |
| let BadElem(ref mut x) = *self; |
| if *x == 0xbadbeef { |
| panic!("BadElem panic: 0xbadbeef") |
| } |
| } |
| } |
| |
| let mut v = vec![BadElem(1), BadElem(2), BadElem(0xbadbeef), BadElem(4)]; |
| v.truncate(0); |
| } |
| |
| #[test] |
| fn test_index() { |
| let vec = vec!(1i, 2, 3); |
| assert!(vec[1] == 2); |
| } |
| |
| #[test] |
| #[should_fail] |
| fn test_index_out_of_bounds() { |
| let vec = vec!(1i, 2, 3); |
| let _ = vec[3]; |
| } |
| |
| #[test] |
| #[should_fail] |
| fn test_slice_out_of_bounds_1() { |
| let x: Vec<int> = vec![1, 2, 3, 4, 5]; |
| x[-1..]; |
| } |
| |
| #[test] |
| #[should_fail] |
| fn test_slice_out_of_bounds_2() { |
| let x: Vec<int> = vec![1, 2, 3, 4, 5]; |
| x[..6]; |
| } |
| |
| #[test] |
| #[should_fail] |
| fn test_slice_out_of_bounds_3() { |
| let x: Vec<int> = vec![1, 2, 3, 4, 5]; |
| x[-1..4]; |
| } |
| |
| #[test] |
| #[should_fail] |
| fn test_slice_out_of_bounds_4() { |
| let x: Vec<int> = vec![1, 2, 3, 4, 5]; |
| x[1..6]; |
| } |
| |
| #[test] |
| #[should_fail] |
| fn test_slice_out_of_bounds_5() { |
| let x: Vec<int> = vec![1, 2, 3, 4, 5]; |
| x[3..2]; |
| } |
| |
| #[test] |
| #[should_fail] |
| fn test_swap_remove_empty() { |
| let mut vec: Vec<uint> = vec!(); |
| vec.swap_remove(0); |
| } |
| |
| #[test] |
| fn test_move_iter_unwrap() { |
| let mut vec: Vec<uint> = Vec::with_capacity(7); |
| vec.push(1); |
| vec.push(2); |
| let ptr = vec.as_ptr(); |
| vec = vec.into_iter().unwrap(); |
| assert_eq!(vec.as_ptr(), ptr); |
| assert_eq!(vec.capacity(), 7); |
| assert_eq!(vec.len(), 0); |
| } |
| |
| #[test] |
| #[should_fail] |
| fn test_map_in_place_incompatible_types_fail() { |
| let v = vec![0u, 1, 2]; |
| v.map_in_place(|_| ()); |
| } |
| |
| #[test] |
| fn test_map_in_place() { |
| let v = vec![0u, 1, 2]; |
| assert_eq!(v.map_in_place(|i: uint| i as int - 1), [-1i, 0, 1]); |
| } |
| |
| #[test] |
| fn test_map_in_place_zero_sized() { |
| let v = vec![(), ()]; |
| #[deriving(PartialEq, Show)] |
| struct ZeroSized; |
| assert_eq!(v.map_in_place(|_| ZeroSized), [ZeroSized, ZeroSized]); |
| } |
| |
| #[test] |
| fn test_map_in_place_zero_drop_count() { |
| use std::sync::atomic; |
| use std::sync::atomic::AtomicUint; |
| |
| #[deriving(Clone, PartialEq, Show)] |
| struct Nothing; |
| impl Drop for Nothing { fn drop(&mut self) { } } |
| |
| #[deriving(Clone, PartialEq, Show)] |
| struct ZeroSized; |
| impl Drop for ZeroSized { |
| fn drop(&mut self) { |
| DROP_COUNTER.fetch_add(1, atomic::Relaxed); |
| } |
| } |
| const NUM_ELEMENTS: uint = 2; |
| static DROP_COUNTER: AtomicUint = atomic::INIT_ATOMIC_UINT; |
| |
| let v = Vec::from_elem(NUM_ELEMENTS, Nothing); |
| |
| DROP_COUNTER.store(0, atomic::Relaxed); |
| |
| let v = v.map_in_place(|_| ZeroSized); |
| assert_eq!(DROP_COUNTER.load(atomic::Relaxed), 0); |
| drop(v); |
| assert_eq!(DROP_COUNTER.load(atomic::Relaxed), NUM_ELEMENTS); |
| } |
| |
| #[test] |
| fn test_move_items() { |
| let vec = vec![1, 2, 3]; |
| let mut vec2 : Vec<i32> = vec![]; |
| for i in vec.into_iter() { |
| vec2.push(i); |
| } |
| assert!(vec2 == vec![1, 2, 3]); |
| } |
| |
| #[test] |
| fn test_move_items_reverse() { |
| let vec = vec![1, 2, 3]; |
| let mut vec2 : Vec<i32> = vec![]; |
| for i in vec.into_iter().rev() { |
| vec2.push(i); |
| } |
| assert!(vec2 == vec![3, 2, 1]); |
| } |
| |
| #[test] |
| fn test_move_items_zero_sized() { |
| let vec = vec![(), (), ()]; |
| let mut vec2 : Vec<()> = vec![]; |
| for i in vec.into_iter() { |
| vec2.push(i); |
| } |
| assert!(vec2 == vec![(), (), ()]); |
| } |
| |
| #[test] |
| fn test_drain_items() { |
| let mut vec = vec![1, 2, 3]; |
| let mut vec2: Vec<i32> = vec![]; |
| for i in vec.drain() { |
| vec2.push(i); |
| } |
| assert_eq!(vec, []); |
| assert_eq!(vec2, [ 1, 2, 3 ]); |
| } |
| |
| #[test] |
| fn test_drain_items_reverse() { |
| let mut vec = vec![1, 2, 3]; |
| let mut vec2: Vec<i32> = vec![]; |
| for i in vec.drain().rev() { |
| vec2.push(i); |
| } |
| assert_eq!(vec, []); |
| assert_eq!(vec2, [ 3, 2, 1 ]); |
| } |
| |
| #[test] |
| fn test_drain_items_zero_sized() { |
| let mut vec = vec![(), (), ()]; |
| let mut vec2: Vec<()> = vec![]; |
| for i in vec.drain() { |
| vec2.push(i); |
| } |
| assert_eq!(vec, []); |
| assert_eq!(vec2, [(), (), ()]); |
| } |
| |
| #[test] |
| fn test_into_boxed_slice() { |
| let xs = vec![1u, 2, 3]; |
| let ys = xs.into_boxed_slice(); |
| assert_eq!(ys.as_slice(), [1u, 2, 3]); |
| } |
| |
| #[bench] |
| fn bench_new(b: &mut Bencher) { |
| b.iter(|| { |
| let v: Vec<uint> = Vec::new(); |
| assert_eq!(v.len(), 0); |
| assert_eq!(v.capacity(), 0); |
| }) |
| } |
| |
| fn do_bench_with_capacity(b: &mut Bencher, src_len: uint) { |
| b.bytes = src_len as u64; |
| |
| b.iter(|| { |
| let v: Vec<uint> = Vec::with_capacity(src_len); |
| assert_eq!(v.len(), 0); |
| assert_eq!(v.capacity(), src_len); |
| }) |
| } |
| |
| #[bench] |
| fn bench_with_capacity_0000(b: &mut Bencher) { |
| do_bench_with_capacity(b, 0) |
| } |
| |
| #[bench] |
| fn bench_with_capacity_0010(b: &mut Bencher) { |
| do_bench_with_capacity(b, 10) |
| } |
| |
| #[bench] |
| fn bench_with_capacity_0100(b: &mut Bencher) { |
| do_bench_with_capacity(b, 100) |
| } |
| |
| #[bench] |
| fn bench_with_capacity_1000(b: &mut Bencher) { |
| do_bench_with_capacity(b, 1000) |
| } |
| |
| fn do_bench_from_fn(b: &mut Bencher, src_len: uint) { |
| b.bytes = src_len as u64; |
| |
| b.iter(|| { |
| let dst = Vec::from_fn(src_len, |i| i); |
| assert_eq!(dst.len(), src_len); |
| assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); |
| }) |
| } |
| |
| #[bench] |
| fn bench_from_fn_0000(b: &mut Bencher) { |
| do_bench_from_fn(b, 0) |
| } |
| |
| #[bench] |
| fn bench_from_fn_0010(b: &mut Bencher) { |
| do_bench_from_fn(b, 10) |
| } |
| |
| #[bench] |
| fn bench_from_fn_0100(b: &mut Bencher) { |
| do_bench_from_fn(b, 100) |
| } |
| |
| #[bench] |
| fn bench_from_fn_1000(b: &mut Bencher) { |
| do_bench_from_fn(b, 1000) |
| } |
| |
| fn do_bench_from_elem(b: &mut Bencher, src_len: uint) { |
| b.bytes = src_len as u64; |
| |
| b.iter(|| { |
| let dst: Vec<uint> = Vec::from_elem(src_len, 5); |
| assert_eq!(dst.len(), src_len); |
| assert!(dst.iter().all(|x| *x == 5)); |
| }) |
| } |
| |
| #[bench] |
| fn bench_from_elem_0000(b: &mut Bencher) { |
| do_bench_from_elem(b, 0) |
| } |
| |
| #[bench] |
| fn bench_from_elem_0010(b: &mut Bencher) { |
| do_bench_from_elem(b, 10) |
| } |
| |
| #[bench] |
| fn bench_from_elem_0100(b: &mut Bencher) { |
| do_bench_from_elem(b, 100) |
| } |
| |
| #[bench] |
| fn bench_from_elem_1000(b: &mut Bencher) { |
| do_bench_from_elem(b, 1000) |
| } |
| |
| fn do_bench_from_slice(b: &mut Bencher, src_len: uint) { |
| let src: Vec<uint> = FromIterator::from_iter(range(0, src_len)); |
| |
| b.bytes = src_len as u64; |
| |
| b.iter(|| { |
| let dst = src.clone().as_slice().to_vec(); |
| assert_eq!(dst.len(), src_len); |
| assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); |
| }); |
| } |
| |
| #[bench] |
| fn bench_from_slice_0000(b: &mut Bencher) { |
| do_bench_from_slice(b, 0) |
| } |
| |
| #[bench] |
| fn bench_from_slice_0010(b: &mut Bencher) { |
| do_bench_from_slice(b, 10) |
| } |
| |
| #[bench] |
| fn bench_from_slice_0100(b: &mut Bencher) { |
| do_bench_from_slice(b, 100) |
| } |
| |
| #[bench] |
| fn bench_from_slice_1000(b: &mut Bencher) { |
| do_bench_from_slice(b, 1000) |
| } |
| |
| fn do_bench_from_iter(b: &mut Bencher, src_len: uint) { |
| let src: Vec<uint> = FromIterator::from_iter(range(0, src_len)); |
| |
| b.bytes = src_len as u64; |
| |
| b.iter(|| { |
| let dst: Vec<uint> = FromIterator::from_iter(src.clone().into_iter()); |
| assert_eq!(dst.len(), src_len); |
| assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); |
| }); |
| } |
| |
| #[bench] |
| fn bench_from_iter_0000(b: &mut Bencher) { |
| do_bench_from_iter(b, 0) |
| } |
| |
| #[bench] |
| fn bench_from_iter_0010(b: &mut Bencher) { |
| do_bench_from_iter(b, 10) |
| } |
| |
| #[bench] |
| fn bench_from_iter_0100(b: &mut Bencher) { |
| do_bench_from_iter(b, 100) |
| } |
| |
| #[bench] |
| fn bench_from_iter_1000(b: &mut Bencher) { |
| do_bench_from_iter(b, 1000) |
| } |
| |
| fn do_bench_extend(b: &mut Bencher, dst_len: uint, src_len: uint) { |
| let dst: Vec<uint> = FromIterator::from_iter(range(0, dst_len)); |
| let src: Vec<uint> = FromIterator::from_iter(range(dst_len, dst_len + src_len)); |
| |
| b.bytes = src_len as u64; |
| |
| b.iter(|| { |
| let mut dst = dst.clone(); |
| dst.extend(src.clone().into_iter()); |
| assert_eq!(dst.len(), dst_len + src_len); |
| assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); |
| }); |
| } |
| |
| #[bench] |
| fn bench_extend_0000_0000(b: &mut Bencher) { |
| do_bench_extend(b, 0, 0) |
| } |
| |
| #[bench] |
| fn bench_extend_0000_0010(b: &mut Bencher) { |
| do_bench_extend(b, 0, 10) |
| } |
| |
| #[bench] |
| fn bench_extend_0000_0100(b: &mut Bencher) { |
| do_bench_extend(b, 0, 100) |
| } |
| |
| #[bench] |
| fn bench_extend_0000_1000(b: &mut Bencher) { |
| do_bench_extend(b, 0, 1000) |
| } |
| |
| #[bench] |
| fn bench_extend_0010_0010(b: &mut Bencher) { |
| do_bench_extend(b, 10, 10) |
| } |
| |
| #[bench] |
| fn bench_extend_0100_0100(b: &mut Bencher) { |
| do_bench_extend(b, 100, 100) |
| } |
| |
| #[bench] |
| fn bench_extend_1000_1000(b: &mut Bencher) { |
| do_bench_extend(b, 1000, 1000) |
| } |
| |
| fn do_bench_push_all(b: &mut Bencher, dst_len: uint, src_len: uint) { |
| let dst: Vec<uint> = FromIterator::from_iter(range(0, dst_len)); |
| let src: Vec<uint> = FromIterator::from_iter(range(dst_len, dst_len + src_len)); |
| |
| b.bytes = src_len as u64; |
| |
| b.iter(|| { |
| let mut dst = dst.clone(); |
| dst.push_all(src.as_slice()); |
| assert_eq!(dst.len(), dst_len + src_len); |
| assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); |
| }); |
| } |
| |
| #[bench] |
| fn bench_push_all_0000_0000(b: &mut Bencher) { |
| do_bench_push_all(b, 0, 0) |
| } |
| |
| #[bench] |
| fn bench_push_all_0000_0010(b: &mut Bencher) { |
| do_bench_push_all(b, 0, 10) |
| } |
| |
| #[bench] |
| fn bench_push_all_0000_0100(b: &mut Bencher) { |
| do_bench_push_all(b, 0, 100) |
| } |
| |
| #[bench] |
| fn bench_push_all_0000_1000(b: &mut Bencher) { |
| do_bench_push_all(b, 0, 1000) |
| } |
| |
| #[bench] |
| fn bench_push_all_0010_0010(b: &mut Bencher) { |
| do_bench_push_all(b, 10, 10) |
| } |
| |
| #[bench] |
| fn bench_push_all_0100_0100(b: &mut Bencher) { |
| do_bench_push_all(b, 100, 100) |
| } |
| |
| #[bench] |
| fn bench_push_all_1000_1000(b: &mut Bencher) { |
| do_bench_push_all(b, 1000, 1000) |
| } |
| |
| fn do_bench_push_all_move(b: &mut Bencher, dst_len: uint, src_len: uint) { |
| let dst: Vec<uint> = FromIterator::from_iter(range(0u, dst_len)); |
| let src: Vec<uint> = FromIterator::from_iter(range(dst_len, dst_len + src_len)); |
| |
| b.bytes = src_len as u64; |
| |
| b.iter(|| { |
| let mut dst = dst.clone(); |
| dst.extend(src.clone().into_iter()); |
| assert_eq!(dst.len(), dst_len + src_len); |
| assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); |
| }); |
| } |
| |
| #[bench] |
| fn bench_push_all_move_0000_0000(b: &mut Bencher) { |
| do_bench_push_all_move(b, 0, 0) |
| } |
| |
| #[bench] |
| fn bench_push_all_move_0000_0010(b: &mut Bencher) { |
| do_bench_push_all_move(b, 0, 10) |
| } |
| |
| #[bench] |
| fn bench_push_all_move_0000_0100(b: &mut Bencher) { |
| do_bench_push_all_move(b, 0, 100) |
| } |
| |
| #[bench] |
| fn bench_push_all_move_0000_1000(b: &mut Bencher) { |
| do_bench_push_all_move(b, 0, 1000) |
| } |
| |
| #[bench] |
| fn bench_push_all_move_0010_0010(b: &mut Bencher) { |
| do_bench_push_all_move(b, 10, 10) |
| } |
| |
| #[bench] |
| fn bench_push_all_move_0100_0100(b: &mut Bencher) { |
| do_bench_push_all_move(b, 100, 100) |
| } |
| |
| #[bench] |
| fn bench_push_all_move_1000_1000(b: &mut Bencher) { |
| do_bench_push_all_move(b, 1000, 1000) |
| } |
| |
| fn do_bench_clone(b: &mut Bencher, src_len: uint) { |
| let src: Vec<uint> = FromIterator::from_iter(range(0, src_len)); |
| |
| b.bytes = src_len as u64; |
| |
| b.iter(|| { |
| let dst = src.clone(); |
| assert_eq!(dst.len(), src_len); |
| assert!(dst.iter().enumerate().all(|(i, x)| i == *x)); |
| }); |
| } |
| |
| #[bench] |
| fn bench_clone_0000(b: &mut Bencher) { |
| do_bench_clone(b, 0) |
| } |
| |
| #[bench] |
| fn bench_clone_0010(b: &mut Bencher) { |
| do_bench_clone(b, 10) |
| } |
| |
| #[bench] |
| fn bench_clone_0100(b: &mut Bencher) { |
| do_bench_clone(b, 100) |
| } |
| |
| #[bench] |
| fn bench_clone_1000(b: &mut Bencher) { |
| do_bench_clone(b, 1000) |
| } |
| |
| fn do_bench_clone_from(b: &mut Bencher, times: uint, dst_len: uint, src_len: uint) { |
| let dst: Vec<uint> = FromIterator::from_iter(range(0, src_len)); |
| let src: Vec<uint> = FromIterator::from_iter(range(dst_len, dst_len + src_len)); |
| |
| b.bytes = (times * src_len) as u64; |
| |
| b.iter(|| { |
| let mut dst = dst.clone(); |
| |
| for _ in range(0, times) { |
| dst.clone_from(&src); |
| |
| assert_eq!(dst.len(), src_len); |
| assert!(dst.iter().enumerate().all(|(i, x)| dst_len + i == *x)); |
| } |
| }); |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0000_0000(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 0, 0) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0000_0010(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 0, 10) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0000_0100(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 0, 100) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0000_1000(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 0, 1000) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0010_0010(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 10, 10) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0100_0100(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 100, 100) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_1000_1000(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 1000, 1000) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0010_0100(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 10, 100) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0100_1000(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 100, 1000) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0010_0000(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 10, 0) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_0100_0010(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 100, 10) |
| } |
| |
| #[bench] |
| fn bench_clone_from_01_1000_0100(b: &mut Bencher) { |
| do_bench_clone_from(b, 1, 1000, 100) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0000_0000(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 0, 0) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0000_0010(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 0, 10) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0000_0100(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 0, 100) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0000_1000(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 0, 1000) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0010_0010(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 10, 10) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0100_0100(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 100, 100) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_1000_1000(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 1000, 1000) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0010_0100(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 10, 100) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0100_1000(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 100, 1000) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0010_0000(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 10, 0) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_0100_0010(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 100, 10) |
| } |
| |
| #[bench] |
| fn bench_clone_from_10_1000_0100(b: &mut Bencher) { |
| do_bench_clone_from(b, 10, 1000, 100) |
| } |
| } |