| // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png", |
| html_favicon_url = "https://doc.rust-lang.org/favicon.ico", |
| html_root_url = "https://doc.rust-lang.org/nightly/")] |
| |
| #![feature(crate_visibility_modifier)] |
| #![cfg_attr(not(stage0), feature(nll))] |
| #![feature(rustc_diagnostic_macros)] |
| #![feature(slice_sort_by_cached_key)] |
| |
| #[macro_use] |
| extern crate log; |
| #[macro_use] |
| extern crate syntax; |
| extern crate syntax_pos; |
| extern crate rustc_errors as errors; |
| extern crate arena; |
| #[macro_use] |
| extern crate rustc; |
| extern crate rustc_data_structures; |
| extern crate rustc_metadata; |
| |
| pub use rustc::hir::def::{Namespace, PerNS}; |
| |
| use self::TypeParameters::*; |
| use self::RibKind::*; |
| |
| use rustc::hir::map::{Definitions, DefCollector}; |
| use rustc::hir::{self, PrimTy, TyBool, TyChar, TyFloat, TyInt, TyUint, TyStr}; |
| use rustc::middle::cstore::CrateStore; |
| use rustc::session::Session; |
| use rustc::lint; |
| use rustc::hir::def::*; |
| use rustc::hir::def::Namespace::*; |
| use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId}; |
| use rustc::ty; |
| use rustc::hir::{Freevar, FreevarMap, TraitCandidate, TraitMap, GlobMap}; |
| use rustc::util::nodemap::{NodeMap, NodeSet, FxHashMap, FxHashSet, DefIdMap}; |
| |
| use rustc_metadata::creader::CrateLoader; |
| use rustc_metadata::cstore::CStore; |
| |
| use syntax::source_map::SourceMap; |
| use syntax::ext::hygiene::{Mark, Transparency, SyntaxContext}; |
| use syntax::ast::{self, Name, NodeId, Ident, FloatTy, IntTy, UintTy}; |
| use syntax::ext::base::SyntaxExtension; |
| use syntax::ext::base::Determinacy::{self, Determined, Undetermined}; |
| use syntax::ext::base::MacroKind; |
| use syntax::symbol::{Symbol, keywords}; |
| use syntax::util::lev_distance::find_best_match_for_name; |
| |
| use syntax::visit::{self, FnKind, Visitor}; |
| use syntax::attr; |
| use syntax::ast::{CRATE_NODE_ID, Arm, IsAsync, BindingMode, Block, Crate, Expr, ExprKind}; |
| use syntax::ast::{FnDecl, ForeignItem, ForeignItemKind, GenericParamKind, Generics}; |
| use syntax::ast::{Item, ItemKind, ImplItem, ImplItemKind}; |
| use syntax::ast::{Label, Local, Mutability, Pat, PatKind, Path}; |
| use syntax::ast::{QSelf, TraitItemKind, TraitRef, Ty, TyKind}; |
| use syntax::feature_gate::{feature_err, GateIssue}; |
| use syntax::ptr::P; |
| |
| use syntax_pos::{Span, DUMMY_SP, MultiSpan}; |
| use errors::{DiagnosticBuilder, DiagnosticId}; |
| |
| use std::cell::{Cell, RefCell}; |
| use std::cmp; |
| use std::collections::BTreeSet; |
| use std::fmt; |
| use std::iter; |
| use std::mem::replace; |
| use rustc_data_structures::sync::Lrc; |
| |
| use resolve_imports::{ImportDirective, ImportDirectiveSubclass, NameResolution, ImportResolver}; |
| use macros::{InvocationData, LegacyBinding, MacroBinding}; |
| |
| // NB: This module needs to be declared first so diagnostics are |
| // registered before they are used. |
| mod diagnostics; |
| |
| mod macros; |
| mod check_unused; |
| mod build_reduced_graph; |
| mod resolve_imports; |
| |
| fn is_known_tool(name: Name) -> bool { |
| ["clippy", "rustfmt"].contains(&&*name.as_str()) |
| } |
| |
| /// A free importable items suggested in case of resolution failure. |
| struct ImportSuggestion { |
| path: Path, |
| } |
| |
| /// A field or associated item from self type suggested in case of resolution failure. |
| enum AssocSuggestion { |
| Field, |
| MethodWithSelf, |
| AssocItem, |
| } |
| |
| #[derive(Eq)] |
| struct BindingError { |
| name: Name, |
| origin: BTreeSet<Span>, |
| target: BTreeSet<Span>, |
| } |
| |
| impl PartialOrd for BindingError { |
| fn partial_cmp(&self, other: &BindingError) -> Option<cmp::Ordering> { |
| Some(self.cmp(other)) |
| } |
| } |
| |
| impl PartialEq for BindingError { |
| fn eq(&self, other: &BindingError) -> bool { |
| self.name == other.name |
| } |
| } |
| |
| impl Ord for BindingError { |
| fn cmp(&self, other: &BindingError) -> cmp::Ordering { |
| self.name.cmp(&other.name) |
| } |
| } |
| |
| enum ResolutionError<'a> { |
| /// error E0401: can't use type parameters from outer function |
| TypeParametersFromOuterFunction(Def), |
| /// error E0403: the name is already used for a type parameter in this type parameter list |
| NameAlreadyUsedInTypeParameterList(Name, &'a Span), |
| /// error E0407: method is not a member of trait |
| MethodNotMemberOfTrait(Name, &'a str), |
| /// error E0437: type is not a member of trait |
| TypeNotMemberOfTrait(Name, &'a str), |
| /// error E0438: const is not a member of trait |
| ConstNotMemberOfTrait(Name, &'a str), |
| /// error E0408: variable `{}` is not bound in all patterns |
| VariableNotBoundInPattern(&'a BindingError), |
| /// error E0409: variable `{}` is bound in inconsistent ways within the same match arm |
| VariableBoundWithDifferentMode(Name, Span), |
| /// error E0415: identifier is bound more than once in this parameter list |
| IdentifierBoundMoreThanOnceInParameterList(&'a str), |
| /// error E0416: identifier is bound more than once in the same pattern |
| IdentifierBoundMoreThanOnceInSamePattern(&'a str), |
| /// error E0426: use of undeclared label |
| UndeclaredLabel(&'a str, Option<Name>), |
| /// error E0429: `self` imports are only allowed within a { } list |
| SelfImportsOnlyAllowedWithin, |
| /// error E0430: `self` import can only appear once in the list |
| SelfImportCanOnlyAppearOnceInTheList, |
| /// error E0431: `self` import can only appear in an import list with a non-empty prefix |
| SelfImportOnlyInImportListWithNonEmptyPrefix, |
| /// error E0432: unresolved import |
| UnresolvedImport(Option<(Span, &'a str, &'a str)>), |
| /// error E0433: failed to resolve |
| FailedToResolve(&'a str), |
| /// error E0434: can't capture dynamic environment in a fn item |
| CannotCaptureDynamicEnvironmentInFnItem, |
| /// error E0435: attempt to use a non-constant value in a constant |
| AttemptToUseNonConstantValueInConstant, |
| /// error E0530: X bindings cannot shadow Ys |
| BindingShadowsSomethingUnacceptable(&'a str, Name, &'a NameBinding<'a>), |
| /// error E0128: type parameters with a default cannot use forward declared identifiers |
| ForwardDeclaredTyParam, |
| } |
| |
| /// Combines an error with provided span and emits it |
| /// |
| /// This takes the error provided, combines it with the span and any additional spans inside the |
| /// error and emits it. |
| fn resolve_error<'sess, 'a>(resolver: &'sess Resolver, |
| span: Span, |
| resolution_error: ResolutionError<'a>) { |
| resolve_struct_error(resolver, span, resolution_error).emit(); |
| } |
| |
| fn resolve_struct_error<'sess, 'a>(resolver: &'sess Resolver, |
| span: Span, |
| resolution_error: ResolutionError<'a>) |
| -> DiagnosticBuilder<'sess> { |
| match resolution_error { |
| ResolutionError::TypeParametersFromOuterFunction(outer_def) => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0401, |
| "can't use type parameters from outer function"); |
| err.span_label(span, "use of type variable from outer function"); |
| |
| let cm = resolver.session.codemap(); |
| match outer_def { |
| Def::SelfTy(_, maybe_impl_defid) => { |
| if let Some(impl_span) = maybe_impl_defid.map_or(None, |
| |def_id| resolver.definitions.opt_span(def_id)) { |
| err.span_label(reduce_impl_span_to_impl_keyword(cm, impl_span), |
| "`Self` type implicitely declared here, on the `impl`"); |
| } |
| }, |
| Def::TyParam(typaram_defid) => { |
| if let Some(typaram_span) = resolver.definitions.opt_span(typaram_defid) { |
| err.span_label(typaram_span, "type variable from outer function"); |
| } |
| }, |
| _ => { |
| bug!("TypeParametersFromOuterFunction should only be used with Def::SelfTy or \ |
| Def::TyParam") |
| } |
| } |
| |
| // Try to retrieve the span of the function signature and generate a new message with |
| // a local type parameter |
| let sugg_msg = "try using a local type parameter instead"; |
| if let Some((sugg_span, new_snippet)) = cm.generate_local_type_param_snippet(span) { |
| // Suggest the modification to the user |
| err.span_suggestion(sugg_span, |
| sugg_msg, |
| new_snippet); |
| } else if let Some(sp) = cm.generate_fn_name_span(span) { |
| err.span_label(sp, "try adding a local type parameter in this method instead"); |
| } else { |
| err.help("try using a local type parameter instead"); |
| } |
| |
| err |
| } |
| ResolutionError::NameAlreadyUsedInTypeParameterList(name, first_use_span) => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0403, |
| "the name `{}` is already used for a type parameter \ |
| in this type parameter list", |
| name); |
| err.span_label(span, "already used"); |
| err.span_label(first_use_span.clone(), format!("first use of `{}`", name)); |
| err |
| } |
| ResolutionError::MethodNotMemberOfTrait(method, trait_) => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0407, |
| "method `{}` is not a member of trait `{}`", |
| method, |
| trait_); |
| err.span_label(span, format!("not a member of trait `{}`", trait_)); |
| err |
| } |
| ResolutionError::TypeNotMemberOfTrait(type_, trait_) => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0437, |
| "type `{}` is not a member of trait `{}`", |
| type_, |
| trait_); |
| err.span_label(span, format!("not a member of trait `{}`", trait_)); |
| err |
| } |
| ResolutionError::ConstNotMemberOfTrait(const_, trait_) => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0438, |
| "const `{}` is not a member of trait `{}`", |
| const_, |
| trait_); |
| err.span_label(span, format!("not a member of trait `{}`", trait_)); |
| err |
| } |
| ResolutionError::VariableNotBoundInPattern(binding_error) => { |
| let target_sp = binding_error.target.iter().cloned().collect::<Vec<_>>(); |
| let msp = MultiSpan::from_spans(target_sp.clone()); |
| let msg = format!("variable `{}` is not bound in all patterns", binding_error.name); |
| let mut err = resolver.session.struct_span_err_with_code( |
| msp, |
| &msg, |
| DiagnosticId::Error("E0408".into()), |
| ); |
| for sp in target_sp { |
| err.span_label(sp, format!("pattern doesn't bind `{}`", binding_error.name)); |
| } |
| let origin_sp = binding_error.origin.iter().cloned(); |
| for sp in origin_sp { |
| err.span_label(sp, "variable not in all patterns"); |
| } |
| err |
| } |
| ResolutionError::VariableBoundWithDifferentMode(variable_name, |
| first_binding_span) => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0409, |
| "variable `{}` is bound in inconsistent \ |
| ways within the same match arm", |
| variable_name); |
| err.span_label(span, "bound in different ways"); |
| err.span_label(first_binding_span, "first binding"); |
| err |
| } |
| ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0415, |
| "identifier `{}` is bound more than once in this parameter list", |
| identifier); |
| err.span_label(span, "used as parameter more than once"); |
| err |
| } |
| ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0416, |
| "identifier `{}` is bound more than once in the same pattern", |
| identifier); |
| err.span_label(span, "used in a pattern more than once"); |
| err |
| } |
| ResolutionError::UndeclaredLabel(name, lev_candidate) => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0426, |
| "use of undeclared label `{}`", |
| name); |
| if let Some(lev_candidate) = lev_candidate { |
| err.span_label(span, format!("did you mean `{}`?", lev_candidate)); |
| } else { |
| err.span_label(span, format!("undeclared label `{}`", name)); |
| } |
| err |
| } |
| ResolutionError::SelfImportsOnlyAllowedWithin => { |
| struct_span_err!(resolver.session, |
| span, |
| E0429, |
| "{}", |
| "`self` imports are only allowed within a { } list") |
| } |
| ResolutionError::SelfImportCanOnlyAppearOnceInTheList => { |
| let mut err = struct_span_err!(resolver.session, span, E0430, |
| "`self` import can only appear once in an import list"); |
| err.span_label(span, "can only appear once in an import list"); |
| err |
| } |
| ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => { |
| let mut err = struct_span_err!(resolver.session, span, E0431, |
| "`self` import can only appear in an import list with \ |
| a non-empty prefix"); |
| err.span_label(span, "can only appear in an import list with a non-empty prefix"); |
| err |
| } |
| ResolutionError::UnresolvedImport(name) => { |
| let (span, msg) = match name { |
| Some((sp, n, _)) => (sp, format!("unresolved import `{}`", n)), |
| None => (span, "unresolved import".to_owned()), |
| }; |
| let mut err = struct_span_err!(resolver.session, span, E0432, "{}", msg); |
| if let Some((_, _, p)) = name { |
| err.span_label(span, p); |
| } |
| err |
| } |
| ResolutionError::FailedToResolve(msg) => { |
| let mut err = struct_span_err!(resolver.session, span, E0433, |
| "failed to resolve. {}", msg); |
| err.span_label(span, msg); |
| err |
| } |
| ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => { |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0434, |
| "{}", |
| "can't capture dynamic environment in a fn item"); |
| err.help("use the `|| { ... }` closure form instead"); |
| err |
| } |
| ResolutionError::AttemptToUseNonConstantValueInConstant => { |
| let mut err = struct_span_err!(resolver.session, span, E0435, |
| "attempt to use a non-constant value in a constant"); |
| err.span_label(span, "non-constant value"); |
| err |
| } |
| ResolutionError::BindingShadowsSomethingUnacceptable(what_binding, name, binding) => { |
| let shadows_what = PathResolution::new(binding.def()).kind_name(); |
| let mut err = struct_span_err!(resolver.session, |
| span, |
| E0530, |
| "{}s cannot shadow {}s", what_binding, shadows_what); |
| err.span_label(span, format!("cannot be named the same as a {}", shadows_what)); |
| let participle = if binding.is_import() { "imported" } else { "defined" }; |
| let msg = format!("a {} `{}` is {} here", shadows_what, name, participle); |
| err.span_label(binding.span, msg); |
| err |
| } |
| ResolutionError::ForwardDeclaredTyParam => { |
| let mut err = struct_span_err!(resolver.session, span, E0128, |
| "type parameters with a default cannot use \ |
| forward declared identifiers"); |
| err.span_label( |
| span, "defaulted type parameters cannot be forward declared".to_string()); |
| err |
| } |
| } |
| } |
| |
| /// Adjust the impl span so that just the `impl` keyword is taken by removing |
| /// everything after `<` (`"impl<T> Iterator for A<T> {}" -> "impl"`) and |
| /// everything after the first whitespace (`"impl Iterator for A" -> "impl"`) |
| /// |
| /// Attention: The method used is very fragile since it essentially duplicates the work of the |
| /// parser. If you need to use this function or something similar, please consider updating the |
| /// codemap functions and this function to something more robust. |
| fn reduce_impl_span_to_impl_keyword(cm: &SourceMap, impl_span: Span) -> Span { |
| let impl_span = cm.span_until_char(impl_span, '<'); |
| let impl_span = cm.span_until_whitespace(impl_span); |
| impl_span |
| } |
| |
| #[derive(Copy, Clone, Debug)] |
| struct BindingInfo { |
| span: Span, |
| binding_mode: BindingMode, |
| } |
| |
| /// Map from the name in a pattern to its binding mode. |
| type BindingMap = FxHashMap<Ident, BindingInfo>; |
| |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] |
| enum PatternSource { |
| Match, |
| IfLet, |
| WhileLet, |
| Let, |
| For, |
| FnParam, |
| } |
| |
| impl PatternSource { |
| fn descr(self) -> &'static str { |
| match self { |
| PatternSource::Match => "match binding", |
| PatternSource::IfLet => "if let binding", |
| PatternSource::WhileLet => "while let binding", |
| PatternSource::Let => "let binding", |
| PatternSource::For => "for binding", |
| PatternSource::FnParam => "function parameter", |
| } |
| } |
| } |
| |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] |
| enum AliasPossibility { |
| No, |
| Maybe, |
| } |
| |
| #[derive(Copy, Clone, Debug)] |
| enum PathSource<'a> { |
| // Type paths `Path`. |
| Type, |
| // Trait paths in bounds or impls. |
| Trait(AliasPossibility), |
| // Expression paths `path`, with optional parent context. |
| Expr(Option<&'a Expr>), |
| // Paths in path patterns `Path`. |
| Pat, |
| // Paths in struct expressions and patterns `Path { .. }`. |
| Struct, |
| // Paths in tuple struct patterns `Path(..)`. |
| TupleStruct, |
| // `m::A::B` in `<T as m::A>::B::C`. |
| TraitItem(Namespace), |
| // Path in `pub(path)` |
| Visibility, |
| // Path in `use a::b::{...};` |
| ImportPrefix, |
| } |
| |
| impl<'a> PathSource<'a> { |
| fn namespace(self) -> Namespace { |
| match self { |
| PathSource::Type | PathSource::Trait(_) | PathSource::Struct | |
| PathSource::Visibility | PathSource::ImportPrefix => TypeNS, |
| PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS, |
| PathSource::TraitItem(ns) => ns, |
| } |
| } |
| |
| fn global_by_default(self) -> bool { |
| match self { |
| PathSource::Visibility | PathSource::ImportPrefix => true, |
| PathSource::Type | PathSource::Expr(..) | PathSource::Pat | |
| PathSource::Struct | PathSource::TupleStruct | |
| PathSource::Trait(_) | PathSource::TraitItem(..) => false, |
| } |
| } |
| |
| fn defer_to_typeck(self) -> bool { |
| match self { |
| PathSource::Type | PathSource::Expr(..) | PathSource::Pat | |
| PathSource::Struct | PathSource::TupleStruct => true, |
| PathSource::Trait(_) | PathSource::TraitItem(..) | |
| PathSource::Visibility | PathSource::ImportPrefix => false, |
| } |
| } |
| |
| fn descr_expected(self) -> &'static str { |
| match self { |
| PathSource::Type => "type", |
| PathSource::Trait(_) => "trait", |
| PathSource::Pat => "unit struct/variant or constant", |
| PathSource::Struct => "struct, variant or union type", |
| PathSource::TupleStruct => "tuple struct/variant", |
| PathSource::Visibility => "module", |
| PathSource::ImportPrefix => "module or enum", |
| PathSource::TraitItem(ns) => match ns { |
| TypeNS => "associated type", |
| ValueNS => "method or associated constant", |
| MacroNS => bug!("associated macro"), |
| }, |
| PathSource::Expr(parent) => match parent.map(|p| &p.node) { |
| // "function" here means "anything callable" rather than `Def::Fn`, |
| // this is not precise but usually more helpful than just "value". |
| Some(&ExprKind::Call(..)) => "function", |
| _ => "value", |
| }, |
| } |
| } |
| |
| fn is_expected(self, def: Def) -> bool { |
| match self { |
| PathSource::Type => match def { |
| Def::Struct(..) | Def::Union(..) | Def::Enum(..) | |
| Def::Trait(..) | Def::TyAlias(..) | Def::AssociatedTy(..) | |
| Def::PrimTy(..) | Def::TyParam(..) | Def::SelfTy(..) | |
| Def::Existential(..) | |
| Def::TyForeign(..) => true, |
| _ => false, |
| }, |
| PathSource::Trait(AliasPossibility::No) => match def { |
| Def::Trait(..) => true, |
| _ => false, |
| }, |
| PathSource::Trait(AliasPossibility::Maybe) => match def { |
| Def::Trait(..) => true, |
| Def::TraitAlias(..) => true, |
| _ => false, |
| }, |
| PathSource::Expr(..) => match def { |
| Def::StructCtor(_, CtorKind::Const) | Def::StructCtor(_, CtorKind::Fn) | |
| Def::VariantCtor(_, CtorKind::Const) | Def::VariantCtor(_, CtorKind::Fn) | |
| Def::Const(..) | Def::Static(..) | Def::Local(..) | Def::Upvar(..) | |
| Def::Fn(..) | Def::Method(..) | Def::AssociatedConst(..) => true, |
| _ => false, |
| }, |
| PathSource::Pat => match def { |
| Def::StructCtor(_, CtorKind::Const) | |
| Def::VariantCtor(_, CtorKind::Const) | |
| Def::Const(..) | Def::AssociatedConst(..) => true, |
| _ => false, |
| }, |
| PathSource::TupleStruct => match def { |
| Def::StructCtor(_, CtorKind::Fn) | Def::VariantCtor(_, CtorKind::Fn) => true, |
| _ => false, |
| }, |
| PathSource::Struct => match def { |
| Def::Struct(..) | Def::Union(..) | Def::Variant(..) | |
| Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => true, |
| _ => false, |
| }, |
| PathSource::TraitItem(ns) => match def { |
| Def::AssociatedConst(..) | Def::Method(..) if ns == ValueNS => true, |
| Def::AssociatedTy(..) if ns == TypeNS => true, |
| _ => false, |
| }, |
| PathSource::ImportPrefix => match def { |
| Def::Mod(..) | Def::Enum(..) => true, |
| _ => false, |
| }, |
| PathSource::Visibility => match def { |
| Def::Mod(..) => true, |
| _ => false, |
| }, |
| } |
| } |
| |
| fn error_code(self, has_unexpected_resolution: bool) -> &'static str { |
| __diagnostic_used!(E0404); |
| __diagnostic_used!(E0405); |
| __diagnostic_used!(E0412); |
| __diagnostic_used!(E0422); |
| __diagnostic_used!(E0423); |
| __diagnostic_used!(E0425); |
| __diagnostic_used!(E0531); |
| __diagnostic_used!(E0532); |
| __diagnostic_used!(E0573); |
| __diagnostic_used!(E0574); |
| __diagnostic_used!(E0575); |
| __diagnostic_used!(E0576); |
| __diagnostic_used!(E0577); |
| __diagnostic_used!(E0578); |
| match (self, has_unexpected_resolution) { |
| (PathSource::Trait(_), true) => "E0404", |
| (PathSource::Trait(_), false) => "E0405", |
| (PathSource::Type, true) => "E0573", |
| (PathSource::Type, false) => "E0412", |
| (PathSource::Struct, true) => "E0574", |
| (PathSource::Struct, false) => "E0422", |
| (PathSource::Expr(..), true) => "E0423", |
| (PathSource::Expr(..), false) => "E0425", |
| (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532", |
| (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531", |
| (PathSource::TraitItem(..), true) => "E0575", |
| (PathSource::TraitItem(..), false) => "E0576", |
| (PathSource::Visibility, true) | (PathSource::ImportPrefix, true) => "E0577", |
| (PathSource::Visibility, false) | (PathSource::ImportPrefix, false) => "E0578", |
| } |
| } |
| } |
| |
| struct UsePlacementFinder { |
| target_module: NodeId, |
| span: Option<Span>, |
| found_use: bool, |
| } |
| |
| impl UsePlacementFinder { |
| fn check(krate: &Crate, target_module: NodeId) -> (Option<Span>, bool) { |
| let mut finder = UsePlacementFinder { |
| target_module, |
| span: None, |
| found_use: false, |
| }; |
| visit::walk_crate(&mut finder, krate); |
| (finder.span, finder.found_use) |
| } |
| } |
| |
| impl<'tcx> Visitor<'tcx> for UsePlacementFinder { |
| fn visit_mod( |
| &mut self, |
| module: &'tcx ast::Mod, |
| _: Span, |
| _: &[ast::Attribute], |
| node_id: NodeId, |
| ) { |
| if self.span.is_some() { |
| return; |
| } |
| if node_id != self.target_module { |
| visit::walk_mod(self, module); |
| return; |
| } |
| // find a use statement |
| for item in &module.items { |
| match item.node { |
| ItemKind::Use(..) => { |
| // don't suggest placing a use before the prelude |
| // import or other generated ones |
| if item.span.ctxt().outer().expn_info().is_none() { |
| self.span = Some(item.span.shrink_to_lo()); |
| self.found_use = true; |
| return; |
| } |
| }, |
| // don't place use before extern crate |
| ItemKind::ExternCrate(_) => {} |
| // but place them before the first other item |
| _ => if self.span.map_or(true, |span| item.span < span ) { |
| if item.span.ctxt().outer().expn_info().is_none() { |
| // don't insert between attributes and an item |
| if item.attrs.is_empty() { |
| self.span = Some(item.span.shrink_to_lo()); |
| } else { |
| // find the first attribute on the item |
| for attr in &item.attrs { |
| if self.span.map_or(true, |span| attr.span < span) { |
| self.span = Some(attr.span.shrink_to_lo()); |
| } |
| } |
| } |
| } |
| }, |
| } |
| } |
| } |
| } |
| |
| /// This thing walks the whole crate in DFS manner, visiting each item, resolving names as it goes. |
| impl<'a, 'tcx, 'cl> Visitor<'tcx> for Resolver<'a, 'cl> { |
| fn visit_item(&mut self, item: &'tcx Item) { |
| self.resolve_item(item); |
| } |
| fn visit_arm(&mut self, arm: &'tcx Arm) { |
| self.resolve_arm(arm); |
| } |
| fn visit_block(&mut self, block: &'tcx Block) { |
| self.resolve_block(block); |
| } |
| fn visit_anon_const(&mut self, constant: &'tcx ast::AnonConst) { |
| self.with_constant_rib(|this| { |
| visit::walk_anon_const(this, constant); |
| }); |
| } |
| fn visit_expr(&mut self, expr: &'tcx Expr) { |
| self.resolve_expr(expr, None); |
| } |
| fn visit_local(&mut self, local: &'tcx Local) { |
| self.resolve_local(local); |
| } |
| fn visit_ty(&mut self, ty: &'tcx Ty) { |
| match ty.node { |
| TyKind::Path(ref qself, ref path) => { |
| self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type); |
| } |
| TyKind::ImplicitSelf => { |
| let self_ty = keywords::SelfType.ident(); |
| let def = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span) |
| .map_or(Def::Err, |d| d.def()); |
| self.record_def(ty.id, PathResolution::new(def)); |
| } |
| _ => (), |
| } |
| visit::walk_ty(self, ty); |
| } |
| fn visit_poly_trait_ref(&mut self, |
| tref: &'tcx ast::PolyTraitRef, |
| m: &'tcx ast::TraitBoundModifier) { |
| self.smart_resolve_path(tref.trait_ref.ref_id, None, |
| &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe)); |
| visit::walk_poly_trait_ref(self, tref, m); |
| } |
| fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) { |
| let type_parameters = match foreign_item.node { |
| ForeignItemKind::Fn(_, ref generics) => { |
| HasTypeParameters(generics, ItemRibKind) |
| } |
| ForeignItemKind::Static(..) => NoTypeParameters, |
| ForeignItemKind::Ty => NoTypeParameters, |
| ForeignItemKind::Macro(..) => NoTypeParameters, |
| }; |
| self.with_type_parameter_rib(type_parameters, |this| { |
| visit::walk_foreign_item(this, foreign_item); |
| }); |
| } |
| fn visit_fn(&mut self, |
| function_kind: FnKind<'tcx>, |
| declaration: &'tcx FnDecl, |
| _: Span, |
| node_id: NodeId) |
| { |
| let (rib_kind, asyncness) = match function_kind { |
| FnKind::ItemFn(_, ref header, ..) => |
| (ItemRibKind, header.asyncness), |
| FnKind::Method(_, ref sig, _, _) => |
| (TraitOrImplItemRibKind, sig.header.asyncness), |
| FnKind::Closure(_) => |
| // Async closures aren't resolved through `visit_fn`-- they're |
| // processed separately |
| (ClosureRibKind(node_id), IsAsync::NotAsync), |
| }; |
| |
| // Create a value rib for the function. |
| self.ribs[ValueNS].push(Rib::new(rib_kind)); |
| |
| // Create a label rib for the function. |
| self.label_ribs.push(Rib::new(rib_kind)); |
| |
| // Add each argument to the rib. |
| let mut bindings_list = FxHashMap(); |
| for argument in &declaration.inputs { |
| self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list); |
| |
| self.visit_ty(&argument.ty); |
| |
| debug!("(resolving function) recorded argument"); |
| } |
| visit::walk_fn_ret_ty(self, &declaration.output); |
| |
| // Resolve the function body, potentially inside the body of an async closure |
| if let IsAsync::Async { closure_id, .. } = asyncness { |
| let rib_kind = ClosureRibKind(closure_id); |
| self.ribs[ValueNS].push(Rib::new(rib_kind)); |
| self.label_ribs.push(Rib::new(rib_kind)); |
| } |
| |
| match function_kind { |
| FnKind::ItemFn(.., body) | |
| FnKind::Method(.., body) => { |
| self.visit_block(body); |
| } |
| FnKind::Closure(body) => { |
| self.visit_expr(body); |
| } |
| }; |
| |
| // Leave the body of the async closure |
| if asyncness.is_async() { |
| self.label_ribs.pop(); |
| self.ribs[ValueNS].pop(); |
| } |
| |
| debug!("(resolving function) leaving function"); |
| |
| self.label_ribs.pop(); |
| self.ribs[ValueNS].pop(); |
| } |
| fn visit_generics(&mut self, generics: &'tcx Generics) { |
| // For type parameter defaults, we have to ban access |
| // to following type parameters, as the Substs can only |
| // provide previous type parameters as they're built. We |
| // put all the parameters on the ban list and then remove |
| // them one by one as they are processed and become available. |
| let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind); |
| let mut found_default = false; |
| default_ban_rib.bindings.extend(generics.params.iter() |
| .filter_map(|param| match param.kind { |
| GenericParamKind::Lifetime { .. } => None, |
| GenericParamKind::Type { ref default, .. } => { |
| if found_default || default.is_some() { |
| found_default = true; |
| return Some((Ident::with_empty_ctxt(param.ident.name), Def::Err)); |
| } |
| None |
| } |
| })); |
| |
| for param in &generics.params { |
| match param.kind { |
| GenericParamKind::Lifetime { .. } => self.visit_generic_param(param), |
| GenericParamKind::Type { ref default, .. } => { |
| for bound in ¶m.bounds { |
| self.visit_param_bound(bound); |
| } |
| |
| if let Some(ref ty) = default { |
| self.ribs[TypeNS].push(default_ban_rib); |
| self.visit_ty(ty); |
| default_ban_rib = self.ribs[TypeNS].pop().unwrap(); |
| } |
| |
| // Allow all following defaults to refer to this type parameter. |
| default_ban_rib.bindings.remove(&Ident::with_empty_ctxt(param.ident.name)); |
| } |
| } |
| } |
| for p in &generics.where_clause.predicates { |
| self.visit_where_predicate(p); |
| } |
| } |
| } |
| |
| #[derive(Copy, Clone)] |
| enum TypeParameters<'a, 'b> { |
| NoTypeParameters, |
| HasTypeParameters(// Type parameters. |
| &'b Generics, |
| |
| // The kind of the rib used for type parameters. |
| RibKind<'a>), |
| } |
| |
| /// The rib kind controls the translation of local |
| /// definitions (`Def::Local`) to upvars (`Def::Upvar`). |
| #[derive(Copy, Clone, Debug)] |
| enum RibKind<'a> { |
| /// No translation needs to be applied. |
| NormalRibKind, |
| |
| /// We passed through a closure scope at the given node ID. |
| /// Translate upvars as appropriate. |
| ClosureRibKind(NodeId /* func id */), |
| |
| /// We passed through an impl or trait and are now in one of its |
| /// methods or associated types. Allow references to ty params that impl or trait |
| /// binds. Disallow any other upvars (including other ty params that are |
| /// upvars). |
| TraitOrImplItemRibKind, |
| |
| /// We passed through an item scope. Disallow upvars. |
| ItemRibKind, |
| |
| /// We're in a constant item. Can't refer to dynamic stuff. |
| ConstantItemRibKind, |
| |
| /// We passed through a module. |
| ModuleRibKind(Module<'a>), |
| |
| /// We passed through a `macro_rules!` statement |
| MacroDefinition(DefId), |
| |
| /// All bindings in this rib are type parameters that can't be used |
| /// from the default of a type parameter because they're not declared |
| /// before said type parameter. Also see the `visit_generics` override. |
| ForwardTyParamBanRibKind, |
| } |
| |
| /// One local scope. |
| /// |
| /// A rib represents a scope names can live in. Note that these appear in many places, not just |
| /// around braces. At any place where the list of accessible names (of the given namespace) |
| /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a |
| /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro, |
| /// etc. |
| /// |
| /// Different [rib kinds](enum.RibKind) are transparent for different names. |
| /// |
| /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When |
| /// resolving, the name is looked up from inside out. |
| #[derive(Debug)] |
| struct Rib<'a> { |
| bindings: FxHashMap<Ident, Def>, |
| kind: RibKind<'a>, |
| } |
| |
| impl<'a> Rib<'a> { |
| fn new(kind: RibKind<'a>) -> Rib<'a> { |
| Rib { |
| bindings: FxHashMap(), |
| kind, |
| } |
| } |
| } |
| |
| /// An intermediate resolution result. |
| /// |
| /// This refers to the thing referred by a name. The difference between `Def` and `Item` is that |
| /// items are visible in their whole block, while defs only from the place they are defined |
| /// forward. |
| enum LexicalScopeBinding<'a> { |
| Item(&'a NameBinding<'a>), |
| Def(Def), |
| } |
| |
| impl<'a> LexicalScopeBinding<'a> { |
| fn item(self) -> Option<&'a NameBinding<'a>> { |
| match self { |
| LexicalScopeBinding::Item(binding) => Some(binding), |
| _ => None, |
| } |
| } |
| |
| fn def(self) -> Def { |
| match self { |
| LexicalScopeBinding::Item(binding) => binding.def(), |
| LexicalScopeBinding::Def(def) => def, |
| } |
| } |
| } |
| |
| #[derive(Copy, Clone, Debug)] |
| pub enum ModuleOrUniformRoot<'a> { |
| /// Regular module. |
| Module(Module<'a>), |
| |
| /// The `{{root}}` (`CrateRoot` aka "global") / `extern` initial segment |
| /// in which external crates resolve, and also `crate` (only in `{{root}}`, |
| /// but *not* `extern`), in the Rust 2018 edition. |
| UniformRoot(Name), |
| } |
| |
| #[derive(Clone, Debug)] |
| enum PathResult<'a> { |
| Module(ModuleOrUniformRoot<'a>), |
| NonModule(PathResolution), |
| Indeterminate, |
| Failed(Span, String, bool /* is the error from the last segment? */), |
| } |
| |
| enum ModuleKind { |
| /// An anonymous module, eg. just a block. |
| /// |
| /// ``` |
| /// fn main() { |
| /// fn f() {} // (1) |
| /// { // This is an anonymous module |
| /// f(); // This resolves to (2) as we are inside the block. |
| /// fn f() {} // (2) |
| /// } |
| /// f(); // Resolves to (1) |
| /// } |
| /// ``` |
| Block(NodeId), |
| /// Any module with a name. |
| /// |
| /// This could be: |
| /// |
| /// * A normal module ‒ either `mod from_file;` or `mod from_block { }`. |
| /// * A trait or an enum (it implicitly contains associated types, methods and variant |
| /// constructors). |
| Def(Def, Name), |
| } |
| |
| /// One node in the tree of modules. |
| pub struct ModuleData<'a> { |
| parent: Option<Module<'a>>, |
| kind: ModuleKind, |
| |
| // The def id of the closest normal module (`mod`) ancestor (including this module). |
| normal_ancestor_id: DefId, |
| |
| resolutions: RefCell<FxHashMap<(Ident, Namespace), &'a RefCell<NameResolution<'a>>>>, |
| legacy_macro_resolutions: RefCell<Vec<(Mark, Ident, MacroKind, Option<Def>)>>, |
| macro_resolutions: RefCell<Vec<(Box<[Ident]>, Span)>>, |
| |
| // Macro invocations that can expand into items in this module. |
| unresolved_invocations: RefCell<FxHashSet<Mark>>, |
| |
| no_implicit_prelude: bool, |
| |
| glob_importers: RefCell<Vec<&'a ImportDirective<'a>>>, |
| globs: RefCell<Vec<&'a ImportDirective<'a>>>, |
| |
| // Used to memoize the traits in this module for faster searches through all traits in scope. |
| traits: RefCell<Option<Box<[(Ident, &'a NameBinding<'a>)]>>>, |
| |
| // Whether this module is populated. If not populated, any attempt to |
| // access the children must be preceded with a |
| // `populate_module_if_necessary` call. |
| populated: Cell<bool>, |
| |
| /// Span of the module itself. Used for error reporting. |
| span: Span, |
| |
| expansion: Mark, |
| } |
| |
| type Module<'a> = &'a ModuleData<'a>; |
| |
| impl<'a> ModuleData<'a> { |
| fn new(parent: Option<Module<'a>>, |
| kind: ModuleKind, |
| normal_ancestor_id: DefId, |
| expansion: Mark, |
| span: Span) -> Self { |
| ModuleData { |
| parent, |
| kind, |
| normal_ancestor_id, |
| resolutions: RefCell::new(FxHashMap()), |
| legacy_macro_resolutions: RefCell::new(Vec::new()), |
| macro_resolutions: RefCell::new(Vec::new()), |
| unresolved_invocations: RefCell::new(FxHashSet()), |
| no_implicit_prelude: false, |
| glob_importers: RefCell::new(Vec::new()), |
| globs: RefCell::new(Vec::new()), |
| traits: RefCell::new(None), |
| populated: Cell::new(normal_ancestor_id.is_local()), |
| span, |
| expansion, |
| } |
| } |
| |
| fn for_each_child<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) { |
| for (&(ident, ns), name_resolution) in self.resolutions.borrow().iter() { |
| name_resolution.borrow().binding.map(|binding| f(ident, ns, binding)); |
| } |
| } |
| |
| fn for_each_child_stable<F: FnMut(Ident, Namespace, &'a NameBinding<'a>)>(&self, mut f: F) { |
| let resolutions = self.resolutions.borrow(); |
| let mut resolutions = resolutions.iter().collect::<Vec<_>>(); |
| resolutions.sort_by_cached_key(|&(&(ident, ns), _)| (ident.as_str(), ns)); |
| for &(&(ident, ns), &resolution) in resolutions.iter() { |
| resolution.borrow().binding.map(|binding| f(ident, ns, binding)); |
| } |
| } |
| |
| fn def(&self) -> Option<Def> { |
| match self.kind { |
| ModuleKind::Def(def, _) => Some(def), |
| _ => None, |
| } |
| } |
| |
| fn def_id(&self) -> Option<DefId> { |
| self.def().as_ref().map(Def::def_id) |
| } |
| |
| // `self` resolves to the first module ancestor that `is_normal`. |
| fn is_normal(&self) -> bool { |
| match self.kind { |
| ModuleKind::Def(Def::Mod(_), _) => true, |
| _ => false, |
| } |
| } |
| |
| fn is_trait(&self) -> bool { |
| match self.kind { |
| ModuleKind::Def(Def::Trait(_), _) => true, |
| _ => false, |
| } |
| } |
| |
| fn is_local(&self) -> bool { |
| self.normal_ancestor_id.is_local() |
| } |
| |
| fn nearest_item_scope(&'a self) -> Module<'a> { |
| if self.is_trait() { self.parent.unwrap() } else { self } |
| } |
| } |
| |
| impl<'a> fmt::Debug for ModuleData<'a> { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| write!(f, "{:?}", self.def()) |
| } |
| } |
| |
| /// Records a possibly-private value, type, or module definition. |
| #[derive(Clone, Debug)] |
| pub struct NameBinding<'a> { |
| kind: NameBindingKind<'a>, |
| expansion: Mark, |
| span: Span, |
| vis: ty::Visibility, |
| } |
| |
| pub trait ToNameBinding<'a> { |
| fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>; |
| } |
| |
| impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> { |
| fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> { |
| self |
| } |
| } |
| |
| #[derive(Clone, Debug)] |
| enum NameBindingKind<'a> { |
| Def(Def, /* is_macro_export */ bool), |
| Module(Module<'a>), |
| Import { |
| binding: &'a NameBinding<'a>, |
| directive: &'a ImportDirective<'a>, |
| used: Cell<bool>, |
| }, |
| Ambiguity { |
| b1: &'a NameBinding<'a>, |
| b2: &'a NameBinding<'a>, |
| } |
| } |
| |
| struct PrivacyError<'a>(Span, Name, &'a NameBinding<'a>); |
| |
| struct UseError<'a> { |
| err: DiagnosticBuilder<'a>, |
| /// Attach `use` statements for these candidates |
| candidates: Vec<ImportSuggestion>, |
| /// The node id of the module to place the use statements in |
| node_id: NodeId, |
| /// Whether the diagnostic should state that it's "better" |
| better: bool, |
| } |
| |
| struct AmbiguityError<'a> { |
| span: Span, |
| name: Name, |
| lexical: bool, |
| b1: &'a NameBinding<'a>, |
| b2: &'a NameBinding<'a>, |
| } |
| |
| impl<'a> NameBinding<'a> { |
| fn module(&self) -> Option<Module<'a>> { |
| match self.kind { |
| NameBindingKind::Module(module) => Some(module), |
| NameBindingKind::Import { binding, .. } => binding.module(), |
| _ => None, |
| } |
| } |
| |
| fn def(&self) -> Def { |
| match self.kind { |
| NameBindingKind::Def(def, _) => def, |
| NameBindingKind::Module(module) => module.def().unwrap(), |
| NameBindingKind::Import { binding, .. } => binding.def(), |
| NameBindingKind::Ambiguity { .. } => Def::Err, |
| } |
| } |
| |
| fn def_ignoring_ambiguity(&self) -> Def { |
| match self.kind { |
| NameBindingKind::Import { binding, .. } => binding.def_ignoring_ambiguity(), |
| NameBindingKind::Ambiguity { b1, .. } => b1.def_ignoring_ambiguity(), |
| _ => self.def(), |
| } |
| } |
| |
| fn get_macro<'b: 'a>(&self, resolver: &mut Resolver<'a, 'b>) -> Lrc<SyntaxExtension> { |
| resolver.get_macro(self.def_ignoring_ambiguity()) |
| } |
| |
| // We sometimes need to treat variants as `pub` for backwards compatibility |
| fn pseudo_vis(&self) -> ty::Visibility { |
| if self.is_variant() && self.def().def_id().is_local() { |
| ty::Visibility::Public |
| } else { |
| self.vis |
| } |
| } |
| |
| fn is_variant(&self) -> bool { |
| match self.kind { |
| NameBindingKind::Def(Def::Variant(..), _) | |
| NameBindingKind::Def(Def::VariantCtor(..), _) => true, |
| _ => false, |
| } |
| } |
| |
| fn is_extern_crate(&self) -> bool { |
| match self.kind { |
| NameBindingKind::Import { |
| directive: &ImportDirective { |
| subclass: ImportDirectiveSubclass::ExternCrate(_), .. |
| }, .. |
| } => true, |
| _ => false, |
| } |
| } |
| |
| fn is_import(&self) -> bool { |
| match self.kind { |
| NameBindingKind::Import { .. } => true, |
| _ => false, |
| } |
| } |
| |
| fn is_renamed_extern_crate(&self) -> bool { |
| if let NameBindingKind::Import { directive, ..} = self.kind { |
| if let ImportDirectiveSubclass::ExternCrate(Some(_)) = directive.subclass { |
| return true; |
| } |
| } |
| false |
| } |
| |
| fn is_glob_import(&self) -> bool { |
| match self.kind { |
| NameBindingKind::Import { directive, .. } => directive.is_glob(), |
| NameBindingKind::Ambiguity { b1, .. } => b1.is_glob_import(), |
| _ => false, |
| } |
| } |
| |
| fn is_importable(&self) -> bool { |
| match self.def() { |
| Def::AssociatedConst(..) | Def::Method(..) | Def::AssociatedTy(..) => false, |
| _ => true, |
| } |
| } |
| |
| fn is_macro_def(&self) -> bool { |
| match self.kind { |
| NameBindingKind::Def(Def::Macro(..), _) => true, |
| _ => false, |
| } |
| } |
| |
| fn descr(&self) -> &'static str { |
| if self.is_extern_crate() { "extern crate" } else { self.def().kind_name() } |
| } |
| } |
| |
| /// Interns the names of the primitive types. |
| /// |
| /// All other types are defined somewhere and possibly imported, but the primitive ones need |
| /// special handling, since they have no place of origin. |
| struct PrimitiveTypeTable { |
| primitive_types: FxHashMap<Name, PrimTy>, |
| } |
| |
| impl PrimitiveTypeTable { |
| fn new() -> PrimitiveTypeTable { |
| let mut table = PrimitiveTypeTable { primitive_types: FxHashMap() }; |
| |
| table.intern("bool", TyBool); |
| table.intern("char", TyChar); |
| table.intern("f32", TyFloat(FloatTy::F32)); |
| table.intern("f64", TyFloat(FloatTy::F64)); |
| table.intern("isize", TyInt(IntTy::Isize)); |
| table.intern("i8", TyInt(IntTy::I8)); |
| table.intern("i16", TyInt(IntTy::I16)); |
| table.intern("i32", TyInt(IntTy::I32)); |
| table.intern("i64", TyInt(IntTy::I64)); |
| table.intern("i128", TyInt(IntTy::I128)); |
| table.intern("str", TyStr); |
| table.intern("usize", TyUint(UintTy::Usize)); |
| table.intern("u8", TyUint(UintTy::U8)); |
| table.intern("u16", TyUint(UintTy::U16)); |
| table.intern("u32", TyUint(UintTy::U32)); |
| table.intern("u64", TyUint(UintTy::U64)); |
| table.intern("u128", TyUint(UintTy::U128)); |
| table |
| } |
| |
| fn intern(&mut self, string: &str, primitive_type: PrimTy) { |
| self.primitive_types.insert(Symbol::intern(string), primitive_type); |
| } |
| } |
| |
| /// The main resolver class. |
| /// |
| /// This is the visitor that walks the whole crate. |
| pub struct Resolver<'a, 'b: 'a> { |
| session: &'a Session, |
| cstore: &'a CStore, |
| |
| pub definitions: Definitions, |
| |
| graph_root: Module<'a>, |
| |
| prelude: Option<Module<'a>>, |
| extern_prelude: FxHashSet<Name>, |
| |
| /// n.b. This is used only for better diagnostics, not name resolution itself. |
| has_self: FxHashSet<DefId>, |
| |
| /// Names of fields of an item `DefId` accessible with dot syntax. |
| /// Used for hints during error reporting. |
| field_names: FxHashMap<DefId, Vec<Name>>, |
| |
| /// All imports known to succeed or fail. |
| determined_imports: Vec<&'a ImportDirective<'a>>, |
| |
| /// All non-determined imports. |
| indeterminate_imports: Vec<&'a ImportDirective<'a>>, |
| |
| /// The module that represents the current item scope. |
| current_module: Module<'a>, |
| |
| /// The current set of local scopes for types and values. |
| /// FIXME #4948: Reuse ribs to avoid allocation. |
| ribs: PerNS<Vec<Rib<'a>>>, |
| |
| /// The current set of local scopes, for labels. |
| label_ribs: Vec<Rib<'a>>, |
| |
| /// The trait that the current context can refer to. |
| current_trait_ref: Option<(Module<'a>, TraitRef)>, |
| |
| /// The current self type if inside an impl (used for better errors). |
| current_self_type: Option<Ty>, |
| |
| /// The idents for the primitive types. |
| primitive_type_table: PrimitiveTypeTable, |
| |
| def_map: DefMap, |
| import_map: ImportMap, |
| pub freevars: FreevarMap, |
| freevars_seen: NodeMap<NodeMap<usize>>, |
| pub export_map: ExportMap, |
| pub trait_map: TraitMap, |
| |
| /// A map from nodes to anonymous modules. |
| /// Anonymous modules are pseudo-modules that are implicitly created around items |
| /// contained within blocks. |
| /// |
| /// For example, if we have this: |
| /// |
| /// fn f() { |
| /// fn g() { |
| /// ... |
| /// } |
| /// } |
| /// |
| /// There will be an anonymous module created around `g` with the ID of the |
| /// entry block for `f`. |
| block_map: NodeMap<Module<'a>>, |
| module_map: FxHashMap<DefId, Module<'a>>, |
| extern_module_map: FxHashMap<(DefId, bool /* MacrosOnly? */), Module<'a>>, |
| |
| pub make_glob_map: bool, |
| /// Maps imports to the names of items actually imported (this actually maps |
| /// all imports, but only glob imports are actually interesting). |
| pub glob_map: GlobMap, |
| |
| used_imports: FxHashSet<(NodeId, Namespace)>, |
| pub maybe_unused_trait_imports: NodeSet, |
| pub maybe_unused_extern_crates: Vec<(NodeId, Span)>, |
| |
| /// A list of labels as of yet unused. Labels will be removed from this map when |
| /// they are used (in a `break` or `continue` statement) |
| pub unused_labels: FxHashMap<NodeId, Span>, |
| |
| /// privacy errors are delayed until the end in order to deduplicate them |
| privacy_errors: Vec<PrivacyError<'a>>, |
| /// ambiguity errors are delayed for deduplication |
| ambiguity_errors: Vec<AmbiguityError<'a>>, |
| /// `use` injections are delayed for better placement and deduplication |
| use_injections: Vec<UseError<'a>>, |
| /// `use` injections for proc macros wrongly imported with #[macro_use] |
| proc_mac_errors: Vec<macros::ProcMacError>, |
| /// crate-local macro expanded `macro_export` referred to by a module-relative path |
| macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>, |
| |
| disallowed_shadowing: Vec<&'a LegacyBinding<'a>>, |
| |
| arenas: &'a ResolverArenas<'a>, |
| dummy_binding: &'a NameBinding<'a>, |
| |
| crate_loader: &'a mut CrateLoader<'b>, |
| macro_names: FxHashSet<Ident>, |
| macro_prelude: FxHashMap<Name, &'a NameBinding<'a>>, |
| pub all_macros: FxHashMap<Name, Def>, |
| macro_map: FxHashMap<DefId, Lrc<SyntaxExtension>>, |
| macro_defs: FxHashMap<Mark, DefId>, |
| local_macro_def_scopes: FxHashMap<NodeId, Module<'a>>, |
| pub whitelisted_legacy_custom_derives: Vec<Name>, |
| pub found_unresolved_macro: bool, |
| |
| /// List of crate local macros that we need to warn about as being unused. |
| /// Right now this only includes macro_rules! macros, and macros 2.0. |
| unused_macros: FxHashSet<DefId>, |
| |
| /// Maps the `Mark` of an expansion to its containing module or block. |
| invocations: FxHashMap<Mark, &'a InvocationData<'a>>, |
| |
| /// Avoid duplicated errors for "name already defined". |
| name_already_seen: FxHashMap<Name, Span>, |
| |
| /// A set of procedural macros imported by `#[macro_use]` that have already been warned about |
| warned_proc_macros: FxHashSet<Name>, |
| |
| potentially_unused_imports: Vec<&'a ImportDirective<'a>>, |
| |
| /// This table maps struct IDs into struct constructor IDs, |
| /// it's not used during normal resolution, only for better error reporting. |
| struct_constructors: DefIdMap<(Def, ty::Visibility)>, |
| |
| /// Only used for better errors on `fn(): fn()` |
| current_type_ascription: Vec<Span>, |
| |
| injected_crate: Option<Module<'a>>, |
| |
| /// Only supposed to be used by rustdoc, otherwise should be false. |
| pub ignore_extern_prelude_feature: bool, |
| } |
| |
| /// Nothing really interesting here, it just provides memory for the rest of the crate. |
| pub struct ResolverArenas<'a> { |
| modules: arena::TypedArena<ModuleData<'a>>, |
| local_modules: RefCell<Vec<Module<'a>>>, |
| name_bindings: arena::TypedArena<NameBinding<'a>>, |
| import_directives: arena::TypedArena<ImportDirective<'a>>, |
| name_resolutions: arena::TypedArena<RefCell<NameResolution<'a>>>, |
| invocation_data: arena::TypedArena<InvocationData<'a>>, |
| legacy_bindings: arena::TypedArena<LegacyBinding<'a>>, |
| } |
| |
| impl<'a> ResolverArenas<'a> { |
| fn alloc_module(&'a self, module: ModuleData<'a>) -> Module<'a> { |
| let module = self.modules.alloc(module); |
| if module.def_id().map(|def_id| def_id.is_local()).unwrap_or(true) { |
| self.local_modules.borrow_mut().push(module); |
| } |
| module |
| } |
| fn local_modules(&'a self) -> ::std::cell::Ref<'a, Vec<Module<'a>>> { |
| self.local_modules.borrow() |
| } |
| fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> { |
| self.name_bindings.alloc(name_binding) |
| } |
| fn alloc_import_directive(&'a self, import_directive: ImportDirective<'a>) |
| -> &'a ImportDirective { |
| self.import_directives.alloc(import_directive) |
| } |
| fn alloc_name_resolution(&'a self) -> &'a RefCell<NameResolution<'a>> { |
| self.name_resolutions.alloc(Default::default()) |
| } |
| fn alloc_invocation_data(&'a self, expansion_data: InvocationData<'a>) |
| -> &'a InvocationData<'a> { |
| self.invocation_data.alloc(expansion_data) |
| } |
| fn alloc_legacy_binding(&'a self, binding: LegacyBinding<'a>) -> &'a LegacyBinding<'a> { |
| self.legacy_bindings.alloc(binding) |
| } |
| } |
| |
| impl<'a, 'b: 'a, 'cl: 'b> ty::DefIdTree for &'a Resolver<'b, 'cl> { |
| fn parent(self, id: DefId) -> Option<DefId> { |
| match id.krate { |
| LOCAL_CRATE => self.definitions.def_key(id.index).parent, |
| _ => self.cstore.def_key(id).parent, |
| }.map(|index| DefId { index, ..id }) |
| } |
| } |
| |
| /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that |
| /// the resolver is no longer needed as all the relevant information is inline. |
| impl<'a, 'cl> hir::lowering::Resolver for Resolver<'a, 'cl> { |
| fn resolve_hir_path(&mut self, path: &mut hir::Path, is_value: bool) { |
| self.resolve_hir_path_cb(path, is_value, |
| |resolver, span, error| resolve_error(resolver, span, error)) |
| } |
| |
| fn resolve_str_path( |
| &mut self, |
| span: Span, |
| crate_root: Option<&str>, |
| components: &[&str], |
| args: Option<P<hir::GenericArgs>>, |
| is_value: bool |
| ) -> hir::Path { |
| let mut segments = iter::once(keywords::CrateRoot.ident()) |
| .chain( |
| crate_root.into_iter() |
| .chain(components.iter().cloned()) |
| .map(Ident::from_str) |
| ).map(hir::PathSegment::from_ident).collect::<Vec<_>>(); |
| |
| if let Some(args) = args { |
| let ident = segments.last().unwrap().ident; |
| *segments.last_mut().unwrap() = hir::PathSegment { |
| ident, |
| args: Some(args), |
| infer_types: true, |
| }; |
| } |
| |
| let mut path = hir::Path { |
| span, |
| def: Def::Err, |
| segments: segments.into(), |
| }; |
| |
| self.resolve_hir_path(&mut path, is_value); |
| path |
| } |
| |
| fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution> { |
| self.def_map.get(&id).cloned() |
| } |
| |
| fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>> { |
| self.import_map.get(&id).cloned().unwrap_or_default() |
| } |
| |
| fn definitions(&mut self) -> &mut Definitions { |
| &mut self.definitions |
| } |
| } |
| |
| impl<'a, 'crateloader> Resolver<'a, 'crateloader> { |
| /// Rustdoc uses this to resolve things in a recoverable way. ResolutionError<'a> |
| /// isn't something that can be returned because it can't be made to live that long, |
| /// and also it's a private type. Fortunately rustdoc doesn't need to know the error, |
| /// just that an error occurred. |
| pub fn resolve_str_path_error(&mut self, span: Span, path_str: &str, is_value: bool) |
| -> Result<hir::Path, ()> { |
| use std::iter; |
| let mut errored = false; |
| |
| let mut path = if path_str.starts_with("::") { |
| hir::Path { |
| span, |
| def: Def::Err, |
| segments: iter::once(keywords::CrateRoot.ident()).chain({ |
| path_str.split("::").skip(1).map(Ident::from_str) |
| }).map(hir::PathSegment::from_ident).collect(), |
| } |
| } else { |
| hir::Path { |
| span, |
| def: Def::Err, |
| segments: path_str.split("::").map(Ident::from_str) |
| .map(hir::PathSegment::from_ident).collect(), |
| } |
| }; |
| self.resolve_hir_path_cb(&mut path, is_value, |_, _, _| errored = true); |
| if errored || path.def == Def::Err { |
| Err(()) |
| } else { |
| Ok(path) |
| } |
| } |
| |
| /// resolve_hir_path, but takes a callback in case there was an error |
| fn resolve_hir_path_cb<F>(&mut self, path: &mut hir::Path, is_value: bool, error_callback: F) |
| where F: for<'c, 'b> FnOnce(&'c mut Resolver, Span, ResolutionError<'b>) |
| { |
| let namespace = if is_value { ValueNS } else { TypeNS }; |
| let hir::Path { ref segments, span, ref mut def } = *path; |
| let path: Vec<_> = segments.iter().map(|seg| seg.ident).collect(); |
| // FIXME (Manishearth): Intra doc links won't get warned of epoch changes |
| match self.resolve_path(None, &path, Some(namespace), true, span, CrateLint::No) { |
| PathResult::Module(ModuleOrUniformRoot::Module(module)) => |
| *def = module.def().unwrap(), |
| PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => |
| *def = path_res.base_def(), |
| PathResult::NonModule(..) => match self.resolve_path( |
| None, |
| &path, |
| None, |
| true, |
| span, |
| CrateLint::No, |
| ) { |
| PathResult::Failed(span, msg, _) => { |
| error_callback(self, span, ResolutionError::FailedToResolve(&msg)); |
| } |
| _ => {} |
| }, |
| PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) | |
| PathResult::Indeterminate => unreachable!(), |
| PathResult::Failed(span, msg, _) => { |
| error_callback(self, span, ResolutionError::FailedToResolve(&msg)); |
| } |
| } |
| } |
| } |
| |
| impl<'a, 'crateloader: 'a> Resolver<'a, 'crateloader> { |
| pub fn new(session: &'a Session, |
| cstore: &'a CStore, |
| krate: &Crate, |
| crate_name: &str, |
| make_glob_map: MakeGlobMap, |
| crate_loader: &'a mut CrateLoader<'crateloader>, |
| arenas: &'a ResolverArenas<'a>) |
| -> Resolver<'a, 'crateloader> { |
| let root_def_id = DefId::local(CRATE_DEF_INDEX); |
| let root_module_kind = ModuleKind::Def(Def::Mod(root_def_id), keywords::Invalid.name()); |
| let graph_root = arenas.alloc_module(ModuleData { |
| no_implicit_prelude: attr::contains_name(&krate.attrs, "no_implicit_prelude"), |
| ..ModuleData::new(None, root_module_kind, root_def_id, Mark::root(), krate.span) |
| }); |
| let mut module_map = FxHashMap(); |
| module_map.insert(DefId::local(CRATE_DEF_INDEX), graph_root); |
| |
| let mut definitions = Definitions::new(); |
| DefCollector::new(&mut definitions, Mark::root()) |
| .collect_root(crate_name, session.local_crate_disambiguator()); |
| |
| let mut extern_prelude: FxHashSet<Name> = |
| session.opts.externs.iter().map(|kv| Symbol::intern(kv.0)).collect(); |
| if !attr::contains_name(&krate.attrs, "no_core") { |
| if !attr::contains_name(&krate.attrs, "no_std") { |
| extern_prelude.insert(Symbol::intern("std")); |
| } else { |
| extern_prelude.insert(Symbol::intern("core")); |
| } |
| } |
| |
| let mut invocations = FxHashMap(); |
| invocations.insert(Mark::root(), |
| arenas.alloc_invocation_data(InvocationData::root(graph_root))); |
| |
| let mut macro_defs = FxHashMap(); |
| macro_defs.insert(Mark::root(), root_def_id); |
| |
| Resolver { |
| session, |
| |
| cstore, |
| |
| definitions, |
| |
| // The outermost module has def ID 0; this is not reflected in the |
| // AST. |
| graph_root, |
| prelude: None, |
| extern_prelude, |
| |
| has_self: FxHashSet(), |
| field_names: FxHashMap(), |
| |
| determined_imports: Vec::new(), |
| indeterminate_imports: Vec::new(), |
| |
| current_module: graph_root, |
| ribs: PerNS { |
| value_ns: vec![Rib::new(ModuleRibKind(graph_root))], |
| type_ns: vec![Rib::new(ModuleRibKind(graph_root))], |
| macro_ns: vec![Rib::new(ModuleRibKind(graph_root))], |
| }, |
| label_ribs: Vec::new(), |
| |
| current_trait_ref: None, |
| current_self_type: None, |
| |
| primitive_type_table: PrimitiveTypeTable::new(), |
| |
| def_map: NodeMap(), |
| import_map: NodeMap(), |
| freevars: NodeMap(), |
| freevars_seen: NodeMap(), |
| export_map: FxHashMap(), |
| trait_map: NodeMap(), |
| module_map, |
| block_map: NodeMap(), |
| extern_module_map: FxHashMap(), |
| |
| make_glob_map: make_glob_map == MakeGlobMap::Yes, |
| glob_map: NodeMap(), |
| |
| used_imports: FxHashSet(), |
| maybe_unused_trait_imports: NodeSet(), |
| maybe_unused_extern_crates: Vec::new(), |
| |
| unused_labels: FxHashMap(), |
| |
| privacy_errors: Vec::new(), |
| ambiguity_errors: Vec::new(), |
| use_injections: Vec::new(), |
| proc_mac_errors: Vec::new(), |
| disallowed_shadowing: Vec::new(), |
| macro_expanded_macro_export_errors: BTreeSet::new(), |
| |
| arenas, |
| dummy_binding: arenas.alloc_name_binding(NameBinding { |
| kind: NameBindingKind::Def(Def::Err, false), |
| expansion: Mark::root(), |
| span: DUMMY_SP, |
| vis: ty::Visibility::Public, |
| }), |
| |
| crate_loader, |
| macro_names: FxHashSet(), |
| macro_prelude: FxHashMap(), |
| all_macros: FxHashMap(), |
| macro_map: FxHashMap(), |
| invocations, |
| macro_defs, |
| local_macro_def_scopes: FxHashMap(), |
| name_already_seen: FxHashMap(), |
| whitelisted_legacy_custom_derives: Vec::new(), |
| warned_proc_macros: FxHashSet(), |
| potentially_unused_imports: Vec::new(), |
| struct_constructors: DefIdMap(), |
| found_unresolved_macro: false, |
| unused_macros: FxHashSet(), |
| current_type_ascription: Vec::new(), |
| injected_crate: None, |
| ignore_extern_prelude_feature: false, |
| } |
| } |
| |
| pub fn arenas() -> ResolverArenas<'a> { |
| ResolverArenas { |
| modules: arena::TypedArena::new(), |
| local_modules: RefCell::new(Vec::new()), |
| name_bindings: arena::TypedArena::new(), |
| import_directives: arena::TypedArena::new(), |
| name_resolutions: arena::TypedArena::new(), |
| invocation_data: arena::TypedArena::new(), |
| legacy_bindings: arena::TypedArena::new(), |
| } |
| } |
| |
| /// Runs the function on each namespace. |
| fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) { |
| f(self, TypeNS); |
| f(self, ValueNS); |
| f(self, MacroNS); |
| } |
| |
| fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId { |
| loop { |
| match self.macro_defs.get(&ctxt.outer()) { |
| Some(&def_id) => return def_id, |
| None => ctxt.remove_mark(), |
| }; |
| } |
| } |
| |
| /// Entry point to crate resolution. |
| pub fn resolve_crate(&mut self, krate: &Crate) { |
| ImportResolver { resolver: self }.finalize_imports(); |
| self.current_module = self.graph_root; |
| self.finalize_current_module_macro_resolutions(); |
| |
| visit::walk_crate(self, krate); |
| |
| check_unused::check_crate(self, krate); |
| self.report_errors(krate); |
| self.crate_loader.postprocess(krate); |
| } |
| |
| fn new_module( |
| &self, |
| parent: Module<'a>, |
| kind: ModuleKind, |
| normal_ancestor_id: DefId, |
| expansion: Mark, |
| span: Span, |
| ) -> Module<'a> { |
| let module = ModuleData::new(Some(parent), kind, normal_ancestor_id, expansion, span); |
| self.arenas.alloc_module(module) |
| } |
| |
| fn record_use(&mut self, ident: Ident, ns: Namespace, binding: &'a NameBinding<'a>, span: Span) |
| -> bool /* true if an error was reported */ { |
| match binding.kind { |
| NameBindingKind::Import { directive, binding, ref used } |
| if !used.get() => { |
| used.set(true); |
| directive.used.set(true); |
| self.used_imports.insert((directive.id, ns)); |
| self.add_to_glob_map(directive.id, ident); |
| self.record_use(ident, ns, binding, span) |
| } |
| NameBindingKind::Import { .. } => false, |
| NameBindingKind::Ambiguity { b1, b2 } => { |
| self.ambiguity_errors.push(AmbiguityError { |
| span, name: ident.name, lexical: false, b1, b2, |
| }); |
| true |
| } |
| _ => false |
| } |
| } |
| |
| fn add_to_glob_map(&mut self, id: NodeId, ident: Ident) { |
| if self.make_glob_map { |
| self.glob_map.entry(id).or_default().insert(ident.name); |
| } |
| } |
| |
| /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope. |
| /// More specifically, we proceed up the hierarchy of scopes and return the binding for |
| /// `ident` in the first scope that defines it (or None if no scopes define it). |
| /// |
| /// A block's items are above its local variables in the scope hierarchy, regardless of where |
| /// the items are defined in the block. For example, |
| /// ```rust |
| /// fn f() { |
| /// g(); // Since there are no local variables in scope yet, this resolves to the item. |
| /// let g = || {}; |
| /// fn g() {} |
| /// g(); // This resolves to the local variable `g` since it shadows the item. |
| /// } |
| /// ``` |
| /// |
| /// Invariant: This must only be called during main resolution, not during |
| /// import resolution. |
| fn resolve_ident_in_lexical_scope(&mut self, |
| mut ident: Ident, |
| ns: Namespace, |
| record_used_id: Option<NodeId>, |
| path_span: Span) |
| -> Option<LexicalScopeBinding<'a>> { |
| let record_used = record_used_id.is_some(); |
| assert!(ns == TypeNS || ns == ValueNS); |
| if ns == TypeNS { |
| ident.span = if ident.name == keywords::SelfType.name() { |
| // FIXME(jseyfried) improve `Self` hygiene |
| ident.span.with_ctxt(SyntaxContext::empty()) |
| } else { |
| ident.span.modern() |
| } |
| } else { |
| ident = ident.modern_and_legacy(); |
| } |
| |
| // Walk backwards up the ribs in scope. |
| let mut module = self.graph_root; |
| for i in (0 .. self.ribs[ns].len()).rev() { |
| if let Some(def) = self.ribs[ns][i].bindings.get(&ident).cloned() { |
| // The ident resolves to a type parameter or local variable. |
| return Some(LexicalScopeBinding::Def( |
| self.adjust_local_def(ns, i, def, record_used, path_span) |
| )); |
| } |
| |
| module = match self.ribs[ns][i].kind { |
| ModuleRibKind(module) => module, |
| MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => { |
| // If an invocation of this macro created `ident`, give up on `ident` |
| // and switch to `ident`'s source from the macro definition. |
| ident.span.remove_mark(); |
| continue |
| } |
| _ => continue, |
| }; |
| |
| let item = self.resolve_ident_in_module_unadjusted( |
| ModuleOrUniformRoot::Module(module), |
| ident, |
| ns, |
| false, |
| record_used, |
| path_span, |
| ); |
| if let Ok(binding) = item { |
| // The ident resolves to an item. |
| return Some(LexicalScopeBinding::Item(binding)); |
| } |
| |
| match module.kind { |
| ModuleKind::Block(..) => {}, // We can see through blocks |
| _ => break, |
| } |
| } |
| |
| ident.span = ident.span.modern(); |
| loop { |
| let (opt_module, poisoned) = if let Some(node_id) = record_used_id { |
| self.hygienic_lexical_parent_with_compatibility_fallback(module, &mut ident.span, |
| node_id) |
| } else { |
| (self.hygienic_lexical_parent(module, &mut ident.span), None) |
| }; |
| module = unwrap_or!(opt_module, break); |
| let orig_current_module = self.current_module; |
| self.current_module = module; // Lexical resolutions can never be a privacy error. |
| let result = self.resolve_ident_in_module_unadjusted( |
| ModuleOrUniformRoot::Module(module), |
| ident, |
| ns, |
| false, |
| record_used, |
| path_span, |
| ); |
| self.current_module = orig_current_module; |
| |
| match result { |
| Ok(binding) => { |
| if let Some(node_id) = poisoned { |
| self.session.buffer_lint_with_diagnostic( |
| lint::builtin::PROC_MACRO_DERIVE_RESOLUTION_FALLBACK, |
| node_id, ident.span, |
| &format!("cannot find {} `{}` in this scope", ns.descr(), ident), |
| lint::builtin::BuiltinLintDiagnostics:: |
| ProcMacroDeriveResolutionFallback(ident.span), |
| ); |
| } |
| return Some(LexicalScopeBinding::Item(binding)) |
| } |
| _ if poisoned.is_some() => break, |
| Err(Determined) => continue, |
| Err(Undetermined) => |
| span_bug!(ident.span, "undetermined resolution during main resolution pass"), |
| } |
| } |
| |
| if !module.no_implicit_prelude { |
| // `record_used` means that we don't try to load crates during speculative resolution |
| if record_used && ns == TypeNS && self.extern_prelude.contains(&ident.name) { |
| if !self.session.features_untracked().extern_prelude && |
| !self.ignore_extern_prelude_feature { |
| feature_err(&self.session.parse_sess, "extern_prelude", |
| ident.span, GateIssue::Language, |
| "access to extern crates through prelude is experimental").emit(); |
| } |
| |
| let crate_id = self.crate_loader.process_path_extern(ident.name, ident.span); |
| let crate_root = self.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX }); |
| self.populate_module_if_necessary(crate_root); |
| |
| let binding = (crate_root, ty::Visibility::Public, |
| ident.span, Mark::root()).to_name_binding(self.arenas); |
| return Some(LexicalScopeBinding::Item(binding)); |
| } |
| if ns == TypeNS && is_known_tool(ident.name) { |
| let binding = (Def::ToolMod, ty::Visibility::Public, |
| ident.span, Mark::root()).to_name_binding(self.arenas); |
| return Some(LexicalScopeBinding::Item(binding)); |
| } |
| if let Some(prelude) = self.prelude { |
| if let Ok(binding) = self.resolve_ident_in_module_unadjusted( |
| ModuleOrUniformRoot::Module(prelude), |
| ident, |
| ns, |
| false, |
| false, |
| path_span, |
| ) { |
| return Some(LexicalScopeBinding::Item(binding)); |
| } |
| } |
| } |
| |
| None |
| } |
| |
| fn hygienic_lexical_parent(&mut self, module: Module<'a>, span: &mut Span) |
| -> Option<Module<'a>> { |
| if !module.expansion.is_descendant_of(span.ctxt().outer()) { |
| return Some(self.macro_def_scope(span.remove_mark())); |
| } |
| |
| if let ModuleKind::Block(..) = module.kind { |
| return Some(module.parent.unwrap()); |
| } |
| |
| None |
| } |
| |
| fn hygienic_lexical_parent_with_compatibility_fallback( |
| &mut self, module: Module<'a>, span: &mut Span, node_id: NodeId |
| ) -> (Option<Module<'a>>, /* poisoned */ Option<NodeId>) |
| { |
| if let module @ Some(..) = self.hygienic_lexical_parent(module, span) { |
| return (module, None); |
| } |
| |
| // We need to support the next case under a deprecation warning |
| // ``` |
| // struct MyStruct; |
| // ---- begin: this comes from a proc macro derive |
| // mod implementation_details { |
| // // Note that `MyStruct` is not in scope here. |
| // impl SomeTrait for MyStruct { ... } |
| // } |
| // ---- end |
| // ``` |
| // So we have to fall back to the module's parent during lexical resolution in this case. |
| if let Some(parent) = module.parent { |
| // Inner module is inside the macro, parent module is outside of the macro. |
| if module.expansion != parent.expansion && |
| module.expansion.is_descendant_of(parent.expansion) { |
| // The macro is a proc macro derive |
| if module.expansion.looks_like_proc_macro_derive() { |
| if parent.expansion.is_descendant_of(span.ctxt().outer()) { |
| return (module.parent, Some(node_id)); |
| } |
| } |
| } |
| } |
| |
| (None, None) |
| } |
| |
| fn resolve_ident_in_module(&mut self, |
| module: ModuleOrUniformRoot<'a>, |
| mut ident: Ident, |
| ns: Namespace, |
| record_used: bool, |
| span: Span) |
| -> Result<&'a NameBinding<'a>, Determinacy> { |
| ident.span = ident.span.modern(); |
| let orig_current_module = self.current_module; |
| if let ModuleOrUniformRoot::Module(module) = module { |
| if let Some(def) = ident.span.adjust(module.expansion) { |
| self.current_module = self.macro_def_scope(def); |
| } |
| } |
| let result = self.resolve_ident_in_module_unadjusted( |
| module, ident, ns, false, record_used, span, |
| ); |
| self.current_module = orig_current_module; |
| result |
| } |
| |
| fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> { |
| let mut ctxt = ident.span.ctxt(); |
| let mark = if ident.name == keywords::DollarCrate.name() { |
| // When resolving `$crate` from a `macro_rules!` invoked in a `macro`, |
| // we don't want to pretend that the `macro_rules!` definition is in the `macro` |
| // as described in `SyntaxContext::apply_mark`, so we ignore prepended modern marks. |
| // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!` |
| // definitions actually produced by `macro` and `macro` definitions produced by |
| // `macro_rules!`, but at least such configurations are not stable yet. |
| ctxt = ctxt.modern_and_legacy(); |
| let mut iter = ctxt.marks().into_iter().rev().peekable(); |
| let mut result = None; |
| // Find the last modern mark from the end if it exists. |
| while let Some(&(mark, transparency)) = iter.peek() { |
| if transparency == Transparency::Opaque { |
| result = Some(mark); |
| iter.next(); |
| } else { |
| break; |
| } |
| } |
| // Then find the last legacy mark from the end if it exists. |
| for (mark, transparency) in iter { |
| if transparency == Transparency::SemiTransparent { |
| result = Some(mark); |
| } else { |
| break; |
| } |
| } |
| result |
| } else { |
| ctxt = ctxt.modern(); |
| ctxt.adjust(Mark::root()) |
| }; |
| let module = match mark { |
| Some(def) => self.macro_def_scope(def), |
| None => return self.graph_root, |
| }; |
| self.get_module(DefId { index: CRATE_DEF_INDEX, ..module.normal_ancestor_id }) |
| } |
| |
| fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> { |
| let mut module = self.get_module(module.normal_ancestor_id); |
| while module.span.ctxt().modern() != *ctxt { |
| let parent = module.parent.unwrap_or_else(|| self.macro_def_scope(ctxt.remove_mark())); |
| module = self.get_module(parent.normal_ancestor_id); |
| } |
| module |
| } |
| |
| // AST resolution |
| // |
| // We maintain a list of value ribs and type ribs. |
| // |
| // Simultaneously, we keep track of the current position in the module |
| // graph in the `current_module` pointer. When we go to resolve a name in |
| // the value or type namespaces, we first look through all the ribs and |
| // then query the module graph. When we resolve a name in the module |
| // namespace, we can skip all the ribs (since nested modules are not |
| // allowed within blocks in Rust) and jump straight to the current module |
| // graph node. |
| // |
| // Named implementations are handled separately. When we find a method |
| // call, we consult the module node to find all of the implementations in |
| // scope. This information is lazily cached in the module node. We then |
| // generate a fake "implementation scope" containing all the |
| // implementations thus found, for compatibility with old resolve pass. |
| |
| pub fn with_scope<F, T>(&mut self, id: NodeId, f: F) -> T |
| where F: FnOnce(&mut Resolver) -> T |
| { |
| let id = self.definitions.local_def_id(id); |
| let module = self.module_map.get(&id).cloned(); // clones a reference |
| if let Some(module) = module { |
| // Move down in the graph. |
| let orig_module = replace(&mut self.current_module, module); |
| self.ribs[ValueNS].push(Rib::new(ModuleRibKind(module))); |
| self.ribs[TypeNS].push(Rib::new(ModuleRibKind(module))); |
| |
| self.finalize_current_module_macro_resolutions(); |
| let ret = f(self); |
| |
| self.current_module = orig_module; |
| self.ribs[ValueNS].pop(); |
| self.ribs[TypeNS].pop(); |
| ret |
| } else { |
| f(self) |
| } |
| } |
| |
| /// Searches the current set of local scopes for labels. Returns the first non-None label that |
| /// is returned by the given predicate function |
| /// |
| /// Stops after meeting a closure. |
| fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R> |
| where P: Fn(&Rib, Ident) -> Option<R> |
| { |
| for rib in self.label_ribs.iter().rev() { |
| match rib.kind { |
| NormalRibKind => {} |
| // If an invocation of this macro created `ident`, give up on `ident` |
| // and switch to `ident`'s source from the macro definition. |
| MacroDefinition(def) => { |
| if def == self.macro_def(ident.span.ctxt()) { |
| ident.span.remove_mark(); |
| } |
| } |
| _ => { |
| // Do not resolve labels across function boundary |
| return None; |
| } |
| } |
| let r = pred(rib, ident); |
| if r.is_some() { |
| return r; |
| } |
| } |
| None |
| } |
| |
| fn resolve_item(&mut self, item: &Item) { |
| let name = item.ident.name; |
| debug!("(resolving item) resolving {}", name); |
| |
| match item.node { |
| ItemKind::Ty(_, ref generics) | |
| ItemKind::Fn(_, _, ref generics, _) | |
| ItemKind::Existential(_, ref generics) => { |
| self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |
| |this| visit::walk_item(this, item)); |
| } |
| |
| ItemKind::Enum(_, ref generics) | |
| ItemKind::Struct(_, ref generics) | |
| ItemKind::Union(_, ref generics) => { |
| self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| { |
| let item_def_id = this.definitions.local_def_id(item.id); |
| if this.session.features_untracked().self_in_typedefs { |
| this.with_self_rib(Def::SelfTy(None, Some(item_def_id)), |this| { |
| visit::walk_item(this, item); |
| }); |
| } else { |
| visit::walk_item(this, item); |
| } |
| }); |
| } |
| |
| ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) => |
| self.resolve_implementation(generics, |
| opt_trait_ref, |
| &self_type, |
| item.id, |
| impl_items), |
| |
| ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => { |
| // Create a new rib for the trait-wide type parameters. |
| self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| { |
| let local_def_id = this.definitions.local_def_id(item.id); |
| this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| { |
| this.visit_generics(generics); |
| walk_list!(this, visit_param_bound, bounds); |
| |
| for trait_item in trait_items { |
| let type_parameters = HasTypeParameters(&trait_item.generics, |
| TraitOrImplItemRibKind); |
| this.with_type_parameter_rib(type_parameters, |this| { |
| match trait_item.node { |
| TraitItemKind::Const(ref ty, ref default) => { |
| this.visit_ty(ty); |
| |
| // Only impose the restrictions of |
| // ConstRibKind for an actual constant |
| // expression in a provided default. |
| if let Some(ref expr) = *default{ |
| this.with_constant_rib(|this| { |
| this.visit_expr(expr); |
| }); |
| } |
| } |
| TraitItemKind::Method(_, _) => { |
| visit::walk_trait_item(this, trait_item) |
| } |
| TraitItemKind::Type(..) => { |
| visit::walk_trait_item(this, trait_item) |
| } |
| TraitItemKind::Macro(_) => { |
| panic!("unexpanded macro in resolve!") |
| } |
| }; |
| }); |
| } |
| }); |
| }); |
| } |
| |
| ItemKind::TraitAlias(ref generics, ref bounds) => { |
| // Create a new rib for the trait-wide type parameters. |
| self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| { |
| let local_def_id = this.definitions.local_def_id(item.id); |
| this.with_self_rib(Def::SelfTy(Some(local_def_id), None), |this| { |
| this.visit_generics(generics); |
| walk_list!(this, visit_param_bound, bounds); |
| }); |
| }); |
| } |
| |
| ItemKind::Mod(_) | ItemKind::ForeignMod(_) => { |
| self.with_scope(item.id, |this| { |
| visit::walk_item(this, item); |
| }); |
| } |
| |
| ItemKind::Static(ref ty, _, ref expr) | |
| ItemKind::Const(ref ty, ref expr) => { |
| self.with_item_rib(|this| { |
| this.visit_ty(ty); |
| this.with_constant_rib(|this| { |
| this.visit_expr(expr); |
| }); |
| }); |
| } |
| |
| ItemKind::Use(ref use_tree) => { |
| // Imports are resolved as global by default, add starting root segment. |
| let path = Path { |
| segments: use_tree.prefix.make_root().into_iter().collect(), |
| span: use_tree.span, |
| }; |
| self.resolve_use_tree(item.id, use_tree.span, item.id, use_tree, &path); |
| } |
| |
| ItemKind::ExternCrate(_) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(_) => { |
| // do nothing, these are just around to be encoded |
| } |
| |
| ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"), |
| } |
| } |
| |
| /// For the most part, use trees are desugared into `ImportDirective` instances |
| /// when building the reduced graph (see `build_reduced_graph_for_use_tree`). But |
| /// there is one special case we handle here: an empty nested import like |
| /// `a::{b::{}}`, which desugares into...no import directives. |
| fn resolve_use_tree( |
| &mut self, |
| root_id: NodeId, |
| root_span: Span, |
| id: NodeId, |
| use_tree: &ast::UseTree, |
| prefix: &Path, |
| ) { |
| match use_tree.kind { |
| ast::UseTreeKind::Nested(ref items) => { |
| let path = Path { |
| segments: prefix.segments |
| .iter() |
| .chain(use_tree.prefix.segments.iter()) |
| .cloned() |
| .collect(), |
| span: prefix.span.to(use_tree.prefix.span), |
| }; |
| |
| if items.len() == 0 { |
| // Resolve prefix of an import with empty braces (issue #28388). |
| self.smart_resolve_path_with_crate_lint( |
| id, |
| None, |
| &path, |
| PathSource::ImportPrefix, |
| CrateLint::UsePath { root_id, root_span }, |
| ); |
| } else { |
| for &(ref tree, nested_id) in items { |
| self.resolve_use_tree(root_id, root_span, nested_id, tree, &path); |
| } |
| } |
| } |
| ast::UseTreeKind::Simple(..) => {}, |
| ast::UseTreeKind::Glob => {}, |
| } |
| } |
| |
| fn with_type_parameter_rib<'b, F>(&'b mut self, type_parameters: TypeParameters<'a, 'b>, f: F) |
| where F: FnOnce(&mut Resolver) |
| { |
| match type_parameters { |
| HasTypeParameters(generics, rib_kind) => { |
| let mut function_type_rib = Rib::new(rib_kind); |
| let mut seen_bindings = FxHashMap(); |
| generics.params.iter().for_each(|param| match param.kind { |
| GenericParamKind::Lifetime { .. } => {} |
| GenericParamKind::Type { .. } => { |
| let ident = param.ident.modern(); |
| debug!("with_type_parameter_rib: {}", param.id); |
| |
| if seen_bindings.contains_key(&ident) { |
| let span = seen_bindings.get(&ident).unwrap(); |
| let err = ResolutionError::NameAlreadyUsedInTypeParameterList( |
| ident.name, |
| span, |
| ); |
| resolve_error(self, param.ident.span, err); |
| } |
| seen_bindings.entry(ident).or_insert(param.ident.span); |
| |
| // Plain insert (no renaming). |
| let def = Def::TyParam(self.definitions.local_def_id(param.id)); |
| function_type_rib.bindings.insert(ident, def); |
| self.record_def(param.id, PathResolution::new(def)); |
| } |
| }); |
| self.ribs[TypeNS].push(function_type_rib); |
| } |
| |
| NoTypeParameters => { |
| // Nothing to do. |
| } |
| } |
| |
| f(self); |
| |
| if let HasTypeParameters(..) = type_parameters { |
| self.ribs[TypeNS].pop(); |
| } |
| } |
| |
| fn with_label_rib<F>(&mut self, f: F) |
| where F: FnOnce(&mut Resolver) |
| { |
| self.label_ribs.push(Rib::new(NormalRibKind)); |
| f(self); |
| self.label_ribs.pop(); |
| } |
| |
| fn with_item_rib<F>(&mut self, f: F) |
| where F: FnOnce(&mut Resolver) |
| { |
| self.ribs[ValueNS].push(Rib::new(ItemRibKind)); |
| self.ribs[TypeNS].push(Rib::new(ItemRibKind)); |
| f(self); |
| self.ribs[TypeNS].pop(); |
| self.ribs[ValueNS].pop(); |
| } |
| |
| fn with_constant_rib<F>(&mut self, f: F) |
| where F: FnOnce(&mut Resolver) |
| { |
| self.ribs[ValueNS].push(Rib::new(ConstantItemRibKind)); |
| self.label_ribs.push(Rib::new(ConstantItemRibKind)); |
| f(self); |
| self.label_ribs.pop(); |
| self.ribs[ValueNS].pop(); |
| } |
| |
| fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T |
| where F: FnOnce(&mut Resolver) -> T |
| { |
| // Handle nested impls (inside fn bodies) |
| let previous_value = replace(&mut self.current_self_type, Some(self_type.clone())); |
| let result = f(self); |
| self.current_self_type = previous_value; |
| result |
| } |
| |
| /// This is called to resolve a trait reference from an `impl` (i.e. `impl Trait for Foo`) |
| fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T |
| where F: FnOnce(&mut Resolver, Option<DefId>) -> T |
| { |
| let mut new_val = None; |
| let mut new_id = None; |
| if let Some(trait_ref) = opt_trait_ref { |
| let path: Vec<_> = trait_ref.path.segments.iter() |
| .map(|seg| seg.ident) |
| .collect(); |
| let def = self.smart_resolve_path_fragment( |
| trait_ref.ref_id, |
| None, |
| &path, |
| trait_ref.path.span, |
| PathSource::Trait(AliasPossibility::No), |
| CrateLint::SimplePath(trait_ref.ref_id), |
| ).base_def(); |
| if def != Def::Err { |
| new_id = Some(def.def_id()); |
| let span = trait_ref.path.span; |
| if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = |
| self.resolve_path( |
| None, |
| &path, |
| None, |
| false, |
| span, |
| CrateLint::SimplePath(trait_ref.ref_id), |
| ) |
| { |
| new_val = Some((module, trait_ref.clone())); |
| } |
| } |
| } |
| let original_trait_ref = replace(&mut self.current_trait_ref, new_val); |
| let result = f(self, new_id); |
| self.current_trait_ref = original_trait_ref; |
| result |
| } |
| |
| fn with_self_rib<F>(&mut self, self_def: Def, f: F) |
| where F: FnOnce(&mut Resolver) |
| { |
| let mut self_type_rib = Rib::new(NormalRibKind); |
| |
| // plain insert (no renaming, types are not currently hygienic....) |
| self_type_rib.bindings.insert(keywords::SelfType.ident(), self_def); |
| self.ribs[TypeNS].push(self_type_rib); |
| f(self); |
| self.ribs[TypeNS].pop(); |
| } |
| |
| fn resolve_implementation(&mut self, |
| generics: &Generics, |
| opt_trait_reference: &Option<TraitRef>, |
| self_type: &Ty, |
| item_id: NodeId, |
| impl_items: &[ImplItem]) { |
| // If applicable, create a rib for the type parameters. |
| self.with_type_parameter_rib(HasTypeParameters(generics, ItemRibKind), |this| { |
| // Dummy self type for better errors if `Self` is used in the trait path. |
| this.with_self_rib(Def::SelfTy(None, None), |this| { |
| // Resolve the trait reference, if necessary. |
| this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| { |
| let item_def_id = this.definitions.local_def_id(item_id); |
| this.with_self_rib(Def::SelfTy(trait_id, Some(item_def_id)), |this| { |
| if let Some(trait_ref) = opt_trait_reference.as_ref() { |
| // Resolve type arguments in the trait path. |
| visit::walk_trait_ref(this, trait_ref); |
| } |
| // Resolve the self type. |
| this.visit_ty(self_type); |
| // Resolve the type parameters. |
| this.visit_generics(generics); |
| // Resolve the items within the impl. |
| this.with_current_self_type(self_type, |this| { |
| for impl_item in impl_items { |
| this.resolve_visibility(&impl_item.vis); |
| |
| // We also need a new scope for the impl item type parameters. |
| let type_parameters = HasTypeParameters(&impl_item.generics, |
| TraitOrImplItemRibKind); |
| this.with_type_parameter_rib(type_parameters, |this| { |
| use self::ResolutionError::*; |
| match impl_item.node { |
| ImplItemKind::Const(..) => { |
| // If this is a trait impl, ensure the const |
| // exists in trait |
| this.check_trait_item(impl_item.ident, |
| ValueNS, |
| impl_item.span, |
| |n, s| ConstNotMemberOfTrait(n, s)); |
| this.with_constant_rib(|this| |
| visit::walk_impl_item(this, impl_item) |
| ); |
| } |
| ImplItemKind::Method(..) => { |
| // If this is a trait impl, ensure the method |
| // exists in trait |
| this.check_trait_item(impl_item.ident, |
| ValueNS, |
| impl_item.span, |
| |n, s| MethodNotMemberOfTrait(n, s)); |
| |
| visit::walk_impl_item(this, impl_item); |
| } |
| ImplItemKind::Type(ref ty) => { |
| // If this is a trait impl, ensure the type |
| // exists in trait |
| this.check_trait_item(impl_item.ident, |
| TypeNS, |
| impl_item.span, |
| |n, s| TypeNotMemberOfTrait(n, s)); |
| |
| this.visit_ty(ty); |
| } |
| ImplItemKind::Existential(ref bounds) => { |
| // If this is a trait impl, ensure the type |
| // exists in trait |
| this.check_trait_item(impl_item.ident, |
| TypeNS, |
| impl_item.span, |
| |n, s| TypeNotMemberOfTrait(n, s)); |
| |
| for bound in bounds { |
| this.visit_param_bound(bound); |
| } |
| } |
| ImplItemKind::Macro(_) => |
| panic!("unexpanded macro in resolve!"), |
| } |
| }); |
| } |
| }); |
| }); |
| }); |
| }); |
| }); |
| } |
| |
| fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F) |
| where F: FnOnce(Name, &str) -> ResolutionError |
| { |
| // If there is a TraitRef in scope for an impl, then the method must be in the |
| // trait. |
| if let Some((module, _)) = self.current_trait_ref { |
| if self.resolve_ident_in_module( |
| ModuleOrUniformRoot::Module(module), |
| ident, |
| ns, |
| false, |
| span, |
| ).is_err() { |
| let path = &self.current_trait_ref.as_ref().unwrap().1.path; |
| resolve_error(self, span, err(ident.name, &path_names_to_string(path))); |
| } |
| } |
| } |
| |
| fn resolve_local(&mut self, local: &Local) { |
| // Resolve the type. |
| walk_list!(self, visit_ty, &local.ty); |
| |
| // Resolve the initializer. |
| walk_list!(self, visit_expr, &local.init); |
| |
| // Resolve the pattern. |
| self.resolve_pattern(&local.pat, PatternSource::Let, &mut FxHashMap()); |
| } |
| |
| // build a map from pattern identifiers to binding-info's. |
| // this is done hygienically. This could arise for a macro |
| // that expands into an or-pattern where one 'x' was from the |
| // user and one 'x' came from the macro. |
| fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap { |
| let mut binding_map = FxHashMap(); |
| |
| pat.walk(&mut |pat| { |
| if let PatKind::Ident(binding_mode, ident, ref sub_pat) = pat.node { |
| if sub_pat.is_some() || match self.def_map.get(&pat.id).map(|res| res.base_def()) { |
| Some(Def::Local(..)) => true, |
| _ => false, |
| } { |
| let binding_info = BindingInfo { span: ident.span, binding_mode: binding_mode }; |
| binding_map.insert(ident, binding_info); |
| } |
| } |
| true |
| }); |
| |
| binding_map |
| } |
| |
| // check that all of the arms in an or-pattern have exactly the |
| // same set of bindings, with the same binding modes for each. |
| fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) { |
| if pats.is_empty() { |
| return; |
| } |
| |
| let mut missing_vars = FxHashMap(); |
| let mut inconsistent_vars = FxHashMap(); |
| for (i, p) in pats.iter().enumerate() { |
| let map_i = self.binding_mode_map(&p); |
| |
| for (j, q) in pats.iter().enumerate() { |
| if i == j { |
| continue; |
| } |
| |
| let map_j = self.binding_mode_map(&q); |
| for (&key, &binding_i) in &map_i { |
| if map_j.len() == 0 { // Account for missing bindings when |
| let binding_error = missing_vars // map_j has none. |
| .entry(key.name) |
| .or_insert(BindingError { |
| name: key.name, |
| origin: BTreeSet::new(), |
| target: BTreeSet::new(), |
| }); |
| binding_error.origin.insert(binding_i.span); |
| binding_error.target.insert(q.span); |
| } |
| for (&key_j, &binding_j) in &map_j { |
| match map_i.get(&key_j) { |
| None => { // missing binding |
| let binding_error = missing_vars |
| .entry(key_j.name) |
| .or_insert(BindingError { |
| name: key_j.name, |
| origin: BTreeSet::new(), |
| target: BTreeSet::new(), |
| }); |
| binding_error.origin.insert(binding_j.span); |
| binding_error.target.insert(p.span); |
| } |
| Some(binding_i) => { // check consistent binding |
| if binding_i.binding_mode != binding_j.binding_mode { |
| inconsistent_vars |
| .entry(key.name) |
| .or_insert((binding_j.span, binding_i.span)); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| let mut missing_vars = missing_vars.iter().collect::<Vec<_>>(); |
| missing_vars.sort(); |
| for (_, v) in missing_vars { |
| resolve_error(self, |
| *v.origin.iter().next().unwrap(), |
| ResolutionError::VariableNotBoundInPattern(v)); |
| } |
| let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>(); |
| inconsistent_vars.sort(); |
| for (name, v) in inconsistent_vars { |
| resolve_error(self, v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1)); |
| } |
| } |
| |
| fn resolve_arm(&mut self, arm: &Arm) { |
| self.ribs[ValueNS].push(Rib::new(NormalRibKind)); |
| |
| let mut bindings_list = FxHashMap(); |
| for pattern in &arm.pats { |
| self.resolve_pattern(&pattern, PatternSource::Match, &mut bindings_list); |
| } |
| |
| // This has to happen *after* we determine which pat_idents are variants |
| self.check_consistent_bindings(&arm.pats); |
| |
| walk_list!(self, visit_expr, &arm.guard); |
| self.visit_expr(&arm.body); |
| |
| self.ribs[ValueNS].pop(); |
| } |
| |
| fn resolve_block(&mut self, block: &Block) { |
| debug!("(resolving block) entering block"); |
| // Move down in the graph, if there's an anonymous module rooted here. |
| let orig_module = self.current_module; |
| let anonymous_module = self.block_map.get(&block.id).cloned(); // clones a reference |
| |
| let mut num_macro_definition_ribs = 0; |
| if let Some(anonymous_module) = anonymous_module { |
| debug!("(resolving block) found anonymous module, moving down"); |
| self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module))); |
| self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module))); |
| self.current_module = anonymous_module; |
| self.finalize_current_module_macro_resolutions(); |
| } else { |
| self.ribs[ValueNS].push(Rib::new(NormalRibKind)); |
| } |
| |
| // Descend into the block. |
| for stmt in &block.stmts { |
| if let ast::StmtKind::Item(ref item) = stmt.node { |
| if let ast::ItemKind::MacroDef(..) = item.node { |
| num_macro_definition_ribs += 1; |
| let def = self.definitions.local_def_id(item.id); |
| self.ribs[ValueNS].push(Rib::new(MacroDefinition(def))); |
| self.label_ribs.push(Rib::new(MacroDefinition(def))); |
| } |
| } |
| |
| self.visit_stmt(stmt); |
| } |
| |
| // Move back up. |
| self.current_module = orig_module; |
| for _ in 0 .. num_macro_definition_ribs { |
| self.ribs[ValueNS].pop(); |
| self.label_ribs.pop(); |
| } |
| self.ribs[ValueNS].pop(); |
| if anonymous_module.is_some() { |
| self.ribs[TypeNS].pop(); |
| } |
| debug!("(resolving block) leaving block"); |
| } |
| |
| fn fresh_binding(&mut self, |
| ident: Ident, |
| pat_id: NodeId, |
| outer_pat_id: NodeId, |
| pat_src: PatternSource, |
| bindings: &mut FxHashMap<Ident, NodeId>) |
| -> PathResolution { |
| // Add the binding to the local ribs, if it |
| // doesn't already exist in the bindings map. (We |
| // must not add it if it's in the bindings map |
| // because that breaks the assumptions later |
| // passes make about or-patterns.) |
| let ident = ident.modern_and_legacy(); |
| let mut def = Def::Local(pat_id); |
| match bindings.get(&ident).cloned() { |
| Some(id) if id == outer_pat_id => { |
| // `Variant(a, a)`, error |
| resolve_error( |
| self, |
| ident.span, |
| ResolutionError::IdentifierBoundMoreThanOnceInSamePattern( |
| &ident.as_str()) |
| ); |
| } |
| Some(..) if pat_src == PatternSource::FnParam => { |
| // `fn f(a: u8, a: u8)`, error |
| resolve_error( |
| self, |
| ident.span, |
| ResolutionError::IdentifierBoundMoreThanOnceInParameterList( |
| &ident.as_str()) |
| ); |
| } |
| Some(..) if pat_src == PatternSource::Match || |
| pat_src == PatternSource::IfLet || |
| pat_src == PatternSource::WhileLet => { |
| // `Variant1(a) | Variant2(a)`, ok |
| // Reuse definition from the first `a`. |
| def = self.ribs[ValueNS].last_mut().unwrap().bindings[&ident]; |
| } |
| Some(..) => { |
| span_bug!(ident.span, "two bindings with the same name from \ |
| unexpected pattern source {:?}", pat_src); |
| } |
| None => { |
| // A completely fresh binding, add to the lists if it's valid. |
| if ident.name != keywords::Invalid.name() { |
| bindings.insert(ident, outer_pat_id); |
| self.ribs[ValueNS].last_mut().unwrap().bindings.insert(ident, def); |
| } |
| } |
| } |
| |
| PathResolution::new(def) |
| } |
| |
| fn resolve_pattern(&mut self, |
| pat: &Pat, |
| pat_src: PatternSource, |
| // Maps idents to the node ID for the |
| // outermost pattern that binds them. |
| bindings: &mut FxHashMap<Ident, NodeId>) { |
| // Visit all direct subpatterns of this pattern. |
| let outer_pat_id = pat.id; |
| pat.walk(&mut |pat| { |
| match pat.node { |
| PatKind::Ident(bmode, ident, ref opt_pat) => { |
| // First try to resolve the identifier as some existing |
| // entity, then fall back to a fresh binding. |
| let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, |
| None, pat.span) |
| .and_then(LexicalScopeBinding::item); |
| let resolution = binding.map(NameBinding::def).and_then(|def| { |
| let is_syntactic_ambiguity = opt_pat.is_none() && |
| bmode == BindingMode::ByValue(Mutability::Immutable); |
| match def { |
| Def::StructCtor(_, CtorKind::Const) | |
| Def::VariantCtor(_, CtorKind::Const) | |
| Def::Const(..) if is_syntactic_ambiguity => { |
| // Disambiguate in favor of a unit struct/variant |
| // or constant pattern. |
| self.record_use(ident, ValueNS, binding.unwrap(), ident.span); |
| Some(PathResolution::new(def)) |
| } |
| Def::StructCtor(..) | Def::VariantCtor(..) | |
| Def::Const(..) | Def::Static(..) => { |
| // This is unambiguously a fresh binding, either syntactically |
| // (e.g. `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves |
| // to something unusable as a pattern (e.g. constructor function), |
| // but we still conservatively report an error, see |
| // issues/33118#issuecomment-233962221 for one reason why. |
| resolve_error( |
| self, |
| ident.span, |
| ResolutionError::BindingShadowsSomethingUnacceptable( |
| pat_src.descr(), ident.name, binding.unwrap()) |
| ); |
| None |
| } |
| Def::Fn(..) | Def::Err => { |
| // These entities are explicitly allowed |
| // to be shadowed by fresh bindings. |
| None |
| } |
| def => { |
| span_bug!(ident.span, "unexpected definition for an \ |
| identifier in pattern: {:?}", def); |
| } |
| } |
| }).unwrap_or_else(|| { |
| self.fresh_binding(ident, pat.id, outer_pat_id, pat_src, bindings) |
| }); |
| |
| self.record_def(pat.id, resolution); |
| } |
| |
| PatKind::TupleStruct(ref path, ..) => { |
| self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct); |
| } |
| |
| PatKind::Path(ref qself, ref path) => { |
| self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat); |
| } |
| |
| PatKind::Struct(ref path, ..) => { |
| self.smart_resolve_path(pat.id, None, path, PathSource::Struct); |
| } |
| |
| _ => {} |
| } |
| true |
| }); |
| |
| visit::walk_pat(self, pat); |
| } |
| |
| // High-level and context dependent path resolution routine. |
| // Resolves the path and records the resolution into definition map. |
| // If resolution fails tries several techniques to find likely |
| // resolution candidates, suggest imports or other help, and report |
| // errors in user friendly way. |
| fn smart_resolve_path(&mut self, |
| id: NodeId, |
| qself: Option<&QSelf>, |
| path: &Path, |
| source: PathSource) |
| -> PathResolution { |
| self.smart_resolve_path_with_crate_lint(id, qself, path, source, CrateLint::SimplePath(id)) |
| } |
| |
| /// A variant of `smart_resolve_path` where you also specify extra |
| /// information about where the path came from; this extra info is |
| /// sometimes needed for the lint that recommends rewriting |
| /// absolute paths to `crate`, so that it knows how to frame the |
| /// suggestion. If you are just resolving a path like `foo::bar` |
| /// that appears...somewhere, though, then you just want |
| /// `CrateLint::SimplePath`, which is what `smart_resolve_path` |
| /// already provides. |
| fn smart_resolve_path_with_crate_lint( |
| &mut self, |
| id: NodeId, |
| qself: Option<&QSelf>, |
| path: &Path, |
| source: PathSource, |
| crate_lint: CrateLint |
| ) -> PathResolution { |
| let segments = &path.segments.iter() |
| .map(|seg| seg.ident) |
| .collect::<Vec<_>>(); |
| self.smart_resolve_path_fragment(id, qself, segments, path.span, source, crate_lint) |
| } |
| |
| fn smart_resolve_path_fragment(&mut self, |
| id: NodeId, |
| qself: Option<&QSelf>, |
| path: &[Ident], |
| span: Span, |
| source: PathSource, |
| crate_lint: CrateLint) |
| -> PathResolution { |
| let ident_span = path.last().map_or(span, |ident| ident.span); |
| let ns = source.namespace(); |
| let is_expected = &|def| source.is_expected(def); |
| let is_enum_variant = &|def| if let Def::Variant(..) = def { true } else { false }; |
| |
| // Base error is amended with one short label and possibly some longer helps/notes. |
| let report_errors = |this: &mut Self, def: Option<Def>| { |
| // Make the base error. |
| let expected = source.descr_expected(); |
| let path_str = names_to_string(path); |
| let code = source.error_code(def.is_some()); |
| let (base_msg, fallback_label, base_span) = if let Some(def) = def { |
| (format!("expected {}, found {} `{}`", expected, def.kind_name(), path_str), |
| format!("not a {}", expected), |
| span) |
| } else { |
| let item_str = path[path.len() - 1]; |
| let item_span = path[path.len() - 1].span; |
| let (mod_prefix, mod_str) = if path.len() == 1 { |
| (String::new(), "this scope".to_string()) |
| } else if path.len() == 2 && path[0].name == keywords::CrateRoot.name() { |
| (String::new(), "the crate root".to_string()) |
| } else { |
| let mod_path = &path[..path.len() - 1]; |
| let mod_prefix = match this.resolve_path(None, mod_path, Some(TypeNS), |
| false, span, CrateLint::No) { |
| PathResult::Module(ModuleOrUniformRoot::Module(module)) => |
| module.def(), |
| _ => None, |
| }.map_or(String::new(), |def| format!("{} ", def.kind_name())); |
| (mod_prefix, format!("`{}`", names_to_string(mod_path))) |
| }; |
| (format!("cannot find {} `{}` in {}{}", expected, item_str, mod_prefix, mod_str), |
| format!("not found in {}", mod_str), |
| item_span) |
| }; |
| let code = DiagnosticId::Error(code.into()); |
| let mut err = this.session.struct_span_err_with_code(base_span, &base_msg, code); |
| |
| // Emit special messages for unresolved `Self` and `self`. |
| if is_self_type(path, ns) { |
| __diagnostic_used!(E0411); |
| err.code(DiagnosticId::Error("E0411".into())); |
| let available_in = if this.session.features_untracked().self_in_typedefs { |
| "impls, traits, and type definitions" |
| } else { |
| "traits and impls" |
| }; |
| err.span_label(span, format!("`Self` is only available in {}", available_in)); |
| return (err, Vec::new()); |
| } |
| if is_self_value(path, ns) { |
| __diagnostic_used!(E0424); |
| err.code(DiagnosticId::Error("E0424".into())); |
| err.span_label(span, format!("`self` value is only available in \ |
| methods with `self` parameter")); |
| return (err, Vec::new()); |
| } |
| |
| // Try to lookup the name in more relaxed fashion for better error reporting. |
| let ident = *path.last().unwrap(); |
| let candidates = this.lookup_import_candidates(ident.name, ns, is_expected); |
| if candidates.is_empty() && is_expected(Def::Enum(DefId::local(CRATE_DEF_INDEX))) { |
| let enum_candidates = |
| this.lookup_import_candidates(ident.name, ns, is_enum_variant); |
| let mut enum_candidates = enum_candidates.iter() |
| .map(|suggestion| import_candidate_to_paths(&suggestion)).collect::<Vec<_>>(); |
| enum_candidates.sort(); |
| for (sp, variant_path, enum_path) in enum_candidates { |
| if sp.is_dummy() { |
| let msg = format!("there is an enum variant `{}`, \ |
| try using `{}`?", |
| variant_path, |
| enum_path); |
| err.help(&msg); |
| } else { |
| err.span_suggestion(span, "you can try using the variant's enum", |
| enum_path); |
| } |
| } |
| } |
| if path.len() == 1 && this.self_type_is_available(span) { |
| if let Some(candidate) = this.lookup_assoc_candidate(ident, ns, is_expected) { |
| let self_is_available = this.self_value_is_available(path[0].span, span); |
| match candidate { |
| AssocSuggestion::Field => { |
| err.span_suggestion(span, "try", |
| format!("self.{}", path_str)); |
| if !self_is_available { |
| err.span_label(span, format!("`self` value is only available in \ |
| methods with `self` parameter")); |
| } |
| } |
| AssocSuggestion::MethodWithSelf if self_is_available => { |
| err.span_suggestion(span, "try", |
| format!("self.{}", path_str)); |
| } |
| AssocSuggestion::MethodWithSelf | AssocSuggestion::AssocItem => { |
| err.span_suggestion(span, "try", |
| format!("Self::{}", path_str)); |
| } |
| } |
| return (err, candidates); |
| } |
| } |
| |
| let mut levenshtein_worked = false; |
| |
| // Try Levenshtein. |
| if let Some(candidate) = this.lookup_typo_candidate(path, ns, is_expected, span) { |
| err.span_label(ident_span, format!("did you mean `{}`?", candidate)); |
| levenshtein_worked = true; |
| } |
| |
| // Try context dependent help if relaxed lookup didn't work. |
| if let Some(def) = def { |
| match (def, source) { |
| (Def::Macro(..), _) => { |
| err.span_label(span, format!("did you mean `{}!(...)`?", path_str)); |
| return (err, candidates); |
| } |
| (Def::TyAlias(..), PathSource::Trait(_)) => { |
| err.span_label(span, "type aliases cannot be used for traits"); |
| return (err, candidates); |
| } |
| (Def::Mod(..), PathSource::Expr(Some(parent))) => match parent.node { |
| ExprKind::Field(_, ident) => { |
| err.span_label(parent.span, format!("did you mean `{}::{}`?", |
| path_str, ident)); |
| return (err, candidates); |
| } |
| ExprKind::MethodCall(ref segment, ..) => { |
| err.span_label(parent.span, format!("did you mean `{}::{}(...)`?", |
| path_str, segment.ident)); |
| return (err, candidates); |
| } |
| _ => {} |
| }, |
| (Def::Enum(..), PathSource::TupleStruct) |
| | (Def::Enum(..), PathSource::Expr(..)) => { |
| if let Some(variants) = this.collect_enum_variants(def) { |
| err.note(&format!("did you mean to use one \ |
| of the following variants?\n{}", |
| variants.iter() |
| .map(|suggestion| path_names_to_string(suggestion)) |
| .map(|suggestion| format!("- `{}`", suggestion)) |
| .collect::<Vec<_>>() |
| .join("\n"))); |
| |
| } else { |
| err.note("did you mean to use one of the enum's variants?"); |
| } |
| return (err, candidates); |
| }, |
| (Def::Struct(def_id), _) if ns == ValueNS => { |
| if let Some((ctor_def, ctor_vis)) |
| = this.struct_constructors.get(&def_id).cloned() { |
| let accessible_ctor = this.is_accessible(ctor_vis); |
| if is_expected(ctor_def) && !accessible_ctor { |
| err.span_label(span, format!("constructor is not visible \ |
| here due to private fields")); |
| } |
| } else { |
| // HACK(estebank): find a better way to figure out that this was a |
| // parser issue where a struct literal is being used on an expression |
| // where a brace being opened means a block is being started. Look |
| // ahead for the next text to see if `span` is followed by a `{`. |
| let cm = this.session.codemap(); |
| let mut sp = span; |
| loop { |
| sp = cm.next_point(sp); |
| match cm.span_to_snippet(sp) { |
| Ok(ref snippet) => { |
| if snippet.chars().any(|c| { !c.is_whitespace() }) { |
| break; |
| } |
| } |
| _ => break, |
| } |
| } |
| let followed_by_brace = match cm.span_to_snippet(sp) { |
| Ok(ref snippet) if snippet == "{" => true, |
| _ => false, |
| }; |
| if let (PathSource::Expr(None), true) = (source, followed_by_brace) { |
| err.span_label( |
| span, |
| format!("did you mean `({} {{ /* fields */ }})`?", path_str), |
| ); |
| } else { |
| err.span_label( |
| span, |
| format!("did you mean `{} {{ /* fields */ }}`?", path_str), |
| ); |
| } |
| } |
| return (err, candidates); |
| } |
| (Def::Union(..), _) | |
| (Def::Variant(..), _) | |
| (Def::VariantCtor(_, CtorKind::Fictive), _) if ns == ValueNS => { |
| err.span_label(span, format!("did you mean `{} {{ /* fields */ }}`?", |
| path_str)); |
| return (err, candidates); |
| } |
| (Def::SelfTy(..), _) if ns == ValueNS => { |
| err.span_label(span, fallback_label); |
| err.note("can't use `Self` as a constructor, you must use the \ |
| implemented struct"); |
| return (err, candidates); |
| } |
| (Def::TyAlias(_), _) | (Def::AssociatedTy(..), _) if ns == ValueNS => { |
| err.note("can't use a type alias as a constructor"); |
| return (err, candidates); |
| } |
| _ => {} |
| } |
| } |
| |
| // Fallback label. |
| if !levenshtein_worked { |
| err.span_label(base_span, fallback_label); |
| this.type_ascription_suggestion(&mut err, base_span); |
| } |
| (err, candidates) |
| }; |
| let report_errors = |this: &mut Self, def: Option<Def>| { |
| let (err, candidates) = report_errors(this, def); |
| let def_id = this.current_module.normal_ancestor_id; |
| let node_id = this.definitions.as_local_node_id(def_id).unwrap(); |
| let better = def.is_some(); |
| this.use_injections.push(UseError { err, candidates, node_id, better }); |
| err_path_resolution() |
| }; |
| |
| let resolution = match self.resolve_qpath_anywhere( |
| id, |
| qself, |
| path, |
| ns, |
| span, |
| source.defer_to_typeck(), |
| source.global_by_default(), |
| crate_lint, |
| ) { |
| Some(resolution) if resolution.unresolved_segments() == 0 => { |
| if is_expected(resolution.base_def()) || resolution.base_def() == Def::Err { |
| resolution |
| } else { |
| // Add a temporary hack to smooth the transition to new struct ctor |
| // visibility rules. See #38932 for more details. |
| let mut res = None; |
| if let Def::Struct(def_id) = resolution.base_def() { |
| if let Some((ctor_def, ctor_vis)) |
| = self.struct_constructors.get(&def_id).cloned() { |
| if is_expected(ctor_def) && self.is_accessible(ctor_vis) { |
| let lint = lint::builtin::LEGACY_CONSTRUCTOR_VISIBILITY; |
| self.session.buffer_lint(lint, id, span, |
| "private struct constructors are not usable through \ |
| re-exports in outer modules", |
| ); |
| res = Some(PathResolution::new(ctor_def)); |
| } |
| } |
| } |
| |
| res.unwrap_or_else(|| report_errors(self, Some(resolution.base_def()))) |
| } |
| } |
| Some(resolution) if source.defer_to_typeck() => { |
| // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B` |
| // or `<T>::A::B`. If `B` should be resolved in value namespace then |
| // it needs to be added to the trait map. |
| if ns == ValueNS { |
| let item_name = *path.last().unwrap(); |
| let traits = self.get_traits_containing_item(item_name, ns); |
| self.trait_map.insert(id, traits); |
| } |
| resolution |
| } |
| _ => report_errors(self, None) |
| }; |
| |
| if let PathSource::TraitItem(..) = source {} else { |
| // Avoid recording definition of `A::B` in `<T as A>::B::C`. |
| self.record_def(id, resolution); |
| } |
| resolution |
| } |
| |
| fn type_ascription_suggestion(&self, |
| err: &mut DiagnosticBuilder, |
| base_span: Span) { |
| debug!("type_ascription_suggetion {:?}", base_span); |
| let cm = self.session.codemap(); |
| debug!("self.current_type_ascription {:?}", self.current_type_ascription); |
| if let Some(sp) = self.current_type_ascription.last() { |
| let mut sp = *sp; |
| loop { // try to find the `:`, bail on first non-':'/non-whitespace |
| sp = cm.next_point(sp); |
| if let Ok(snippet) = cm.span_to_snippet(sp.to(cm.next_point(sp))) { |
| debug!("snippet {:?}", snippet); |
| let line_sp = cm.lookup_char_pos(sp.hi()).line; |
| let line_base_sp = cm.lookup_char_pos(base_span.lo()).line; |
| debug!("{:?} {:?}", line_sp, line_base_sp); |
| if snippet == ":" { |
| err.span_label(base_span, |
| "expecting a type here because of type ascription"); |
| if line_sp != line_base_sp { |
| err.span_suggestion_short(sp, |
| "did you mean to use `;` here instead?", |
| ";".to_string()); |
| } |
| break; |
| } else if snippet.trim().len() != 0 { |
| debug!("tried to find type ascription `:` token, couldn't find it"); |
| break; |
| } |
| } else { |
| break; |
| } |
| } |
| } |
| } |
| |
| fn self_type_is_available(&mut self, span: Span) -> bool { |
| let binding = self.resolve_ident_in_lexical_scope(keywords::SelfType.ident(), |
| TypeNS, None, span); |
| if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false } |
| } |
| |
| fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool { |
| let ident = Ident::new(keywords::SelfValue.name(), self_span); |
| let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span); |
| if let Some(LexicalScopeBinding::Def(def)) = binding { def != Def::Err } else { false } |
| } |
| |
| // Resolve in alternative namespaces if resolution in the primary namespace fails. |
| fn resolve_qpath_anywhere(&mut self, |
| id: NodeId, |
| qself: Option<&QSelf>, |
| path: &[Ident], |
| primary_ns: Namespace, |
| span: Span, |
| defer_to_typeck: bool, |
| global_by_default: bool, |
| crate_lint: CrateLint) |
| -> Option<PathResolution> { |
| let mut fin_res = None; |
| // FIXME: can't resolve paths in macro namespace yet, macros are |
| // processed by the little special hack below. |
| for (i, ns) in [primary_ns, TypeNS, ValueNS, /*MacroNS*/].iter().cloned().enumerate() { |
| if i == 0 || ns != primary_ns { |
| match self.resolve_qpath(id, qself, path, ns, span, global_by_default, crate_lint) { |
| // If defer_to_typeck, then resolution > no resolution, |
| // otherwise full resolution > partial resolution > no resolution. |
| Some(res) if res.unresolved_segments() == 0 || defer_to_typeck => |
| return Some(res), |
| res => if fin_res.is_none() { fin_res = res }, |
| }; |
| } |
| } |
| let is_global = self.macro_prelude.get(&path[0].name).cloned() |
| .map(|binding| binding.get_macro(self).kind() == MacroKind::Bang).unwrap_or(false); |
| if primary_ns != MacroNS && (is_global || |
| self.macro_names.contains(&path[0].modern())) { |
| // Return some dummy definition, it's enough for error reporting. |
| return Some( |
| PathResolution::new(Def::Macro(DefId::local(CRATE_DEF_INDEX), MacroKind::Bang)) |
| ); |
| } |
| fin_res |
| } |
| |
| /// Handles paths that may refer to associated items. |
| fn resolve_qpath(&mut self, |
| id: NodeId, |
| qself: Option<&QSelf>, |
| path: &[Ident], |
| ns: Namespace, |
| span: Span, |
| global_by_default: bool, |
| crate_lint: CrateLint) |
| -> Option<PathResolution> { |
| debug!( |
| "resolve_qpath(id={:?}, qself={:?}, path={:?}, \ |
| ns={:?}, span={:?}, global_by_default={:?})", |
| id, |
| qself, |
| path, |
| ns, |
| span, |
| global_by_default, |
| ); |
| |
| if let Some(qself) = qself { |
| if qself.position == 0 { |
| // This is a case like `<T>::B`, where there is no |
| // trait to resolve. In that case, we leave the `B` |
| // segment to be resolved by type-check. |
| return Some(PathResolution::with_unresolved_segments( |
| Def::Mod(DefId::local(CRATE_DEF_INDEX)), path.len() |
| )); |
| } |
| |
| // Make sure `A::B` in `<T as A::B>::C` is a trait item. |
| // |
| // Currently, `path` names the full item (`A::B::C`, in |
| // our example). so we extract the prefix of that that is |
| // the trait (the slice upto and including |
| // `qself.position`). And then we recursively resolve that, |
| // but with `qself` set to `None`. |
| // |
| // However, setting `qself` to none (but not changing the |
| // span) loses the information about where this path |
| // *actually* appears, so for the purposes of the crate |
| // lint we pass along information that this is the trait |
| // name from a fully qualified path, and this also |
| // contains the full span (the `CrateLint::QPathTrait`). |
| let ns = if qself.position + 1 == path.len() { ns } else { TypeNS }; |
| let res = self.smart_resolve_path_fragment( |
| id, |
| None, |
| &path[..qself.position + 1], |
| span, |
| PathSource::TraitItem(ns), |
| CrateLint::QPathTrait { |
| qpath_id: id, |
| qpath_span: qself.path_span, |
| }, |
| ); |
| |
| // The remaining segments (the `C` in our example) will |
| // have to be resolved by type-check, since that requires doing |
| // trait resolution. |
| return Some(PathResolution::with_unresolved_segments( |
| res.base_def(), res.unresolved_segments() + path.len() - qself.position - 1 |
| )); |
| } |
| |
| let result = match self.resolve_path( |
| None, |
| &path, |
| Some(ns), |
| true, |
| span, |
| crate_lint, |
| ) { |
| PathResult::NonModule(path_res) => path_res, |
| PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => { |
| PathResolution::new(module.def().unwrap()) |
| } |
| // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we |
| // don't report an error right away, but try to fallback to a primitive type. |
| // So, we are still able to successfully resolve something like |
| // |
| // use std::u8; // bring module u8 in scope |
| // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8 |
| // u8::max_value() // OK, resolves to associated function <u8>::max_value, |
| // // not to non-existent std::u8::max_value |
| // } |
| // |
| // Such behavior is required for backward compatibility. |
| // The same fallback is used when `a` resolves to nothing. |
| PathResult::Module(ModuleOrUniformRoot::Module(_)) | |
| PathResult::Failed(..) |
| if (ns == TypeNS || path.len() > 1) && |
| self.primitive_type_table.primitive_types |
| .contains_key(&path[0].name) => { |
| let prim = self.primitive_type_table.primitive_types[&path[0].name]; |
| PathResolution::with_unresolved_segments(Def::PrimTy(prim), path.len() - 1) |
| } |
| PathResult::Module(ModuleOrUniformRoot::Module(module)) => |
| PathResolution::new(module.def().unwrap()), |
| PathResult::Failed(span, msg, false) => { |
| resolve_error(self, span, ResolutionError::FailedToResolve(&msg)); |
| err_path_resolution() |
| } |
| PathResult::Module(ModuleOrUniformRoot::UniformRoot(_)) | |
| PathResult::Failed(..) => return None, |
| PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"), |
| }; |
| |
| if path.len() > 1 && !global_by_default && result.base_def() != Def::Err && |
| path[0].name != keywords::CrateRoot.name() && |
| path[0].name != keywords::DollarCrate.name() { |
| let unqualified_result = { |
| match self.resolve_path( |
| None, |
| &[*path.last().unwrap()], |
| Some(ns), |
| false, |
| span, |
| CrateLint::No, |
| ) { |
| PathResult::NonModule(path_res) => path_res.base_def(), |
| PathResult::Module(ModuleOrUniformRoot::Module(module)) => |
| module.def().unwrap(), |
| _ => return Some(result), |
| } |
| }; |
| if result.base_def() == unqualified_result { |
| let lint = lint::builtin::UNUSED_QUALIFICATIONS; |
| self.session.buffer_lint(lint, id, span, "unnecessary qualification") |
| } |
| } |
| |
| Some(result) |
| } |
| |
| fn resolve_path( |
| &mut self, |
| base_module: Option<ModuleOrUniformRoot<'a>>, |
| path: &[Ident], |
| opt_ns: Option<Namespace>, // `None` indicates a module path |
| record_used: bool, |
| path_span: Span, |
| crate_lint: CrateLint, |
| ) -> PathResult<'a> { |
| let mut module = base_module; |
| let mut allow_super = true; |
| let mut second_binding = None; |
| |
| debug!( |
| "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \ |
| path_span={:?}, crate_lint={:?})", |
| path, |
| opt_ns, |
| record_used, |
| path_span, |
| crate_lint, |
| ); |
| |
| for (i, &ident) in path.iter().enumerate() { |
| debug!("resolve_path ident {} {:?}", i, ident); |
| let is_last = i == path.len() - 1; |
| let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS }; |
| let name = ident.name; |
| |
| allow_super &= ns == TypeNS && |
| (name == keywords::SelfValue.name() || |
| name == keywords::Super.name()); |
| |
| if ns == TypeNS { |
| if allow_super && name == keywords::Super.name() { |
| let mut ctxt = ident.span.ctxt().modern(); |
| let self_module = match i { |
| 0 => Some(self.resolve_self(&mut ctxt, self.current_module)), |
| _ => match module { |
| Some(ModuleOrUniformRoot::Module(module)) => Some(module), |
| _ => None, |
| }, |
| }; |
| if let Some(self_module) = self_module { |
| if let Some(parent) = self_module.parent { |
| module = Some(ModuleOrUniformRoot::Module( |
| self.resolve_self(&mut ctxt, parent))); |
| continue; |
| } |
| } |
| let msg = "There are too many initial `super`s.".to_string(); |
| return PathResult::Failed(ident.span, msg, false); |
| } |
| if i == 0 { |
| if name == keywords::SelfValue.name() { |
| let mut ctxt = ident.span.ctxt().modern(); |
| module = Some(ModuleOrUniformRoot::Module( |
| self.resolve_self(&mut ctxt, self.current_module))); |
| continue; |
| } |
| if name == keywords::Extern.name() || |
| name == keywords::CrateRoot.name() && |
| self.session.features_untracked().extern_absolute_paths && |
| self.session.rust_2018() { |
| module = Some(ModuleOrUniformRoot::UniformRoot(name)); |
| continue; |
| } |
| if name == keywords::CrateRoot.name() || |
| name == keywords::Crate.name() || |
| name == keywords::DollarCrate.name() { |
| // `::a::b`, `crate::a::b` or `$crate::a::b` |
| module = Some(ModuleOrUniformRoot::Module( |
| self.resolve_crate_root(ident))); |
| continue; |
| } |
| } |
| } |
| |
| // Report special messages for path segment keywords in wrong positions. |
| if ident.is_path_segment_keyword() && i != 0 { |
| let name_str = if name == keywords::CrateRoot.name() { |
| "crate root".to_string() |
| } else { |
| format!("`{}`", name) |
| }; |
| let msg = if i == 1 && path[0].name == keywords::CrateRoot.name() { |
| format!("global paths cannot start with {}", name_str) |
| } else { |
| format!("{} in paths can only be used in start position", name_str) |
| }; |
| return PathResult::Failed(ident.span, msg, false); |
| } |
| |
| let binding = if let Some(module) = module { |
| self.resolve_ident_in_module(module, ident, ns, record_used, path_span) |
| } else if opt_ns == Some(MacroNS) { |
| assert!(ns == TypeNS); |
| self.resolve_lexical_macro_path_segment(ident, ns, record_used, record_used, |
| false, path_span).map(MacroBinding::binding) |
| } else { |
| let record_used_id = |
| if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None }; |
| match self.resolve_ident_in_lexical_scope(ident, ns, record_used_id, path_span) { |
| // we found a locally-imported or available item/module |
| Some(LexicalScopeBinding::Item(binding)) => Ok(binding), |
| // we found a local variable or type param |
| Some(LexicalScopeBinding::Def(def)) |
| if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => { |
| return PathResult::NonModule(PathResolution::with_unresolved_segments( |
| def, path.len() - 1 |
| )); |
| } |
| _ => Err(if record_used { Determined } else { Undetermined }), |
| } |
| }; |
| |
| match binding { |
| Ok(binding) => { |
| if i == 1 { |
| second_binding = Some(binding); |
| } |
| let def = binding.def(); |
| let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(def); |
| if let Some(next_module) = binding.module() { |
| module = Some(ModuleOrUniformRoot::Module(next_module)); |
| } else if def == Def::ToolMod && i + 1 != path.len() { |
| let def = Def::NonMacroAttr(NonMacroAttrKind::Tool); |
| return PathResult::NonModule(PathResolution::new(def)); |
| } else if def == Def::Err { |
| return PathResult::NonModule(err_path_resolution()); |
| } else if opt_ns.is_some() && (is_last || maybe_assoc) { |
| self.lint_if_path_starts_with_module( |
| crate_lint, |
| path, |
| path_span, |
| second_binding, |
| ); |
| return PathResult::NonModule(PathResolution::with_unresolved_segments( |
| def, path.len() - i - 1 |
| )); |
| } else { |
| return PathResult::Failed(ident.span, |
| format!("Not a module `{}`", ident), |
| is_last); |
| } |
| } |
| Err(Undetermined) => return PathResult::Indeterminate, |
| Err(Determined) => { |
| if let Some(ModuleOrUniformRoot::Module(module)) = module { |
| if opt_ns.is_some() && !module.is_normal() { |
| return PathResult::NonModule(PathResolution::with_unresolved_segments( |
| module.def().unwrap(), path.len() - i |
| )); |
| } |
| } |
| let module_def = match module { |
| Some(ModuleOrUniformRoot::Module(module)) => module.def(), |
| _ => None, |
| }; |
| let msg = if module_def == self.graph_root.def() { |
| let is_mod = |def| match def { Def::Mod(..) => true, _ => false }; |
| let mut candidates = |
| self.lookup_import_candidates(name, TypeNS, is_mod); |
| candidates.sort_by_cached_key(|c| { |
| (c.path.segments.len(), c.path.to_string()) |
| }); |
| if let Some(candidate) = candidates.get(0) { |
| format!("Did you mean `{}`?", candidate.path) |
| } else { |
| format!("Maybe a missing `extern crate {};`?", ident) |
| } |
| } else if i == 0 { |
| format!("Use of undeclared type or module `{}`", ident) |
| } else { |
| format!("Could not find `{}` in `{}`", ident, path[i - 1]) |
| }; |
| return PathResult::Failed(ident.span, msg, is_last); |
| } |
| } |
| } |
| |
| self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding); |
| |
| PathResult::Module(module.unwrap_or_else(|| { |
| span_bug!(path_span, "resolve_path: empty(?) path {:?} has no module", path); |
| })) |
| |
| } |
| |
| fn lint_if_path_starts_with_module( |
| &self, |
| crate_lint: CrateLint, |
| path: &[Ident], |
| path_span: Span, |
| second_binding: Option<&NameBinding>, |
| ) { |
| // In the 2018 edition this lint is a hard error, so nothing to do |
| if self.session.rust_2018() { |
| return |
| } |
| |
| // In the 2015 edition there's no use in emitting lints unless the |
| // crate's already enabled the feature that we're going to suggest |
| if !self.session.features_untracked().crate_in_paths { |
| return |
| } |
| |
| let (diag_id, diag_span) = match crate_lint { |
| CrateLint::No => return, |
| CrateLint::SimplePath(id) => (id, path_span), |
| CrateLint::UsePath { root_id, root_span } => (root_id, root_span), |
| CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span), |
| }; |
| |
| let first_name = match path.get(0) { |
| Some(ident) => ident.name, |
| None => return, |
| }; |
| |
| // We're only interested in `use` paths which should start with |
| // `{{root}}` or `extern` currently. |
| if first_name != keywords::Extern.name() && first_name != keywords::CrateRoot.name() { |
| return |
| } |
| |
| match path.get(1) { |
| // If this import looks like `crate::...` it's already good |
| Some(ident) if ident.name == keywords::Crate.name() => return, |
| // Otherwise go below to see if it's an extern crate |
| Some(_) => {} |
| // If the path has length one (and it's `CrateRoot` most likely) |
| // then we don't know whether we're gonna be importing a crate or an |
| // item in our crate. Defer this lint to elsewhere |
| None => return, |
| } |
| |
| // If the first element of our path was actually resolved to an |
| // `ExternCrate` (also used for `crate::...`) then no need to issue a |
| // warning, this looks all good! |
| if let Some(binding) = second_binding { |
| if let NameBindingKind::Import { directive: d, .. } = binding.kind { |
| // Careful: we still want to rewrite paths from |
| // renamed extern crates. |
| if let ImportDirectiveSubclass::ExternCrate(None) = d.subclass { |
| return |
| } |
| } |
| } |
| |
| let diag = lint::builtin::BuiltinLintDiagnostics |
| ::AbsPathWithModule(diag_span); |
| self.session.buffer_lint_with_diagnostic( |
| lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE, |
| diag_id, diag_span, |
| "absolute paths must start with `self`, `super`, \ |
| `crate`, or an external crate name in the 2018 edition", |
| diag); |
| } |
| |
| // Resolve a local definition, potentially adjusting for closures. |
| fn adjust_local_def(&mut self, |
| ns: Namespace, |
| rib_index: usize, |
| mut def: Def, |
| record_used: bool, |
| span: Span) -> Def { |
| let ribs = &self.ribs[ns][rib_index + 1..]; |
| |
| // An invalid forward use of a type parameter from a previous default. |
| if let ForwardTyParamBanRibKind = self.ribs[ns][rib_index].kind { |
| if record_used { |
| resolve_error(self, span, ResolutionError::ForwardDeclaredTyParam); |
| } |
| assert_eq!(def, Def::Err); |
| return Def::Err; |
| } |
| |
| match def { |
| Def::Upvar(..) => { |
| span_bug!(span, "unexpected {:?} in bindings", def) |
| } |
| Def::Local(node_id) => { |
| for rib in ribs { |
| match rib.kind { |
| NormalRibKind | ModuleRibKind(..) | MacroDefinition(..) | |
| ForwardTyParamBanRibKind => { |
| // Nothing to do. Continue. |
| } |
| ClosureRibKind(function_id) => { |
| let prev_def = def; |
| |
| let seen = self.freevars_seen |
| .entry(function_id) |
| .or_default(); |
| if let Some(&index) = seen.get(&node_id) { |
| def = Def::Upvar(node_id, index, function_id); |
| continue; |
| } |
| let vec = self.freevars |
| .entry(function_id) |
| .or_default(); |
| let depth = vec.len(); |
| def = Def::Upvar(node_id, depth, function_id); |
| |
| if record_used { |
| vec.push(Freevar { |
| def: prev_def, |
| span, |
| }); |
| seen.insert(node_id, depth); |
| } |
| } |
| ItemRibKind | TraitOrImplItemRibKind => { |
| // This was an attempt to access an upvar inside a |
| // named function item. This is not allowed, so we |
| // report an error. |
| if record_used { |
| resolve_error(self, span, |
| ResolutionError::CannotCaptureDynamicEnvironmentInFnItem); |
| } |
| return Def::Err; |
| } |
| ConstantItemRibKind => { |
| // Still doesn't deal with upvars |
| if record_used { |
| resolve_error(self, span, |
| ResolutionError::AttemptToUseNonConstantValueInConstant); |
| } |
| return Def::Err; |
| } |
| } |
| } |
| } |
| Def::TyParam(..) | Def::SelfTy(..) => { |
| for rib in ribs { |
| match rib.kind { |
| NormalRibKind | TraitOrImplItemRibKind | ClosureRibKind(..) | |
| ModuleRibKind(..) | MacroDefinition(..) | ForwardTyParamBanRibKind | |
| ConstantItemRibKind => { |
| // Nothing to do. Continue. |
| } |
| ItemRibKind => { |
| // This was an attempt to use a type parameter outside |
| // its scope. |
| if record_used { |
| resolve_error(self, span, |
| ResolutionError::TypeParametersFromOuterFunction(def)); |
| } |
| return Def::Err; |
| } |
| } |
| } |
| } |
| _ => {} |
| } |
| return def; |
| } |
| |
| fn lookup_assoc_candidate<FilterFn>(&mut self, |
| ident: Ident, |
| ns: Namespace, |
| filter_fn: FilterFn) |
| -> Option<AssocSuggestion> |
| where FilterFn: Fn(Def) -> bool |
| { |
| fn extract_node_id(t: &Ty) -> Option<NodeId> { |
| match t.node { |
| TyKind::Path(None, _) => Some(t.id), |
| TyKind::Rptr(_, ref mut_ty) => extract_node_id(&mut_ty.ty), |
| // This doesn't handle the remaining `Ty` variants as they are not |
| // that commonly the self_type, it might be interesting to provide |
| // support for those in future. |
| _ => None, |
| } |
| } |
| |
| // Fields are generally expected in the same contexts as locals. |
| if filter_fn(Def::Local(ast::DUMMY_NODE_ID)) { |
| if let Some(node_id) = self.current_self_type.as_ref().and_then(extract_node_id) { |
| // Look for a field with the same name in the current self_type. |
| if let Some(resolution) = self.def_map.get(&node_id) { |
| match resolution.base_def() { |
| Def::Struct(did) | Def::Union(did) |
| if resolution.unresolved_segments() == 0 => { |
| if let Some(field_names) = self.field_names.get(&did) { |
| if field_names.iter().any(|&field_name| ident.name == field_name) { |
| return Some(AssocSuggestion::Field); |
| } |
| } |
| } |
| _ => {} |
| } |
| } |
| } |
| } |
| |
| // Look for associated items in the current trait. |
| if let Some((module, _)) = self.current_trait_ref { |
| if let Ok(binding) = self.resolve_ident_in_module( |
| ModuleOrUniformRoot::Module(module), |
| ident, |
| ns, |
| false, |
| module.span, |
| ) { |
| let def = binding.def(); |
| if filter_fn(def) { |
| return Some(if self.has_self.contains(&def.def_id()) { |
| AssocSuggestion::MethodWithSelf |
| } else { |
| AssocSuggestion::AssocItem |
| }); |
| } |
| } |
| } |
| |
| None |
| } |
| |
| fn lookup_typo_candidate<FilterFn>(&mut self, |
| path: &[Ident], |
| ns: Namespace, |
| filter_fn: FilterFn, |
| span: Span) |
| -> Option<Symbol> |
| where FilterFn: Fn(Def) -> bool |
| { |
| let add_module_candidates = |module: Module, names: &mut Vec<Name>| { |
| for (&(ident, _), resolution) in module.resolutions.borrow().iter() { |
| if let Some(binding) = resolution.borrow().binding { |
| if filter_fn(binding.def()) { |
| names.push(ident.name); |
| } |
| } |
| } |
| }; |
| |
| let mut names = Vec::new(); |
| if path.len() == 1 { |
| // Search in lexical scope. |
| // Walk backwards up the ribs in scope and collect candidates. |
| for rib in self.ribs[ns].iter().rev() { |
| // Locals and type parameters |
| for (ident, def) in &rib.bindings { |
| if filter_fn(*def) { |
| names.push(ident.name); |
| } |
| } |
| // Items in scope |
| if let ModuleRibKind(module) = rib.kind { |
| // Items from this module |
| add_module_candidates(module, &mut names); |
| |
| if let ModuleKind::Block(..) = module.kind { |
| // We can see through blocks |
| } else { |
| // Items from the prelude |
| if !module.no_implicit_prelude { |
| names.extend(self.extern_prelude.iter().cloned()); |
| if let Some(prelude) = self.prelude { |
| add_module_candidates(prelude, &mut names); |
| } |
| } |
| break; |
| } |
| } |
| } |
| // Add primitive types to the mix |
| if filter_fn(Def::PrimTy(TyBool)) { |
| names.extend( |
| self.primitive_type_table.primitive_types.iter().map(|(name, _)| name) |
| ) |
| } |
| } else { |
| // Search in module. |
| let mod_path = &path[..path.len() - 1]; |
| if let PathResult::Module(module) = self.resolve_path(None, mod_path, Some(TypeNS), |
| false, span, CrateLint::No) { |
| if let ModuleOrUniformRoot::Module(module) = module { |
| add_module_candidates(module, &mut names); |
| } |
| } |
| } |
| |
| let name = path[path.len() - 1].name; |
| // Make sure error reporting is deterministic. |
| names.sort_by_cached_key(|name| name.as_str()); |
| match find_best_match_for_name(names.iter(), &name.as_str(), None) { |
| Some(found) if found != name => Some(found), |
| _ => None, |
| } |
| } |
| |
| fn with_resolved_label<F>(&mut self, label: Option<Label>, id: NodeId, f: F) |
| where F: FnOnce(&mut Resolver) |
| { |
| if let Some(label) = label { |
| self.unused_labels.insert(id, label.ident.span); |
| let def = Def::Label(id); |
| self.with_label_rib(|this| { |
| let ident = label.ident.modern_and_legacy(); |
| this.label_ribs.last_mut().unwrap().bindings.insert(ident, def); |
| f(this); |
| }); |
| } else { |
| f(self); |
| } |
| } |
| |
| fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) { |
| self.with_resolved_label(label, id, |this| this.visit_block(block)); |
| } |
| |
| fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) { |
| // First, record candidate traits for this expression if it could |
| // result in the invocation of a method call. |
| |
| self.record_candidate_traits_for_expr_if_necessary(expr); |
| |
| // Next, resolve the node. |
| match expr.node { |
| ExprKind::Path(ref qself, ref path) => { |
| self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent)); |
| visit::walk_expr(self, expr); |
| } |
| |
| ExprKind::Struct(ref path, ..) => { |
| self.smart_resolve_path(expr.id, None, path, PathSource::Struct); |
| visit::walk_expr(self, expr); |
| } |
| |
| ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => { |
| let def = self.search_label(label.ident, |rib, ident| { |
| rib.bindings.get(&ident.modern_and_legacy()).cloned() |
| }); |
| match def { |
| None => { |
| // Search again for close matches... |
| // Picks the first label that is "close enough", which is not necessarily |
| // the closest match |
| let close_match = self.search_label(label.ident, |rib, ident| { |
| let names = rib.bindings.iter().map(|(id, _)| &id.name); |
| find_best_match_for_name(names, &*ident.as_str(), None) |
| }); |
| self.record_def(expr.id, err_path_resolution()); |
| resolve_error(self, |
| label.ident.span, |
| ResolutionError::UndeclaredLabel(&label.ident.as_str(), |
| close_match)); |
| } |
| Some(Def::Label(id)) => { |
| // Since this def is a label, it is never read. |
| self.record_def(expr.id, PathResolution::new(Def::Label(id))); |
| self.unused_labels.remove(&id); |
| } |
| Some(_) => { |
| span_bug!(expr.span, "label wasn't mapped to a label def!"); |
| } |
| } |
| |
| // visit `break` argument if any |
| visit::walk_expr(self, expr); |
| } |
| |
| ExprKind::IfLet(ref pats, ref subexpression, ref if_block, ref optional_else) => { |
| self.visit_expr(subexpression); |
| |
| self.ribs[ValueNS].push(Rib::new(NormalRibKind)); |
| let mut bindings_list = FxHashMap(); |
| for pat in pats { |
| self.resolve_pattern(pat, PatternSource::IfLet, &mut bindings_list); |
| } |
| // This has to happen *after* we determine which pat_idents are variants |
| self.check_consistent_bindings(pats); |
| self.visit_block(if_block); |
| self.ribs[ValueNS].pop(); |
| |
| optional_else.as_ref().map(|expr| self.visit_expr(expr)); |
| } |
| |
| ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block), |
| |
| ExprKind::While(ref subexpression, ref block, label) => { |
| self.with_resolved_label(label, expr.id, |this| { |
| this.visit_expr(subexpression); |
| this.visit_block(block); |
| }); |
| } |
| |
| ExprKind::WhileLet(ref pats, ref subexpression, ref block, label) => { |
| self.with_resolved_label(label, expr.id, |this| { |
| this.visit_expr(subexpression); |
| this.ribs[ValueNS].push(Rib::new(NormalRibKind)); |
| let mut bindings_list = FxHashMap(); |
| for pat in pats { |
| this.resolve_pattern(pat, PatternSource::WhileLet, &mut bindings_list); |
| } |
| // This has to happen *after* we determine which pat_idents are variants |
| this.check_consistent_bindings(pats); |
| this.visit_block(block); |
| this.ribs[ValueNS].pop(); |
| }); |
| } |
| |
| ExprKind::ForLoop(ref pattern, ref subexpression, ref block, label) => { |
| self.visit_expr(subexpression); |
| self.ribs[ValueNS].push(Rib::new(NormalRibKind)); |
| self.resolve_pattern(pattern, PatternSource::For, &mut FxHashMap()); |
| |
| self.resolve_labeled_block(label, expr.id, block); |
| |
| self.ribs[ValueNS].pop(); |
| } |
| |
| ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block), |
| |
| // Equivalent to `visit::walk_expr` + passing some context to children. |
| ExprKind::Field(ref subexpression, _) => { |
| self.resolve_expr(subexpression, Some(expr)); |
| } |
| ExprKind::MethodCall(ref segment, ref arguments) => { |
| let mut arguments = arguments.iter(); |
| self.resolve_expr(arguments.next().unwrap(), Some(expr)); |
| for argument in arguments { |
| self.resolve_expr(argument, None); |
| } |
| self.visit_path_segment(expr.span, segment); |
| } |
| |
| ExprKind::Call(ref callee, ref arguments) => { |
| self.resolve_expr(callee, Some(expr)); |
| for argument in arguments { |
| self.resolve_expr(argument, None); |
| } |
| } |
| ExprKind::Type(ref type_expr, _) => { |
| self.current_type_ascription.push(type_expr.span); |
| visit::walk_expr(self, expr); |
| self.current_type_ascription.pop(); |
| } |
| // Resolve the body of async exprs inside the async closure to which they desugar |
| ExprKind::Async(_, async_closure_id, ref block) => { |
| let rib_kind = ClosureRibKind(async_closure_id); |
| self.ribs[ValueNS].push(Rib::new(rib_kind)); |
| self.label_ribs.push(Rib::new(rib_kind)); |
| self.visit_block(&block); |
| self.label_ribs.pop(); |
| self.ribs[ValueNS].pop(); |
| } |
| // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to |
| // resolve the arguments within the proper scopes so that usages of them inside the |
| // closure are detected as upvars rather than normal closure arg usages. |
| ExprKind::Closure( |
| _, IsAsync::Async { closure_id: inner_closure_id, .. }, _, |
| ref fn_decl, ref body, _span, |
| ) => { |
| let rib_kind = ClosureRibKind(expr.id); |
| self.ribs[ValueNS].push(Rib::new(rib_kind)); |
| self.label_ribs.push(Rib::new(rib_kind)); |
| // Resolve arguments: |
| let mut bindings_list = FxHashMap(); |
| for argument in &fn_decl.inputs { |
| self.resolve_pattern(&argument.pat, PatternSource::FnParam, &mut bindings_list); |
| self.visit_ty(&argument.ty); |
| } |
| // No need to resolve return type-- the outer closure return type is |
| // FunctionRetTy::Default |
| |
| // Now resolve the inner closure |
| { |
| let rib_kind = ClosureRibKind(inner_closure_id); |
| self.ribs[ValueNS].push(Rib::new(rib_kind)); |
| self.label_ribs.push(Rib::new(rib_kind)); |
| // No need to resolve arguments: the inner closure has none. |
| // Resolve the return type: |
| visit::walk_fn_ret_ty(self, &fn_decl.output); |
| // Resolve the body |
| self.visit_expr(body); |
| self.label_ribs.pop(); |
| self.ribs[ValueNS].pop(); |
| } |
| self.label_ribs.pop(); |
| self.ribs[ValueNS].pop(); |
| } |
| _ => { |
| visit::walk_expr(self, expr); |
| } |
| } |
| } |
| |
| fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) { |
| match expr.node { |
| ExprKind::Field(_, ident) => { |
| // FIXME(#6890): Even though you can't treat a method like a |
| // field, we need to add any trait methods we find that match |
| // the field name so that we can do some nice error reporting |
| // later on in typeck. |
| let traits = self.get_traits_containing_item(ident, ValueNS); |
| self.trait_map.insert(expr.id, traits); |
| } |
| ExprKind::MethodCall(ref segment, ..) => { |
| debug!("(recording candidate traits for expr) recording traits for {}", |
| expr.id); |
| let traits = self.get_traits_containing_item(segment.ident, ValueNS); |
| self.trait_map.insert(expr.id, traits); |
| } |
| _ => { |
| // Nothing to do. |
| } |
| } |
| } |
| |
| fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace) |
| -> Vec<TraitCandidate> { |
| debug!("(getting traits containing item) looking for '{}'", ident.name); |
| |
| let mut found_traits = Vec::new(); |
| // Look for the current trait. |
| if let Some((module, _)) = self.current_trait_ref { |
| if self.resolve_ident_in_module( |
| ModuleOrUniformRoot::Module(module), |
| ident, |
| ns, |
| false, |
| module.span, |
| ).is_ok() { |
| let def_id = module.def_id().unwrap(); |
| found_traits.push(TraitCandidate { def_id: def_id, import_id: None }); |
| } |
| } |
| |
| ident.span = ident.span.modern(); |
| let mut search_module = self.current_module; |
| loop { |
| self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits); |
| search_module = unwrap_or!( |
| self.hygienic_lexical_parent(search_module, &mut ident.span), break |
| ); |
| } |
| |
| if let Some(prelude) = self.prelude { |
| if !search_module.no_implicit_prelude { |
| self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits); |
| } |
| } |
| |
| found_traits |
| } |
| |
| fn get_traits_in_module_containing_item(&mut self, |
| ident: Ident, |
| ns: Namespace, |
| module: Module<'a>, |
| found_traits: &mut Vec<TraitCandidate>) { |
| assert!(ns == TypeNS || ns == ValueNS); |
| let mut traits = module.traits.borrow_mut(); |
| if traits.is_none() { |
| let mut collected_traits = Vec::new(); |
| module.for_each_child(|name, ns, binding| { |
| if ns != TypeNS { return } |
| if let Def::Trait(_) = binding.def() { |
| collected_traits.push((name, binding)); |
| } |
| }); |
| *traits = Some(collected_traits.into_boxed_slice()); |
| } |
| |
| for &(trait_name, binding) in traits.as_ref().unwrap().iter() { |
| let module = binding.module().unwrap(); |
| let mut ident = ident; |
| if ident.span.glob_adjust(module.expansion, binding.span.ctxt().modern()).is_none() { |
| continue |
| } |
| if self.resolve_ident_in_module_unadjusted( |
| ModuleOrUniformRoot::Module(module), |
| ident, |
| ns, |
| false, |
| false, |
| module.span, |
| ).is_ok() { |
| let import_id = match binding.kind { |
| NameBindingKind::Import { directive, .. } => { |
| self.maybe_unused_trait_imports.insert(directive.id); |
| self.add_to_glob_map(directive.id, trait_name); |
| Some(directive.id) |
| } |
| _ => None, |
| }; |
| let trait_def_id = module.def_id().unwrap(); |
| found_traits.push(TraitCandidate { def_id: trait_def_id, import_id: import_id }); |
| } |
| } |
| } |
| |
| /// When name resolution fails, this method can be used to look up candidate |
| /// entities with the expected name. It allows filtering them using the |
| /// supplied predicate (which should be used to only accept the types of |
| /// definitions expected e.g. traits). The lookup spans across all crates. |
| /// |
| /// NOTE: The method does not look into imports, but this is not a problem, |
| /// since we report the definitions (thus, the de-aliased imports). |
| fn lookup_import_candidates<FilterFn>(&mut self, |
| lookup_name: Name, |
| namespace: Namespace, |
| filter_fn: FilterFn) |
| -> Vec<ImportSuggestion> |
| where FilterFn: Fn(Def) -> bool |
| { |
| let mut candidates = Vec::new(); |
| let mut worklist = Vec::new(); |
| let mut seen_modules = FxHashSet(); |
| worklist.push((self.graph_root, Vec::new(), false)); |
| |
| while let Some((in_module, |
| path_segments, |
| in_module_is_extern)) = worklist.pop() { |
| self.populate_module_if_necessary(in_module); |
| |
| // We have to visit module children in deterministic order to avoid |
| // instabilities in reported imports (#43552). |
| in_module.for_each_child_stable(|ident, ns, name_binding| { |
| // avoid imports entirely |
| if name_binding.is_import() && !name_binding.is_extern_crate() { return; } |
| // avoid non-importable candidates as well |
| if !name_binding.is_importable() { return; } |
| |
| // collect results based on the filter function |
| if ident.name == lookup_name && ns == namespace { |
| if filter_fn(name_binding.def()) { |
| // create the path |
| let mut segms = if self.session.rust_2018() && !in_module_is_extern { |
| // crate-local absolute paths start with `crate::` in edition 2018 |
| // FIXME: may also be stabilized for Rust 2015 (Issues #45477, #44660) |
| let mut full_segms = vec![ |
| ast::PathSegment::from_ident(keywords::Crate.ident()) |
| ]; |
| full_segms.extend(path_segments.clone()); |
| full_segms |
| } else { |
| path_segments.clone() |
| }; |
| |
| segms.push(ast::PathSegment::from_ident(ident)); |
| let path = Path { |
| span: name_binding.span, |
| segments: segms, |
| }; |
| // the entity is accessible in the following cases: |
| // 1. if it's defined in the same crate, it's always |
| // accessible (since private entities can be made public) |
| // 2. if it's defined in another crate, it's accessible |
| // only if both the module is public and the entity is |
| // declared as public (due to pruning, we don't explore |
| // outside crate private modules => no need to check this) |
| if !in_module_is_extern || name_binding.vis == ty::Visibility::Public { |
| candidates.push(ImportSuggestion { path: path }); |
| } |
| } |
| } |
| |
| // collect submodules to explore |
| if let Some(module) = name_binding.module() { |
| // form the path |
| let mut path_segments = path_segments.clone(); |
| path_segments.push(ast::PathSegment::from_ident(ident)); |
| |
| if !in_module_is_extern || name_binding.vis == ty::Visibility::Public { |
| // add the module to the lookup |
| let is_extern = in_module_is_extern || name_binding.is_extern_crate(); |
| if seen_modules.insert(module.def_id().unwrap()) { |
| worklist.push((module, path_segments, is_extern)); |
| } |
| } |
| } |
| }) |
| } |
| |
| candidates |
| } |
| |
| fn find_module(&mut self, |
| module_def: Def) |
| -> Option<(Module<'a>, ImportSuggestion)> |
| { |
| let mut result = None; |
| let mut worklist = Vec::new(); |
| let mut seen_modules = FxHashSet(); |
| worklist.push((self.graph_root, Vec::new())); |
| |
| while let Some((in_module, path_segments)) = worklist.pop() { |
| // abort if the module is already found |
| if result.is_some() { break; } |
| |
| self.populate_module_if_necessary(in_module); |
| |
| in_module.for_each_child_stable(|ident, _, name_binding| { |
| // abort if the module is already found or if name_binding is private external |
| if result.is_some() || !name_binding.vis.is_visible_locally() { |
| return |
| } |
| if let Some(module) = name_binding.module() { |
| // form the path |
| let mut path_segments = path_segments.clone(); |
| path_segments.push(ast::PathSegment::from_ident(ident)); |
| if module.def() == Some(module_def) { |
| let path = Path { |
| span: name_binding.span, |
| segments: path_segments, |
| }; |
| result = Some((module, ImportSuggestion { path: path })); |
| } else { |
| // add the module to the lookup |
| if seen_modules.insert(module.def_id().unwrap()) { |
| worklist.push((module, path_segments)); |
| } |
| } |
| } |
| }); |
| } |
| |
| result |
| } |
| |
| fn collect_enum_variants(&mut self, enum_def: Def) -> Option<Vec<Path>> { |
| if let Def::Enum(..) = enum_def {} else { |
| panic!("Non-enum def passed to collect_enum_variants: {:?}", enum_def) |
| } |
| |
| self.find_module(enum_def).map(|(enum_module, enum_import_suggestion)| { |
| self.populate_module_if_necessary(enum_module); |
| |
| let mut variants = Vec::new(); |
| enum_module.for_each_child_stable(|ident, _, name_binding| { |
| if let Def::Variant(..) = name_binding.def() { |
| let mut segms = enum_import_suggestion.path.segments.clone(); |
| segms.push(ast::PathSegment::from_ident(ident)); |
| variants.push(Path { |
| span: name_binding.span, |
| segments: segms, |
| }); |
| } |
| }); |
| variants |
| }) |
| } |
| |
| fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) { |
| debug!("(recording def) recording {:?} for {}", resolution, node_id); |
| if let Some(prev_res) = self.def_map.insert(node_id, resolution) { |
| panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution); |
| } |
| } |
| |
| fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility { |
| match vis.node { |
| ast::VisibilityKind::Public => ty::Visibility::Public, |
| ast::VisibilityKind::Crate(..) => { |
| ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)) |
| } |
| ast::VisibilityKind::Inherited => { |
| ty::Visibility::Restricted(self.current_module.normal_ancestor_id) |
| } |
| ast::VisibilityKind::Restricted { ref path, id, .. } => { |
| // Visibilities are resolved as global by default, add starting root segment. |
| let segments = path.make_root().iter().chain(path.segments.iter()) |
| .map(|seg| seg.ident) |
| .collect::<Vec<_>>(); |
| let def = self.smart_resolve_path_fragment( |
| id, |
| None, |
| &segments, |
| path.span, |
| PathSource::Visibility, |
| CrateLint::SimplePath(id), |
| ).base_def(); |
| if def == Def::Err { |
| ty::Visibility::Public |
| } else { |
| let vis = ty::Visibility::Restricted(def.def_id()); |
| if self.is_accessible(vis) { |
| vis |
| } else { |
| self.session.span_err(path.span, "visibilities can only be restricted \ |
| to ancestor modules"); |
| ty::Visibility::Public |
| } |
| } |
| } |
| } |
| } |
| |
| fn is_accessible(&self, vis: ty::Visibility) -> bool { |
| vis.is_accessible_from(self.current_module.normal_ancestor_id, self) |
| } |
| |
| fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool { |
| vis.is_accessible_from(module.normal_ancestor_id, self) |
| } |
| |
| fn report_errors(&mut self, krate: &Crate) { |
| self.report_shadowing_errors(); |
| self.report_with_use_injections(krate); |
| self.report_proc_macro_import(krate); |
| let mut reported_spans = FxHashSet(); |
| |
| for &(span_use, span_def) in &self.macro_expanded_macro_export_errors { |
| let msg = "macro-expanded `macro_export` macros from the current crate \ |
| cannot be referred to by absolute paths"; |
| self.session.struct_span_err(span_use, msg) |
| .span_note(span_def, "the macro is defined here") |
| .emit(); |
| } |
| |
| for &AmbiguityError { span, name, b1, b2, lexical } in &self.ambiguity_errors { |
| if !reported_spans.insert(span) { continue } |
| let participle = |binding: &NameBinding| { |
| if binding.is_import() { "imported" } else { "defined" } |
| }; |
| let msg1 = format!("`{}` could refer to the name {} here", name, participle(b1)); |
| let msg2 = format!("`{}` could also refer to the name {} here", name, participle(b2)); |
| let note = if b1.expansion == Mark::root() || !lexical && b1.is_glob_import() { |
| format!("consider adding an explicit import of `{}` to disambiguate", name) |
| } else if let Def::Macro(..) = b1.def() { |
| format!("macro-expanded {} do not shadow", |
| if b1.is_import() { "macro imports" } else { "macros" }) |
| } else { |
| format!("macro-expanded {} do not shadow when used in a macro invocation path", |
| if b1.is_import() { "imports" } else { "items" }) |
| }; |
| |
| let mut err = struct_span_err!(self.session, span, E0659, "`{}` is ambiguous", name); |
| err.span_note(b1.span, &msg1); |
| match b2.def() { |
| Def::Macro(..) if b2.span.is_dummy() => |
| err.note(&format!("`{}` is also a builtin macro", name)), |
| _ => err.span_note(b2.span, &msg2), |
| }; |
| err.note(¬e).emit(); |
| } |
| |
| for &PrivacyError(span, name, binding) in &self.privacy_errors { |
| if !reported_spans.insert(span) { continue } |
| span_err!(self.session, span, E0603, "{} `{}` is private", binding.descr(), name); |
| } |
| } |
| |
| fn report_with_use_injections(&mut self, krate: &Crate) { |
| for UseError { mut err, candidates, node_id, better } in self.use_injections.drain(..) { |
| let (span, found_use) = UsePlacementFinder::check(krate, node_id); |
| if !candidates.is_empty() { |
| show_candidates(&mut err, span, &candidates, better, found_use); |
| } |
| err.emit(); |
| } |
| } |
| |
| fn report_shadowing_errors(&mut self) { |
| let mut reported_errors = FxHashSet(); |
| for binding in replace(&mut self.disallowed_shadowing, Vec::new()) { |
| if self.resolve_legacy_scope(&binding.parent, binding.ident, false).is_some() && |
| reported_errors.insert((binding.ident, binding.span)) { |
| let msg = format!("`{}` is already in scope", binding.ident); |
| self.session.struct_span_err(binding.span, &msg) |
| .note("macro-expanded `macro_rules!`s may not shadow \ |
| existing macros (see RFC 1560)") |
| .emit(); |
| } |
| } |
| } |
| |
| fn report_conflict<'b>(&mut self, |
| parent: Module, |
| ident: Ident, |
| ns: Namespace, |
| new_binding: &NameBinding<'b>, |
| old_binding: &NameBinding<'b>) { |
| // Error on the second of two conflicting names |
| if old_binding.span.lo() > new_binding.span.lo() { |
| return self.report_conflict(parent, ident, ns, old_binding, new_binding); |
| } |
| |
| let container = match parent.kind { |
| ModuleKind::Def(Def::Mod(_), _) => "module", |
| ModuleKind::Def(Def::Trait(_), _) => "trait", |
| ModuleKind::Block(..) => "block", |
| _ => "enum", |
| }; |
| |
| let old_noun = match old_binding.is_import() { |
| true => "import", |
| false => "definition", |
| }; |
| |
| let new_participle = match new_binding.is_import() { |
| true => "imported", |
| false => "defined", |
| }; |
| |
| let (name, span) = (ident.name, self.session.codemap().def_span(new_binding.span)); |
| |
| if let Some(s) = self.name_already_seen.get(&name) { |
| if s == &span { |
| return; |
| } |
| } |
| |
| let old_kind = match (ns, old_binding.module()) { |
| (ValueNS, _) => "value", |
| (MacroNS, _) => "macro", |
| (TypeNS, _) if old_binding.is_extern_crate() => "extern crate", |
| (TypeNS, Some(module)) if module.is_normal() => "module", |
| (TypeNS, Some(module)) if module.is_trait() => "trait", |
| (TypeNS, _) => "type", |
| }; |
| |
| let msg = format!("the name `{}` is defined multiple times", name); |
| |
| let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) { |
| (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg), |
| (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() { |
| true => struct_span_err!(self.session, span, E0254, "{}", msg), |
| false => struct_span_err!(self.session, span, E0260, "{}", msg), |
| }, |
| _ => match (old_binding.is_import(), new_binding.is_import()) { |
| (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg), |
| (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg), |
| _ => struct_span_err!(self.session, span, E0255, "{}", msg), |
| }, |
| }; |
| |
| err.note(&format!("`{}` must be defined only once in the {} namespace of this {}", |
| name, |
| ns.descr(), |
| container)); |
| |
| err.span_label(span, format!("`{}` re{} here", name, new_participle)); |
| if !old_binding.span.is_dummy() { |
| err.span_label(self.session.codemap().def_span(old_binding.span), |
| format!("previous {} of the {} `{}` here", old_noun, old_kind, name)); |
| } |
| |
| // See https://github.com/rust-lang/rust/issues/32354 |
| if old_binding.is_import() || new_binding.is_import() { |
| let binding = if new_binding.is_import() && !new_binding.span.is_dummy() { |
| new_binding |
| } else { |
| old_binding |
| }; |
| |
| let cm = self.session.codemap(); |
| let rename_msg = "You can use `as` to change the binding name of the import"; |
| |
| if let (Ok(snippet), false) = (cm.span_to_snippet(binding.span), |
| binding.is_renamed_extern_crate()) { |
| let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() { |
| format!("Other{}", name) |
| } else { |
| format!("other_{}", name) |
| }; |
| |
| err.span_suggestion(binding.span, |
| rename_msg, |
| if snippet.ends_with(';') { |
| format!("{} as {};", |
| &snippet[..snippet.len()-1], |
| suggested_name) |
| } else { |
| format!("{} as {}", snippet, suggested_name) |
| }); |
| } else { |
| err.span_label(binding.span, rename_msg); |
| } |
| } |
| |
| err.emit(); |
| self.name_already_seen.insert(name, span); |
| } |
| } |
| |
| fn is_self_type(path: &[Ident], namespace: Namespace) -> bool { |
| namespace == TypeNS && path.len() == 1 && path[0].name == keywords::SelfType.name() |
| } |
| |
| fn is_self_value(path: &[Ident], namespace: Namespace) -> bool { |
| namespace == ValueNS && path.len() == 1 && path[0].name == keywords::SelfValue.name() |
| } |
| |
| fn names_to_string(idents: &[Ident]) -> String { |
| let mut result = String::new(); |
| for (i, ident) in idents.iter() |
| .filter(|ident| ident.name != keywords::CrateRoot.name()) |
| .enumerate() { |
| if i > 0 { |
| result.push_str("::"); |
| } |
| result.push_str(&ident.as_str()); |
| } |
| result |
| } |
| |
| fn path_names_to_string(path: &Path) -> String { |
| names_to_string(&path.segments.iter() |
| .map(|seg| seg.ident) |
| .collect::<Vec<_>>()) |
| } |
| |
| /// Get the path for an enum and the variant from an `ImportSuggestion` for an enum variant. |
| fn import_candidate_to_paths(suggestion: &ImportSuggestion) -> (Span, String, String) { |
| let variant_path = &suggestion.path; |
| let variant_path_string = path_names_to_string(variant_path); |
| |
| let path_len = suggestion.path.segments.len(); |
| let enum_path = ast::Path { |
| span: suggestion.path.span, |
| segments: suggestion.path.segments[0..path_len - 1].to_vec(), |
| }; |
| let enum_path_string = path_names_to_string(&enum_path); |
| |
| (suggestion.path.span, variant_path_string, enum_path_string) |
| } |
| |
| |
| /// When an entity with a given name is not available in scope, we search for |
| /// entities with that name in all crates. This method allows outputting the |
| /// results of this search in a programmer-friendly way |
| fn show_candidates(err: &mut DiagnosticBuilder, |
| // This is `None` if all placement locations are inside expansions |
| span: Option<Span>, |
| candidates: &[ImportSuggestion], |
| better: bool, |
| found_use: bool) { |
| |
| // we want consistent results across executions, but candidates are produced |
| // by iterating through a hash map, so make sure they are ordered: |
| let mut path_strings: Vec<_> = |
| candidates.into_iter().map(|c| path_names_to_string(&c.path)).collect(); |
| path_strings.sort(); |
| |
| let better = if better { "better " } else { "" }; |
| let msg_diff = match path_strings.len() { |
| 1 => " is found in another module, you can import it", |
| _ => "s are found in other modules, you can import them", |
| }; |
| let msg = format!("possible {}candidate{} into scope", better, msg_diff); |
| |
| if let Some(span) = span { |
| for candidate in &mut path_strings { |
| // produce an additional newline to separate the new use statement |
| // from the directly following item. |
| let additional_newline = if found_use { |
| "" |
| } else { |
| "\n" |
| }; |
| *candidate = format!("use {};\n{}", candidate, additional_newline); |
| } |
| |
| err.span_suggestions(span, &msg, path_strings); |
| } else { |
| let mut msg = msg; |
| msg.push(':'); |
| for candidate in path_strings { |
| msg.push('\n'); |
| msg.push_str(&candidate); |
| } |
| } |
| } |
| |
| /// A somewhat inefficient routine to obtain the name of a module. |
| fn module_to_string(module: Module) -> Option<String> { |
| let mut names = Vec::new(); |
| |
| fn collect_mod(names: &mut Vec<Ident>, module: Module) { |
| if let ModuleKind::Def(_, name) = module.kind { |
| if let Some(parent) = module.parent { |
| names.push(Ident::with_empty_ctxt(name)); |
| collect_mod(names, parent); |
| } |
| } else { |
| // danger, shouldn't be ident? |
| names.push(Ident::from_str("<opaque>")); |
| collect_mod(names, module.parent.unwrap()); |
| } |
| } |
| collect_mod(&mut names, module); |
| |
| if names.is_empty() { |
| return None; |
| } |
| Some(names_to_string(&names.into_iter() |
| .rev() |
| .collect::<Vec<_>>())) |
| } |
| |
| fn err_path_resolution() -> PathResolution { |
| PathResolution::new(Def::Err) |
| } |
| |
| #[derive(PartialEq,Copy, Clone)] |
| pub enum MakeGlobMap { |
| Yes, |
| No, |
| } |
| |
| #[derive(Copy, Clone, Debug)] |
| enum CrateLint { |
| /// Do not issue the lint |
| No, |
| |
| /// This lint applies to some random path like `impl ::foo::Bar` |
| /// or whatever. In this case, we can take the span of that path. |
| SimplePath(NodeId), |
| |
| /// This lint comes from a `use` statement. In this case, what we |
| /// care about really is the *root* `use` statement; e.g., if we |
| /// have nested things like `use a::{b, c}`, we care about the |
| /// `use a` part. |
| UsePath { root_id: NodeId, root_span: Span }, |
| |
| /// This is the "trait item" from a fully qualified path. For example, |
| /// we might be resolving `X::Y::Z` from a path like `<T as X::Y>::Z`. |
| /// The `path_span` is the span of the to the trait itself (`X::Y`). |
| QPathTrait { qpath_id: NodeId, qpath_span: Span }, |
| } |
| |
| impl CrateLint { |
| fn node_id(&self) -> Option<NodeId> { |
| match *self { |
| CrateLint::No => None, |
| CrateLint::SimplePath(id) | |
| CrateLint::UsePath { root_id: id, .. } | |
| CrateLint::QPathTrait { qpath_id: id, .. } => Some(id), |
| } |
| } |
| } |
| |
| __build_diagnostic_array! { librustc_resolve, DIAGNOSTICS } |