| // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| #![allow(non_upper_case_globals)] |
| |
| use intrinsics::{self, Intrinsic}; |
| use llvm; |
| use llvm::{ValueRef}; |
| use abi::{Abi, FnType, LlvmType, PassMode}; |
| use mir::place::PlaceRef; |
| use mir::operand::{OperandRef, OperandValue}; |
| use base::*; |
| use common::*; |
| use declare; |
| use glue; |
| use type_::Type; |
| use type_of::LayoutLlvmExt; |
| use rustc::ty::{self, Ty}; |
| use rustc::ty::layout::{HasDataLayout, LayoutOf}; |
| use rustc::hir; |
| use syntax::ast; |
| use syntax::symbol::Symbol; |
| use builder::Builder; |
| |
| use rustc::session::Session; |
| use syntax_pos::Span; |
| |
| use std::cmp::Ordering; |
| use std::iter; |
| |
| fn get_simple_intrinsic(cx: &CodegenCx, name: &str) -> Option<ValueRef> { |
| let llvm_name = match name { |
| "sqrtf32" => "llvm.sqrt.f32", |
| "sqrtf64" => "llvm.sqrt.f64", |
| "powif32" => "llvm.powi.f32", |
| "powif64" => "llvm.powi.f64", |
| "sinf32" => "llvm.sin.f32", |
| "sinf64" => "llvm.sin.f64", |
| "cosf32" => "llvm.cos.f32", |
| "cosf64" => "llvm.cos.f64", |
| "powf32" => "llvm.pow.f32", |
| "powf64" => "llvm.pow.f64", |
| "expf32" => "llvm.exp.f32", |
| "expf64" => "llvm.exp.f64", |
| "exp2f32" => "llvm.exp2.f32", |
| "exp2f64" => "llvm.exp2.f64", |
| "logf32" => "llvm.log.f32", |
| "logf64" => "llvm.log.f64", |
| "log10f32" => "llvm.log10.f32", |
| "log10f64" => "llvm.log10.f64", |
| "log2f32" => "llvm.log2.f32", |
| "log2f64" => "llvm.log2.f64", |
| "fmaf32" => "llvm.fma.f32", |
| "fmaf64" => "llvm.fma.f64", |
| "fabsf32" => "llvm.fabs.f32", |
| "fabsf64" => "llvm.fabs.f64", |
| "copysignf32" => "llvm.copysign.f32", |
| "copysignf64" => "llvm.copysign.f64", |
| "floorf32" => "llvm.floor.f32", |
| "floorf64" => "llvm.floor.f64", |
| "ceilf32" => "llvm.ceil.f32", |
| "ceilf64" => "llvm.ceil.f64", |
| "truncf32" => "llvm.trunc.f32", |
| "truncf64" => "llvm.trunc.f64", |
| "rintf32" => "llvm.rint.f32", |
| "rintf64" => "llvm.rint.f64", |
| "nearbyintf32" => "llvm.nearbyint.f32", |
| "nearbyintf64" => "llvm.nearbyint.f64", |
| "roundf32" => "llvm.round.f32", |
| "roundf64" => "llvm.round.f64", |
| "assume" => "llvm.assume", |
| "abort" => "llvm.trap", |
| _ => return None |
| }; |
| Some(cx.get_intrinsic(&llvm_name)) |
| } |
| |
| /// Remember to add all intrinsics here, in librustc_typeck/check/mod.rs, |
| /// and in libcore/intrinsics.rs; if you need access to any llvm intrinsics, |
| /// add them to librustc_codegen_llvm/context.rs |
| pub fn codegen_intrinsic_call<'a, 'tcx>(bx: &Builder<'a, 'tcx>, |
| callee_ty: Ty<'tcx>, |
| fn_ty: &FnType<'tcx, Ty<'tcx>>, |
| args: &[OperandRef<'tcx>], |
| llresult: ValueRef, |
| span: Span) { |
| let cx = bx.cx; |
| let tcx = cx.tcx; |
| |
| let (def_id, substs) = match callee_ty.sty { |
| ty::TyFnDef(def_id, substs) => (def_id, substs), |
| _ => bug!("expected fn item type, found {}", callee_ty) |
| }; |
| |
| let sig = callee_ty.fn_sig(tcx); |
| let sig = tcx.normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), &sig); |
| let arg_tys = sig.inputs(); |
| let ret_ty = sig.output(); |
| let name = &*tcx.item_name(def_id).as_str(); |
| |
| let llret_ty = cx.layout_of(ret_ty).llvm_type(cx); |
| let result = PlaceRef::new_sized(llresult, fn_ty.ret.layout, fn_ty.ret.layout.align); |
| |
| let simple = get_simple_intrinsic(cx, name); |
| let llval = match name { |
| _ if simple.is_some() => { |
| bx.call(simple.unwrap(), |
| &args.iter().map(|arg| arg.immediate()).collect::<Vec<_>>(), |
| None) |
| } |
| "unreachable" => { |
| return; |
| }, |
| "likely" => { |
| let expect = cx.get_intrinsic(&("llvm.expect.i1")); |
| bx.call(expect, &[args[0].immediate(), C_bool(cx, true)], None) |
| } |
| "unlikely" => { |
| let expect = cx.get_intrinsic(&("llvm.expect.i1")); |
| bx.call(expect, &[args[0].immediate(), C_bool(cx, false)], None) |
| } |
| "try" => { |
| try_intrinsic(bx, cx, |
| args[0].immediate(), |
| args[1].immediate(), |
| args[2].immediate(), |
| llresult); |
| return; |
| } |
| "breakpoint" => { |
| let llfn = cx.get_intrinsic(&("llvm.debugtrap")); |
| bx.call(llfn, &[], None) |
| } |
| "size_of" => { |
| let tp_ty = substs.type_at(0); |
| C_usize(cx, cx.size_of(tp_ty).bytes()) |
| } |
| "size_of_val" => { |
| let tp_ty = substs.type_at(0); |
| if let OperandValue::Pair(_, meta) = args[0].val { |
| let (llsize, _) = |
| glue::size_and_align_of_dst(bx, tp_ty, meta); |
| llsize |
| } else { |
| C_usize(cx, cx.size_of(tp_ty).bytes()) |
| } |
| } |
| "min_align_of" => { |
| let tp_ty = substs.type_at(0); |
| C_usize(cx, cx.align_of(tp_ty).abi()) |
| } |
| "min_align_of_val" => { |
| let tp_ty = substs.type_at(0); |
| if let OperandValue::Pair(_, meta) = args[0].val { |
| let (_, llalign) = |
| glue::size_and_align_of_dst(bx, tp_ty, meta); |
| llalign |
| } else { |
| C_usize(cx, cx.align_of(tp_ty).abi()) |
| } |
| } |
| "pref_align_of" => { |
| let tp_ty = substs.type_at(0); |
| C_usize(cx, cx.align_of(tp_ty).pref()) |
| } |
| "type_name" => { |
| let tp_ty = substs.type_at(0); |
| let ty_name = Symbol::intern(&tp_ty.to_string()).as_str(); |
| C_str_slice(cx, ty_name) |
| } |
| "type_id" => { |
| C_u64(cx, cx.tcx.type_id_hash(substs.type_at(0))) |
| } |
| "init" => { |
| let ty = substs.type_at(0); |
| if !cx.layout_of(ty).is_zst() { |
| // Just zero out the stack slot. |
| // If we store a zero constant, LLVM will drown in vreg allocation for large data |
| // structures, and the generated code will be awful. (A telltale sign of this is |
| // large quantities of `mov [byte ptr foo],0` in the generated code.) |
| memset_intrinsic(bx, false, ty, llresult, C_u8(cx, 0), C_usize(cx, 1)); |
| } |
| return; |
| } |
| // Effectively no-ops |
| "uninit" => { |
| return; |
| } |
| "needs_drop" => { |
| let tp_ty = substs.type_at(0); |
| |
| C_bool(cx, bx.cx.type_needs_drop(tp_ty)) |
| } |
| "offset" => { |
| let ptr = args[0].immediate(); |
| let offset = args[1].immediate(); |
| bx.inbounds_gep(ptr, &[offset]) |
| } |
| "arith_offset" => { |
| let ptr = args[0].immediate(); |
| let offset = args[1].immediate(); |
| bx.gep(ptr, &[offset]) |
| } |
| |
| "copy_nonoverlapping" => { |
| copy_intrinsic(bx, false, false, substs.type_at(0), |
| args[1].immediate(), args[0].immediate(), args[2].immediate()) |
| } |
| "copy" => { |
| copy_intrinsic(bx, true, false, substs.type_at(0), |
| args[1].immediate(), args[0].immediate(), args[2].immediate()) |
| } |
| "write_bytes" => { |
| memset_intrinsic(bx, false, substs.type_at(0), |
| args[0].immediate(), args[1].immediate(), args[2].immediate()) |
| } |
| |
| "volatile_copy_nonoverlapping_memory" => { |
| copy_intrinsic(bx, false, true, substs.type_at(0), |
| args[0].immediate(), args[1].immediate(), args[2].immediate()) |
| } |
| "volatile_copy_memory" => { |
| copy_intrinsic(bx, true, true, substs.type_at(0), |
| args[0].immediate(), args[1].immediate(), args[2].immediate()) |
| } |
| "volatile_set_memory" => { |
| memset_intrinsic(bx, true, substs.type_at(0), |
| args[0].immediate(), args[1].immediate(), args[2].immediate()) |
| } |
| "volatile_load" => { |
| let tp_ty = substs.type_at(0); |
| let mut ptr = args[0].immediate(); |
| if let PassMode::Cast(ty) = fn_ty.ret.mode { |
| ptr = bx.pointercast(ptr, ty.llvm_type(cx).ptr_to()); |
| } |
| let load = bx.volatile_load(ptr); |
| unsafe { |
| llvm::LLVMSetAlignment(load, cx.align_of(tp_ty).abi() as u32); |
| } |
| to_immediate(bx, load, cx.layout_of(tp_ty)) |
| }, |
| "volatile_store" => { |
| let dst = args[0].deref(bx.cx); |
| args[1].val.volatile_store(bx, dst); |
| return; |
| }, |
| "prefetch_read_data" | "prefetch_write_data" | |
| "prefetch_read_instruction" | "prefetch_write_instruction" => { |
| let expect = cx.get_intrinsic(&("llvm.prefetch")); |
| let (rw, cache_type) = match name { |
| "prefetch_read_data" => (0, 1), |
| "prefetch_write_data" => (1, 1), |
| "prefetch_read_instruction" => (0, 0), |
| "prefetch_write_instruction" => (1, 0), |
| _ => bug!() |
| }; |
| bx.call(expect, &[ |
| args[0].immediate(), |
| C_i32(cx, rw), |
| args[1].immediate(), |
| C_i32(cx, cache_type) |
| ], None) |
| }, |
| "ctlz" | "ctlz_nonzero" | "cttz" | "cttz_nonzero" | "ctpop" | "bswap" | |
| "bitreverse" | "add_with_overflow" | "sub_with_overflow" | |
| "mul_with_overflow" | "overflowing_add" | "overflowing_sub" | "overflowing_mul" | |
| "unchecked_div" | "unchecked_rem" | "unchecked_shl" | "unchecked_shr" | "exact_div" => { |
| let ty = arg_tys[0]; |
| match int_type_width_signed(ty, cx) { |
| Some((width, signed)) => |
| match name { |
| "ctlz" | "cttz" => { |
| let y = C_bool(bx.cx, false); |
| let llfn = cx.get_intrinsic(&format!("llvm.{}.i{}", name, width)); |
| bx.call(llfn, &[args[0].immediate(), y], None) |
| } |
| "ctlz_nonzero" | "cttz_nonzero" => { |
| let y = C_bool(bx.cx, true); |
| let llvm_name = &format!("llvm.{}.i{}", &name[..4], width); |
| let llfn = cx.get_intrinsic(llvm_name); |
| bx.call(llfn, &[args[0].immediate(), y], None) |
| } |
| "ctpop" => bx.call(cx.get_intrinsic(&format!("llvm.ctpop.i{}", width)), |
| &[args[0].immediate()], None), |
| "bswap" => { |
| if width == 8 { |
| args[0].immediate() // byte swap a u8/i8 is just a no-op |
| } else { |
| bx.call(cx.get_intrinsic(&format!("llvm.bswap.i{}", width)), |
| &[args[0].immediate()], None) |
| } |
| } |
| "bitreverse" => { |
| bx.call(cx.get_intrinsic(&format!("llvm.bitreverse.i{}", width)), |
| &[args[0].immediate()], None) |
| } |
| "add_with_overflow" | "sub_with_overflow" | "mul_with_overflow" => { |
| let intrinsic = format!("llvm.{}{}.with.overflow.i{}", |
| if signed { 's' } else { 'u' }, |
| &name[..3], width); |
| let llfn = bx.cx.get_intrinsic(&intrinsic); |
| |
| // Convert `i1` to a `bool`, and write it to the out parameter |
| let pair = bx.call(llfn, &[ |
| args[0].immediate(), |
| args[1].immediate() |
| ], None); |
| let val = bx.extract_value(pair, 0); |
| let overflow = bx.zext(bx.extract_value(pair, 1), Type::bool(cx)); |
| |
| let dest = result.project_field(bx, 0); |
| bx.store(val, dest.llval, dest.align); |
| let dest = result.project_field(bx, 1); |
| bx.store(overflow, dest.llval, dest.align); |
| |
| return; |
| }, |
| "overflowing_add" => bx.add(args[0].immediate(), args[1].immediate()), |
| "overflowing_sub" => bx.sub(args[0].immediate(), args[1].immediate()), |
| "overflowing_mul" => bx.mul(args[0].immediate(), args[1].immediate()), |
| "exact_div" => |
| if signed { |
| bx.exactsdiv(args[0].immediate(), args[1].immediate()) |
| } else { |
| bx.exactudiv(args[0].immediate(), args[1].immediate()) |
| }, |
| "unchecked_div" => |
| if signed { |
| bx.sdiv(args[0].immediate(), args[1].immediate()) |
| } else { |
| bx.udiv(args[0].immediate(), args[1].immediate()) |
| }, |
| "unchecked_rem" => |
| if signed { |
| bx.srem(args[0].immediate(), args[1].immediate()) |
| } else { |
| bx.urem(args[0].immediate(), args[1].immediate()) |
| }, |
| "unchecked_shl" => bx.shl(args[0].immediate(), args[1].immediate()), |
| "unchecked_shr" => |
| if signed { |
| bx.ashr(args[0].immediate(), args[1].immediate()) |
| } else { |
| bx.lshr(args[0].immediate(), args[1].immediate()) |
| }, |
| _ => bug!(), |
| }, |
| None => { |
| span_invalid_monomorphization_error( |
| tcx.sess, span, |
| &format!("invalid monomorphization of `{}` intrinsic: \ |
| expected basic integer type, found `{}`", name, ty)); |
| return; |
| } |
| } |
| |
| }, |
| "fadd_fast" | "fsub_fast" | "fmul_fast" | "fdiv_fast" | "frem_fast" => { |
| let sty = &arg_tys[0].sty; |
| match float_type_width(sty) { |
| Some(_width) => |
| match name { |
| "fadd_fast" => bx.fadd_fast(args[0].immediate(), args[1].immediate()), |
| "fsub_fast" => bx.fsub_fast(args[0].immediate(), args[1].immediate()), |
| "fmul_fast" => bx.fmul_fast(args[0].immediate(), args[1].immediate()), |
| "fdiv_fast" => bx.fdiv_fast(args[0].immediate(), args[1].immediate()), |
| "frem_fast" => bx.frem_fast(args[0].immediate(), args[1].immediate()), |
| _ => bug!(), |
| }, |
| None => { |
| span_invalid_monomorphization_error( |
| tcx.sess, span, |
| &format!("invalid monomorphization of `{}` intrinsic: \ |
| expected basic float type, found `{}`", name, sty)); |
| return; |
| } |
| } |
| |
| }, |
| |
| "discriminant_value" => { |
| args[0].deref(bx.cx).codegen_get_discr(bx, ret_ty) |
| } |
| |
| "align_offset" => { |
| // `ptr as usize` |
| let ptr_val = bx.ptrtoint(args[0].immediate(), bx.cx.isize_ty); |
| // `ptr_val % align` |
| let align = args[1].immediate(); |
| let offset = bx.urem(ptr_val, align); |
| let zero = C_null(bx.cx.isize_ty); |
| // `offset == 0` |
| let is_zero = bx.icmp(llvm::IntPredicate::IntEQ, offset, zero); |
| // `if offset == 0 { 0 } else { align - offset }` |
| bx.select(is_zero, zero, bx.sub(align, offset)) |
| } |
| name if name.starts_with("simd_") => { |
| match generic_simd_intrinsic(bx, name, |
| callee_ty, |
| args, |
| ret_ty, llret_ty, |
| span) { |
| Ok(llval) => llval, |
| Err(()) => return |
| } |
| } |
| // This requires that atomic intrinsics follow a specific naming pattern: |
| // "atomic_<operation>[_<ordering>]", and no ordering means SeqCst |
| name if name.starts_with("atomic_") => { |
| use llvm::AtomicOrdering::*; |
| |
| let split: Vec<&str> = name.split('_').collect(); |
| |
| let is_cxchg = split[1] == "cxchg" || split[1] == "cxchgweak"; |
| let (order, failorder) = match split.len() { |
| 2 => (SequentiallyConsistent, SequentiallyConsistent), |
| 3 => match split[2] { |
| "unordered" => (Unordered, Unordered), |
| "relaxed" => (Monotonic, Monotonic), |
| "acq" => (Acquire, Acquire), |
| "rel" => (Release, Monotonic), |
| "acqrel" => (AcquireRelease, Acquire), |
| "failrelaxed" if is_cxchg => |
| (SequentiallyConsistent, Monotonic), |
| "failacq" if is_cxchg => |
| (SequentiallyConsistent, Acquire), |
| _ => cx.sess().fatal("unknown ordering in atomic intrinsic") |
| }, |
| 4 => match (split[2], split[3]) { |
| ("acq", "failrelaxed") if is_cxchg => |
| (Acquire, Monotonic), |
| ("acqrel", "failrelaxed") if is_cxchg => |
| (AcquireRelease, Monotonic), |
| _ => cx.sess().fatal("unknown ordering in atomic intrinsic") |
| }, |
| _ => cx.sess().fatal("Atomic intrinsic not in correct format"), |
| }; |
| |
| let invalid_monomorphization = |ty| { |
| span_invalid_monomorphization_error(tcx.sess, span, |
| &format!("invalid monomorphization of `{}` intrinsic: \ |
| expected basic integer type, found `{}`", name, ty)); |
| }; |
| |
| match split[1] { |
| "cxchg" | "cxchgweak" => { |
| let ty = substs.type_at(0); |
| if int_type_width_signed(ty, cx).is_some() { |
| let weak = if split[1] == "cxchgweak" { llvm::True } else { llvm::False }; |
| let pair = bx.atomic_cmpxchg( |
| args[0].immediate(), |
| args[1].immediate(), |
| args[2].immediate(), |
| order, |
| failorder, |
| weak); |
| let val = bx.extract_value(pair, 0); |
| let success = bx.zext(bx.extract_value(pair, 1), Type::bool(bx.cx)); |
| |
| let dest = result.project_field(bx, 0); |
| bx.store(val, dest.llval, dest.align); |
| let dest = result.project_field(bx, 1); |
| bx.store(success, dest.llval, dest.align); |
| return; |
| } else { |
| return invalid_monomorphization(ty); |
| } |
| } |
| |
| "load" => { |
| let ty = substs.type_at(0); |
| if int_type_width_signed(ty, cx).is_some() { |
| let align = cx.align_of(ty); |
| bx.atomic_load(args[0].immediate(), order, align) |
| } else { |
| return invalid_monomorphization(ty); |
| } |
| } |
| |
| "store" => { |
| let ty = substs.type_at(0); |
| if int_type_width_signed(ty, cx).is_some() { |
| let align = cx.align_of(ty); |
| bx.atomic_store(args[1].immediate(), args[0].immediate(), order, align); |
| return; |
| } else { |
| return invalid_monomorphization(ty); |
| } |
| } |
| |
| "fence" => { |
| bx.atomic_fence(order, llvm::SynchronizationScope::CrossThread); |
| return; |
| } |
| |
| "singlethreadfence" => { |
| bx.atomic_fence(order, llvm::SynchronizationScope::SingleThread); |
| return; |
| } |
| |
| // These are all AtomicRMW ops |
| op => { |
| let atom_op = match op { |
| "xchg" => llvm::AtomicXchg, |
| "xadd" => llvm::AtomicAdd, |
| "xsub" => llvm::AtomicSub, |
| "and" => llvm::AtomicAnd, |
| "nand" => llvm::AtomicNand, |
| "or" => llvm::AtomicOr, |
| "xor" => llvm::AtomicXor, |
| "max" => llvm::AtomicMax, |
| "min" => llvm::AtomicMin, |
| "umax" => llvm::AtomicUMax, |
| "umin" => llvm::AtomicUMin, |
| _ => cx.sess().fatal("unknown atomic operation") |
| }; |
| |
| let ty = substs.type_at(0); |
| if int_type_width_signed(ty, cx).is_some() { |
| bx.atomic_rmw(atom_op, args[0].immediate(), args[1].immediate(), order) |
| } else { |
| return invalid_monomorphization(ty); |
| } |
| } |
| } |
| } |
| |
| "nontemporal_store" => { |
| let dst = args[0].deref(bx.cx); |
| args[1].val.nontemporal_store(bx, dst); |
| return; |
| } |
| |
| _ => { |
| let intr = match Intrinsic::find(&name) { |
| Some(intr) => intr, |
| None => bug!("unknown intrinsic '{}'", name), |
| }; |
| fn one<T>(x: Vec<T>) -> T { |
| assert_eq!(x.len(), 1); |
| x.into_iter().next().unwrap() |
| } |
| fn ty_to_type(cx: &CodegenCx, t: &intrinsics::Type) -> Vec<Type> { |
| use intrinsics::Type::*; |
| match *t { |
| Void => vec![Type::void(cx)], |
| Integer(_signed, _width, llvm_width) => { |
| vec![Type::ix(cx, llvm_width as u64)] |
| } |
| Float(x) => { |
| match x { |
| 32 => vec![Type::f32(cx)], |
| 64 => vec![Type::f64(cx)], |
| _ => bug!() |
| } |
| } |
| Pointer(ref t, ref llvm_elem, _const) => { |
| let t = llvm_elem.as_ref().unwrap_or(t); |
| let elem = one(ty_to_type(cx, t)); |
| vec![elem.ptr_to()] |
| } |
| Vector(ref t, ref llvm_elem, length) => { |
| let t = llvm_elem.as_ref().unwrap_or(t); |
| let elem = one(ty_to_type(cx, t)); |
| vec![Type::vector(&elem, length as u64)] |
| } |
| Aggregate(false, ref contents) => { |
| let elems = contents.iter() |
| .map(|t| one(ty_to_type(cx, t))) |
| .collect::<Vec<_>>(); |
| vec![Type::struct_(cx, &elems, false)] |
| } |
| Aggregate(true, ref contents) => { |
| contents.iter() |
| .flat_map(|t| ty_to_type(cx, t)) |
| .collect() |
| } |
| } |
| } |
| |
| // This allows an argument list like `foo, (bar, baz), |
| // qux` to be converted into `foo, bar, baz, qux`, integer |
| // arguments to be truncated as needed and pointers to be |
| // cast. |
| fn modify_as_needed<'a, 'tcx>(bx: &Builder<'a, 'tcx>, |
| t: &intrinsics::Type, |
| arg: &OperandRef<'tcx>) |
| -> Vec<ValueRef> |
| { |
| match *t { |
| intrinsics::Type::Aggregate(true, ref contents) => { |
| // We found a tuple that needs squishing! So |
| // run over the tuple and load each field. |
| // |
| // This assumes the type is "simple", i.e. no |
| // destructors, and the contents are SIMD |
| // etc. |
| assert!(!bx.cx.type_needs_drop(arg.layout.ty)); |
| let (ptr, align) = match arg.val { |
| OperandValue::Ref(ptr, align) => (ptr, align), |
| _ => bug!() |
| }; |
| let arg = PlaceRef::new_sized(ptr, arg.layout, align); |
| (0..contents.len()).map(|i| { |
| arg.project_field(bx, i).load(bx).immediate() |
| }).collect() |
| } |
| intrinsics::Type::Pointer(_, Some(ref llvm_elem), _) => { |
| let llvm_elem = one(ty_to_type(bx.cx, llvm_elem)); |
| vec![bx.pointercast(arg.immediate(), llvm_elem.ptr_to())] |
| } |
| intrinsics::Type::Vector(_, Some(ref llvm_elem), length) => { |
| let llvm_elem = one(ty_to_type(bx.cx, llvm_elem)); |
| vec![bx.bitcast(arg.immediate(), Type::vector(&llvm_elem, length as u64))] |
| } |
| intrinsics::Type::Integer(_, width, llvm_width) if width != llvm_width => { |
| // the LLVM intrinsic uses a smaller integer |
| // size than the C intrinsic's signature, so |
| // we have to trim it down here. |
| vec![bx.trunc(arg.immediate(), Type::ix(bx.cx, llvm_width as u64))] |
| } |
| _ => vec![arg.immediate()], |
| } |
| } |
| |
| |
| let inputs = intr.inputs.iter() |
| .flat_map(|t| ty_to_type(cx, t)) |
| .collect::<Vec<_>>(); |
| |
| let outputs = one(ty_to_type(cx, &intr.output)); |
| |
| let llargs: Vec<_> = intr.inputs.iter().zip(args).flat_map(|(t, arg)| { |
| modify_as_needed(bx, t, arg) |
| }).collect(); |
| assert_eq!(inputs.len(), llargs.len()); |
| |
| let val = match intr.definition { |
| intrinsics::IntrinsicDef::Named(name) => { |
| let f = declare::declare_cfn(cx, |
| name, |
| Type::func(&inputs, &outputs)); |
| bx.call(f, &llargs, None) |
| } |
| }; |
| |
| match *intr.output { |
| intrinsics::Type::Aggregate(flatten, ref elems) => { |
| // the output is a tuple so we need to munge it properly |
| assert!(!flatten); |
| |
| for i in 0..elems.len() { |
| let dest = result.project_field(bx, i); |
| let val = bx.extract_value(val, i as u64); |
| bx.store(val, dest.llval, dest.align); |
| } |
| return; |
| } |
| _ => val, |
| } |
| } |
| }; |
| |
| if !fn_ty.ret.is_ignore() { |
| if let PassMode::Cast(ty) = fn_ty.ret.mode { |
| let ptr = bx.pointercast(result.llval, ty.llvm_type(cx).ptr_to()); |
| bx.store(llval, ptr, result.align); |
| } else { |
| OperandRef::from_immediate_or_packed_pair(bx, llval, result.layout) |
| .val.store(bx, result); |
| } |
| } |
| } |
| |
| fn copy_intrinsic<'a, 'tcx>(bx: &Builder<'a, 'tcx>, |
| allow_overlap: bool, |
| volatile: bool, |
| ty: Ty<'tcx>, |
| dst: ValueRef, |
| src: ValueRef, |
| count: ValueRef) |
| -> ValueRef { |
| let cx = bx.cx; |
| let (size, align) = cx.size_and_align_of(ty); |
| let size = C_usize(cx, size.bytes()); |
| let align = C_i32(cx, align.abi() as i32); |
| |
| let operation = if allow_overlap { |
| "memmove" |
| } else { |
| "memcpy" |
| }; |
| |
| let name = format!("llvm.{}.p0i8.p0i8.i{}", operation, |
| cx.data_layout().pointer_size.bits()); |
| |
| let dst_ptr = bx.pointercast(dst, Type::i8p(cx)); |
| let src_ptr = bx.pointercast(src, Type::i8p(cx)); |
| let llfn = cx.get_intrinsic(&name); |
| |
| bx.call(llfn, |
| &[dst_ptr, |
| src_ptr, |
| bx.mul(size, count), |
| align, |
| C_bool(cx, volatile)], |
| None) |
| } |
| |
| fn memset_intrinsic<'a, 'tcx>( |
| bx: &Builder<'a, 'tcx>, |
| volatile: bool, |
| ty: Ty<'tcx>, |
| dst: ValueRef, |
| val: ValueRef, |
| count: ValueRef |
| ) -> ValueRef { |
| let cx = bx.cx; |
| let (size, align) = cx.size_and_align_of(ty); |
| let size = C_usize(cx, size.bytes()); |
| let align = C_i32(cx, align.abi() as i32); |
| let dst = bx.pointercast(dst, Type::i8p(cx)); |
| call_memset(bx, dst, val, bx.mul(size, count), align, volatile) |
| } |
| |
| fn try_intrinsic<'a, 'tcx>( |
| bx: &Builder<'a, 'tcx>, |
| cx: &CodegenCx, |
| func: ValueRef, |
| data: ValueRef, |
| local_ptr: ValueRef, |
| dest: ValueRef, |
| ) { |
| if bx.sess().no_landing_pads() { |
| bx.call(func, &[data], None); |
| let ptr_align = bx.tcx().data_layout.pointer_align; |
| bx.store(C_null(Type::i8p(&bx.cx)), dest, ptr_align); |
| } else if wants_msvc_seh(bx.sess()) { |
| codegen_msvc_try(bx, cx, func, data, local_ptr, dest); |
| } else { |
| codegen_gnu_try(bx, cx, func, data, local_ptr, dest); |
| } |
| } |
| |
| // MSVC's definition of the `rust_try` function. |
| // |
| // This implementation uses the new exception handling instructions in LLVM |
| // which have support in LLVM for SEH on MSVC targets. Although these |
| // instructions are meant to work for all targets, as of the time of this |
| // writing, however, LLVM does not recommend the usage of these new instructions |
| // as the old ones are still more optimized. |
| fn codegen_msvc_try<'a, 'tcx>(bx: &Builder<'a, 'tcx>, |
| cx: &CodegenCx, |
| func: ValueRef, |
| data: ValueRef, |
| local_ptr: ValueRef, |
| dest: ValueRef) { |
| let llfn = get_rust_try_fn(cx, &mut |bx| { |
| let cx = bx.cx; |
| |
| bx.set_personality_fn(bx.cx.eh_personality()); |
| |
| let normal = bx.build_sibling_block("normal"); |
| let catchswitch = bx.build_sibling_block("catchswitch"); |
| let catchpad = bx.build_sibling_block("catchpad"); |
| let caught = bx.build_sibling_block("caught"); |
| |
| let func = llvm::get_param(bx.llfn(), 0); |
| let data = llvm::get_param(bx.llfn(), 1); |
| let local_ptr = llvm::get_param(bx.llfn(), 2); |
| |
| // We're generating an IR snippet that looks like: |
| // |
| // declare i32 @rust_try(%func, %data, %ptr) { |
| // %slot = alloca i64* |
| // invoke %func(%data) to label %normal unwind label %catchswitch |
| // |
| // normal: |
| // ret i32 0 |
| // |
| // catchswitch: |
| // %cs = catchswitch within none [%catchpad] unwind to caller |
| // |
| // catchpad: |
| // %tok = catchpad within %cs [%type_descriptor, 0, %slot] |
| // %ptr[0] = %slot[0] |
| // %ptr[1] = %slot[1] |
| // catchret from %tok to label %caught |
| // |
| // caught: |
| // ret i32 1 |
| // } |
| // |
| // This structure follows the basic usage of throw/try/catch in LLVM. |
| // For example, compile this C++ snippet to see what LLVM generates: |
| // |
| // #include <stdint.h> |
| // |
| // int bar(void (*foo)(void), uint64_t *ret) { |
| // try { |
| // foo(); |
| // return 0; |
| // } catch(uint64_t a[2]) { |
| // ret[0] = a[0]; |
| // ret[1] = a[1]; |
| // return 1; |
| // } |
| // } |
| // |
| // More information can be found in libstd's seh.rs implementation. |
| let i64p = Type::i64(cx).ptr_to(); |
| let ptr_align = bx.tcx().data_layout.pointer_align; |
| let slot = bx.alloca(i64p, "slot", ptr_align); |
| bx.invoke(func, &[data], normal.llbb(), catchswitch.llbb(), |
| None); |
| |
| normal.ret(C_i32(cx, 0)); |
| |
| let cs = catchswitch.catch_switch(None, None, 1); |
| catchswitch.add_handler(cs, catchpad.llbb()); |
| |
| let tcx = cx.tcx; |
| let tydesc = match tcx.lang_items().msvc_try_filter() { |
| Some(did) => ::consts::get_static(cx, did), |
| None => bug!("msvc_try_filter not defined"), |
| }; |
| let tok = catchpad.catch_pad(cs, &[tydesc, C_i32(cx, 0), slot]); |
| let addr = catchpad.load(slot, ptr_align); |
| |
| let i64_align = bx.tcx().data_layout.i64_align; |
| let arg1 = catchpad.load(addr, i64_align); |
| let val1 = C_i32(cx, 1); |
| let arg2 = catchpad.load(catchpad.inbounds_gep(addr, &[val1]), i64_align); |
| let local_ptr = catchpad.bitcast(local_ptr, i64p); |
| catchpad.store(arg1, local_ptr, i64_align); |
| catchpad.store(arg2, catchpad.inbounds_gep(local_ptr, &[val1]), i64_align); |
| catchpad.catch_ret(tok, caught.llbb()); |
| |
| caught.ret(C_i32(cx, 1)); |
| }); |
| |
| // Note that no invoke is used here because by definition this function |
| // can't panic (that's what it's catching). |
| let ret = bx.call(llfn, &[func, data, local_ptr], None); |
| let i32_align = bx.tcx().data_layout.i32_align; |
| bx.store(ret, dest, i32_align); |
| } |
| |
| // Definition of the standard "try" function for Rust using the GNU-like model |
| // of exceptions (e.g. the normal semantics of LLVM's landingpad and invoke |
| // instructions). |
| // |
| // This codegen is a little surprising because we always call a shim |
| // function instead of inlining the call to `invoke` manually here. This is done |
| // because in LLVM we're only allowed to have one personality per function |
| // definition. The call to the `try` intrinsic is being inlined into the |
| // function calling it, and that function may already have other personality |
| // functions in play. By calling a shim we're guaranteed that our shim will have |
| // the right personality function. |
| fn codegen_gnu_try<'a, 'tcx>(bx: &Builder<'a, 'tcx>, |
| cx: &CodegenCx, |
| func: ValueRef, |
| data: ValueRef, |
| local_ptr: ValueRef, |
| dest: ValueRef) { |
| let llfn = get_rust_try_fn(cx, &mut |bx| { |
| let cx = bx.cx; |
| |
| // Codegens the shims described above: |
| // |
| // bx: |
| // invoke %func(%args...) normal %normal unwind %catch |
| // |
| // normal: |
| // ret 0 |
| // |
| // catch: |
| // (ptr, _) = landingpad |
| // store ptr, %local_ptr |
| // ret 1 |
| // |
| // Note that the `local_ptr` data passed into the `try` intrinsic is |
| // expected to be `*mut *mut u8` for this to actually work, but that's |
| // managed by the standard library. |
| |
| let then = bx.build_sibling_block("then"); |
| let catch = bx.build_sibling_block("catch"); |
| |
| let func = llvm::get_param(bx.llfn(), 0); |
| let data = llvm::get_param(bx.llfn(), 1); |
| let local_ptr = llvm::get_param(bx.llfn(), 2); |
| bx.invoke(func, &[data], then.llbb(), catch.llbb(), None); |
| then.ret(C_i32(cx, 0)); |
| |
| // Type indicator for the exception being thrown. |
| // |
| // The first value in this tuple is a pointer to the exception object |
| // being thrown. The second value is a "selector" indicating which of |
| // the landing pad clauses the exception's type had been matched to. |
| // rust_try ignores the selector. |
| let lpad_ty = Type::struct_(cx, &[Type::i8p(cx), Type::i32(cx)], |
| false); |
| let vals = catch.landing_pad(lpad_ty, bx.cx.eh_personality(), 1); |
| catch.add_clause(vals, C_null(Type::i8p(cx))); |
| let ptr = catch.extract_value(vals, 0); |
| let ptr_align = bx.tcx().data_layout.pointer_align; |
| catch.store(ptr, catch.bitcast(local_ptr, Type::i8p(cx).ptr_to()), ptr_align); |
| catch.ret(C_i32(cx, 1)); |
| }); |
| |
| // Note that no invoke is used here because by definition this function |
| // can't panic (that's what it's catching). |
| let ret = bx.call(llfn, &[func, data, local_ptr], None); |
| let i32_align = bx.tcx().data_layout.i32_align; |
| bx.store(ret, dest, i32_align); |
| } |
| |
| // Helper function to give a Block to a closure to codegen a shim function. |
| // This is currently primarily used for the `try` intrinsic functions above. |
| fn gen_fn<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, |
| name: &str, |
| inputs: Vec<Ty<'tcx>>, |
| output: Ty<'tcx>, |
| codegen: &mut for<'b> FnMut(Builder<'b, 'tcx>)) |
| -> ValueRef { |
| let rust_fn_ty = cx.tcx.mk_fn_ptr(ty::Binder::bind(cx.tcx.mk_fn_sig( |
| inputs.into_iter(), |
| output, |
| false, |
| hir::Unsafety::Unsafe, |
| Abi::Rust |
| ))); |
| let llfn = declare::define_internal_fn(cx, name, rust_fn_ty); |
| let bx = Builder::new_block(cx, llfn, "entry-block"); |
| codegen(bx); |
| llfn |
| } |
| |
| // Helper function used to get a handle to the `__rust_try` function used to |
| // catch exceptions. |
| // |
| // This function is only generated once and is then cached. |
| fn get_rust_try_fn<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, |
| codegen: &mut for<'b> FnMut(Builder<'b, 'tcx>)) |
| -> ValueRef { |
| if let Some(llfn) = cx.rust_try_fn.get() { |
| return llfn; |
| } |
| |
| // Define the type up front for the signature of the rust_try function. |
| let tcx = cx.tcx; |
| let i8p = tcx.mk_mut_ptr(tcx.types.i8); |
| let fn_ty = tcx.mk_fn_ptr(ty::Binder::bind(tcx.mk_fn_sig( |
| iter::once(i8p), |
| tcx.mk_nil(), |
| false, |
| hir::Unsafety::Unsafe, |
| Abi::Rust |
| ))); |
| let output = tcx.types.i32; |
| let rust_try = gen_fn(cx, "__rust_try", vec![fn_ty, i8p, i8p], output, codegen); |
| cx.rust_try_fn.set(Some(rust_try)); |
| return rust_try |
| } |
| |
| fn span_invalid_monomorphization_error(a: &Session, b: Span, c: &str) { |
| span_err!(a, b, E0511, "{}", c); |
| } |
| |
| fn generic_simd_intrinsic<'a, 'tcx>( |
| bx: &Builder<'a, 'tcx>, |
| name: &str, |
| callee_ty: Ty<'tcx>, |
| args: &[OperandRef<'tcx>], |
| ret_ty: Ty<'tcx>, |
| llret_ty: Type, |
| span: Span |
| ) -> Result<ValueRef, ()> { |
| // macros for error handling: |
| macro_rules! emit_error { |
| ($msg: tt) => { |
| emit_error!($msg, ) |
| }; |
| ($msg: tt, $($fmt: tt)*) => { |
| span_invalid_monomorphization_error( |
| bx.sess(), span, |
| &format!(concat!("invalid monomorphization of `{}` intrinsic: ", |
| $msg), |
| name, $($fmt)*)); |
| } |
| } |
| macro_rules! return_error { |
| ($($fmt: tt)*) => { |
| { |
| emit_error!($($fmt)*); |
| return Err(()); |
| } |
| } |
| } |
| |
| macro_rules! require { |
| ($cond: expr, $($fmt: tt)*) => { |
| if !$cond { |
| return_error!($($fmt)*); |
| } |
| }; |
| } |
| macro_rules! require_simd { |
| ($ty: expr, $position: expr) => { |
| require!($ty.is_simd(), "expected SIMD {} type, found non-SIMD `{}`", $position, $ty) |
| } |
| } |
| |
| |
| |
| let tcx = bx.tcx(); |
| let sig = tcx.normalize_erasing_late_bound_regions( |
| ty::ParamEnv::reveal_all(), |
| &callee_ty.fn_sig(tcx), |
| ); |
| let arg_tys = sig.inputs(); |
| |
| // every intrinsic takes a SIMD vector as its first argument |
| require_simd!(arg_tys[0], "input"); |
| let in_ty = arg_tys[0]; |
| let in_elem = arg_tys[0].simd_type(tcx); |
| let in_len = arg_tys[0].simd_size(tcx); |
| |
| let comparison = match name { |
| "simd_eq" => Some(hir::BiEq), |
| "simd_ne" => Some(hir::BiNe), |
| "simd_lt" => Some(hir::BiLt), |
| "simd_le" => Some(hir::BiLe), |
| "simd_gt" => Some(hir::BiGt), |
| "simd_ge" => Some(hir::BiGe), |
| _ => None |
| }; |
| |
| if let Some(cmp_op) = comparison { |
| require_simd!(ret_ty, "return"); |
| |
| let out_len = ret_ty.simd_size(tcx); |
| require!(in_len == out_len, |
| "expected return type with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| in_len, in_ty, |
| ret_ty, out_len); |
| require!(llret_ty.element_type().kind() == llvm::Integer, |
| "expected return type with integer elements, found `{}` with non-integer `{}`", |
| ret_ty, |
| ret_ty.simd_type(tcx)); |
| |
| return Ok(compare_simd_types(bx, |
| args[0].immediate(), |
| args[1].immediate(), |
| in_elem, |
| llret_ty, |
| cmp_op)) |
| } |
| |
| if name.starts_with("simd_shuffle") { |
| let n: usize = match name["simd_shuffle".len()..].parse() { |
| Ok(n) => n, |
| Err(_) => span_bug!(span, |
| "bad `simd_shuffle` instruction only caught in codegen?") |
| }; |
| |
| require_simd!(ret_ty, "return"); |
| |
| let out_len = ret_ty.simd_size(tcx); |
| require!(out_len == n, |
| "expected return type of length {}, found `{}` with length {}", |
| n, ret_ty, out_len); |
| require!(in_elem == ret_ty.simd_type(tcx), |
| "expected return element type `{}` (element of input `{}`), \ |
| found `{}` with element type `{}`", |
| in_elem, in_ty, |
| ret_ty, ret_ty.simd_type(tcx)); |
| |
| let total_len = in_len as u128 * 2; |
| |
| let vector = args[2].immediate(); |
| |
| let indices: Option<Vec<_>> = (0..n) |
| .map(|i| { |
| let arg_idx = i; |
| let val = const_get_elt(vector, i as u64); |
| match const_to_opt_u128(val, true) { |
| None => { |
| emit_error!("shuffle index #{} is not a constant", arg_idx); |
| None |
| } |
| Some(idx) if idx >= total_len => { |
| emit_error!("shuffle index #{} is out of bounds (limit {})", |
| arg_idx, total_len); |
| None |
| } |
| Some(idx) => Some(C_i32(bx.cx, idx as i32)), |
| } |
| }) |
| .collect(); |
| let indices = match indices { |
| Some(i) => i, |
| None => return Ok(C_null(llret_ty)) |
| }; |
| |
| return Ok(bx.shuffle_vector(args[0].immediate(), |
| args[1].immediate(), |
| C_vector(&indices))) |
| } |
| |
| if name == "simd_insert" { |
| require!(in_elem == arg_tys[2], |
| "expected inserted type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, arg_tys[2]); |
| return Ok(bx.insert_element(args[0].immediate(), |
| args[2].immediate(), |
| args[1].immediate())) |
| } |
| if name == "simd_extract" { |
| require!(ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, ret_ty); |
| return Ok(bx.extract_element(args[0].immediate(), args[1].immediate())) |
| } |
| |
| if name == "simd_select" { |
| let m_elem_ty = in_elem; |
| let m_len = in_len; |
| let v_len = arg_tys[1].simd_size(tcx); |
| require!(m_len == v_len, |
| "mismatched lengths: mask length `{}` != other vector length `{}`", |
| m_len, v_len |
| ); |
| match m_elem_ty.sty { |
| ty::TyInt(_) => {}, |
| _ => { |
| return_error!("mask element type is `{}`, expected `i_`", m_elem_ty); |
| } |
| } |
| // truncate the mask to a vector of i1s |
| let i1 = Type::i1(bx.cx); |
| let i1xn = Type::vector(&i1, m_len as u64); |
| let m_i1s = bx.trunc(args[0].immediate(), i1xn); |
| return Ok(bx.select(m_i1s, args[1].immediate(), args[2].immediate())); |
| } |
| |
| macro_rules! arith_red { |
| ($name:tt : $integer_reduce:ident, $float_reduce:ident, $ordered:expr) => { |
| if name == $name { |
| require!(ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, ret_ty); |
| return match in_elem.sty { |
| ty::TyInt(_) | ty::TyUint(_) => { |
| let r = bx.$integer_reduce(args[0].immediate()); |
| if $ordered { |
| // if overflow occurs, the result is the |
| // mathematical result modulo 2^n: |
| if name.contains("mul") { |
| Ok(bx.mul(args[1].immediate(), r)) |
| } else { |
| Ok(bx.add(args[1].immediate(), r)) |
| } |
| } else { |
| Ok(bx.$integer_reduce(args[0].immediate())) |
| } |
| }, |
| ty::TyFloat(f) => { |
| // ordered arithmetic reductions take an accumulator |
| let acc = if $ordered { |
| let acc = args[1].immediate(); |
| // FIXME: https://bugs.llvm.org/show_bug.cgi?id=36734 |
| // * if the accumulator of the fadd isn't 0, incorrect |
| // code is generated |
| // * if the accumulator of the fmul isn't 1, incorrect |
| // code is generated |
| match const_get_real(acc) { |
| None => return_error!("accumulator of {} is not a constant", $name), |
| Some((v, loses_info)) => { |
| if $name.contains("mul") && v != 1.0_f64 { |
| return_error!("accumulator of {} is not 1.0", $name); |
| } else if $name.contains("add") && v != 0.0_f64 { |
| return_error!("accumulator of {} is not 0.0", $name); |
| } else if loses_info { |
| return_error!("accumulator of {} loses information", $name); |
| } |
| } |
| } |
| acc |
| } else { |
| // unordered arithmetic reductions do not: |
| match f.bit_width() { |
| 32 => C_undef(Type::f32(bx.cx)), |
| 64 => C_undef(Type::f64(bx.cx)), |
| v => { |
| return_error!(r#" |
| unsupported {} from `{}` with element `{}` of size `{}` to `{}`"#, |
| $name, in_ty, in_elem, v, ret_ty |
| ) |
| } |
| } |
| |
| }; |
| Ok(bx.$float_reduce(acc, args[0].immediate())) |
| } |
| _ => { |
| return_error!( |
| "unsupported {} from `{}` with element `{}` to `{}`", |
| $name, in_ty, in_elem, ret_ty |
| ) |
| }, |
| } |
| } |
| } |
| } |
| |
| arith_red!("simd_reduce_add_ordered": vector_reduce_add, vector_reduce_fadd_fast, true); |
| arith_red!("simd_reduce_mul_ordered": vector_reduce_mul, vector_reduce_fmul_fast, true); |
| arith_red!("simd_reduce_add_unordered": vector_reduce_add, vector_reduce_fadd_fast, false); |
| arith_red!("simd_reduce_mul_unordered": vector_reduce_mul, vector_reduce_fmul_fast, false); |
| |
| macro_rules! minmax_red { |
| ($name:tt: $int_red:ident, $float_red:ident) => { |
| if name == $name { |
| require!(ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, ret_ty); |
| return match in_elem.sty { |
| ty::TyInt(_i) => { |
| Ok(bx.$int_red(args[0].immediate(), true)) |
| }, |
| ty::TyUint(_u) => { |
| Ok(bx.$int_red(args[0].immediate(), false)) |
| }, |
| ty::TyFloat(_f) => { |
| Ok(bx.$float_red(args[0].immediate())) |
| } |
| _ => { |
| return_error!("unsupported {} from `{}` with element `{}` to `{}`", |
| $name, in_ty, in_elem, ret_ty) |
| }, |
| } |
| } |
| |
| } |
| } |
| |
| minmax_red!("simd_reduce_min": vector_reduce_min, vector_reduce_fmin); |
| minmax_red!("simd_reduce_max": vector_reduce_max, vector_reduce_fmax); |
| |
| minmax_red!("simd_reduce_min_nanless": vector_reduce_min, vector_reduce_fmin_fast); |
| minmax_red!("simd_reduce_max_nanless": vector_reduce_max, vector_reduce_fmax_fast); |
| |
| macro_rules! bitwise_red { |
| ($name:tt : $red:ident, $boolean:expr) => { |
| if name == $name { |
| let input = if !$boolean { |
| require!(ret_ty == in_elem, |
| "expected return type `{}` (element of input `{}`), found `{}`", |
| in_elem, in_ty, ret_ty); |
| args[0].immediate() |
| } else { |
| match in_elem.sty { |
| ty::TyInt(_) | ty::TyUint(_) => {}, |
| _ => { |
| return_error!("unsupported {} from `{}` with element `{}` to `{}`", |
| $name, in_ty, in_elem, ret_ty) |
| } |
| } |
| |
| // boolean reductions operate on vectors of i1s: |
| let i1 = Type::i1(bx.cx); |
| let i1xn = Type::vector(&i1, in_len as u64); |
| bx.trunc(args[0].immediate(), i1xn) |
| }; |
| return match in_elem.sty { |
| ty::TyInt(_) | ty::TyUint(_) => { |
| let r = bx.$red(input); |
| Ok( |
| if !$boolean { |
| r |
| } else { |
| bx.zext(r, Type::bool(bx.cx)) |
| } |
| ) |
| }, |
| _ => { |
| return_error!("unsupported {} from `{}` with element `{}` to `{}`", |
| $name, in_ty, in_elem, ret_ty) |
| }, |
| } |
| } |
| } |
| } |
| |
| bitwise_red!("simd_reduce_and": vector_reduce_and, false); |
| bitwise_red!("simd_reduce_or": vector_reduce_or, false); |
| bitwise_red!("simd_reduce_xor": vector_reduce_xor, false); |
| bitwise_red!("simd_reduce_all": vector_reduce_and, true); |
| bitwise_red!("simd_reduce_any": vector_reduce_or, true); |
| |
| if name == "simd_cast" { |
| require_simd!(ret_ty, "return"); |
| let out_len = ret_ty.simd_size(tcx); |
| require!(in_len == out_len, |
| "expected return type with length {} (same as input type `{}`), \ |
| found `{}` with length {}", |
| in_len, in_ty, |
| ret_ty, out_len); |
| // casting cares about nominal type, not just structural type |
| let out_elem = ret_ty.simd_type(tcx); |
| |
| if in_elem == out_elem { return Ok(args[0].immediate()); } |
| |
| enum Style { Float, Int(/* is signed? */ bool), Unsupported } |
| |
| let (in_style, in_width) = match in_elem.sty { |
| // vectors of pointer-sized integers should've been |
| // disallowed before here, so this unwrap is safe. |
| ty::TyInt(i) => (Style::Int(true), i.bit_width().unwrap()), |
| ty::TyUint(u) => (Style::Int(false), u.bit_width().unwrap()), |
| ty::TyFloat(f) => (Style::Float, f.bit_width()), |
| _ => (Style::Unsupported, 0) |
| }; |
| let (out_style, out_width) = match out_elem.sty { |
| ty::TyInt(i) => (Style::Int(true), i.bit_width().unwrap()), |
| ty::TyUint(u) => (Style::Int(false), u.bit_width().unwrap()), |
| ty::TyFloat(f) => (Style::Float, f.bit_width()), |
| _ => (Style::Unsupported, 0) |
| }; |
| |
| match (in_style, out_style) { |
| (Style::Int(in_is_signed), Style::Int(_)) => { |
| return Ok(match in_width.cmp(&out_width) { |
| Ordering::Greater => bx.trunc(args[0].immediate(), llret_ty), |
| Ordering::Equal => args[0].immediate(), |
| Ordering::Less => if in_is_signed { |
| bx.sext(args[0].immediate(), llret_ty) |
| } else { |
| bx.zext(args[0].immediate(), llret_ty) |
| } |
| }) |
| } |
| (Style::Int(in_is_signed), Style::Float) => { |
| return Ok(if in_is_signed { |
| bx.sitofp(args[0].immediate(), llret_ty) |
| } else { |
| bx.uitofp(args[0].immediate(), llret_ty) |
| }) |
| } |
| (Style::Float, Style::Int(out_is_signed)) => { |
| return Ok(if out_is_signed { |
| bx.fptosi(args[0].immediate(), llret_ty) |
| } else { |
| bx.fptoui(args[0].immediate(), llret_ty) |
| }) |
| } |
| (Style::Float, Style::Float) => { |
| return Ok(match in_width.cmp(&out_width) { |
| Ordering::Greater => bx.fptrunc(args[0].immediate(), llret_ty), |
| Ordering::Equal => args[0].immediate(), |
| Ordering::Less => bx.fpext(args[0].immediate(), llret_ty) |
| }) |
| } |
| _ => {/* Unsupported. Fallthrough. */} |
| } |
| require!(false, |
| "unsupported cast from `{}` with element `{}` to `{}` with element `{}`", |
| in_ty, in_elem, |
| ret_ty, out_elem); |
| } |
| macro_rules! arith { |
| ($($name: ident: $($($p: ident),* => $call: ident),*;)*) => { |
| $(if name == stringify!($name) { |
| match in_elem.sty { |
| $($(ty::$p(_))|* => { |
| return Ok(bx.$call(args[0].immediate(), args[1].immediate())) |
| })* |
| _ => {}, |
| } |
| require!(false, |
| "unsupported operation on `{}` with element `{}`", |
| in_ty, |
| in_elem) |
| })* |
| } |
| } |
| arith! { |
| simd_add: TyUint, TyInt => add, TyFloat => fadd; |
| simd_sub: TyUint, TyInt => sub, TyFloat => fsub; |
| simd_mul: TyUint, TyInt => mul, TyFloat => fmul; |
| simd_div: TyUint => udiv, TyInt => sdiv, TyFloat => fdiv; |
| simd_rem: TyUint => urem, TyInt => srem, TyFloat => frem; |
| simd_shl: TyUint, TyInt => shl; |
| simd_shr: TyUint => lshr, TyInt => ashr; |
| simd_and: TyUint, TyInt => and; |
| simd_or: TyUint, TyInt => or; |
| simd_xor: TyUint, TyInt => xor; |
| simd_fmax: TyFloat => maxnum; |
| simd_fmin: TyFloat => minnum; |
| } |
| span_bug!(span, "unknown SIMD intrinsic"); |
| } |
| |
| // Returns the width of an int Ty, and if it's signed or not |
| // Returns None if the type is not an integer |
| // FIXME: there’s multiple of this functions, investigate using some of the already existing |
| // stuffs. |
| fn int_type_width_signed(ty: Ty, cx: &CodegenCx) -> Option<(u64, bool)> { |
| match ty.sty { |
| ty::TyInt(t) => Some((match t { |
| ast::IntTy::Isize => { |
| match &cx.tcx.sess.target.target.target_pointer_width[..] { |
| "16" => 16, |
| "32" => 32, |
| "64" => 64, |
| tws => bug!("Unsupported target word size for isize: {}", tws), |
| } |
| }, |
| ast::IntTy::I8 => 8, |
| ast::IntTy::I16 => 16, |
| ast::IntTy::I32 => 32, |
| ast::IntTy::I64 => 64, |
| ast::IntTy::I128 => 128, |
| }, true)), |
| ty::TyUint(t) => Some((match t { |
| ast::UintTy::Usize => { |
| match &cx.tcx.sess.target.target.target_pointer_width[..] { |
| "16" => 16, |
| "32" => 32, |
| "64" => 64, |
| tws => bug!("Unsupported target word size for usize: {}", tws), |
| } |
| }, |
| ast::UintTy::U8 => 8, |
| ast::UintTy::U16 => 16, |
| ast::UintTy::U32 => 32, |
| ast::UintTy::U64 => 64, |
| ast::UintTy::U128 => 128, |
| }, false)), |
| _ => None, |
| } |
| } |
| |
| // Returns the width of a float TypeVariant |
| // Returns None if the type is not a float |
| fn float_type_width<'tcx>(sty: &ty::TypeVariants<'tcx>) |
| -> Option<u64> { |
| use rustc::ty::TyFloat; |
| match *sty { |
| TyFloat(t) => Some(match t { |
| ast::FloatTy::F32 => 32, |
| ast::FloatTy::F64 => 64, |
| }), |
| _ => None, |
| } |
| } |