| // Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! # Token Streams |
| //! |
| //! TokenStreams represent syntactic objects before they are converted into ASTs. |
| //! A `TokenStream` is, roughly speaking, a sequence (eg stream) of `TokenTree`s, |
| //! which are themselves either a single Token, a Delimited subsequence of tokens, |
| //! or a SequenceRepetition specifier (for the purpose of sequence generation during macro |
| //! expansion). |
| //! |
| //! ## Ownership |
| //! TokenStreams are persistant data structures construced as ropes with reference |
| //! counted-children. In general, this means that calling an operation on a TokenStream |
| //! (such as `slice`) produces an entirely new TokenStream from the borrowed reference to |
| //! the original. This essentially coerces TokenStreams into 'views' of their subparts, |
| //! and a borrowed TokenStream is sufficient to build an owned TokenStream without taking |
| //! ownership of the original. |
| |
| use ast::{self, AttrStyle, LitKind}; |
| use syntax_pos::{Span, DUMMY_SP, NO_EXPANSION}; |
| use codemap::{Spanned, combine_spans}; |
| use ext::base; |
| use ext::tt::macro_parser; |
| use parse::lexer::comments::{doc_comment_style, strip_doc_comment_decoration}; |
| use parse::lexer; |
| use parse; |
| use parse::token::{self, Token, Lit, Nonterminal}; |
| use print::pprust; |
| use symbol::{self, Symbol}; |
| |
| use std::fmt; |
| use std::iter::*; |
| use std::ops::{self, Index}; |
| use std::rc::Rc; |
| |
| /// A delimited sequence of token trees |
| #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] |
| pub struct Delimited { |
| /// The type of delimiter |
| pub delim: token::DelimToken, |
| /// The span covering the opening delimiter |
| pub open_span: Span, |
| /// The delimited sequence of token trees |
| pub tts: Vec<TokenTree>, |
| /// The span covering the closing delimiter |
| pub close_span: Span, |
| } |
| |
| impl Delimited { |
| /// Returns the opening delimiter as a token. |
| pub fn open_token(&self) -> token::Token { |
| token::OpenDelim(self.delim) |
| } |
| |
| /// Returns the closing delimiter as a token. |
| pub fn close_token(&self) -> token::Token { |
| token::CloseDelim(self.delim) |
| } |
| |
| /// Returns the opening delimiter as a token tree. |
| pub fn open_tt(&self) -> TokenTree { |
| TokenTree::Token(self.open_span, self.open_token()) |
| } |
| |
| /// Returns the closing delimiter as a token tree. |
| pub fn close_tt(&self) -> TokenTree { |
| TokenTree::Token(self.close_span, self.close_token()) |
| } |
| |
| /// Returns the token trees inside the delimiters. |
| pub fn subtrees(&self) -> &[TokenTree] { |
| &self.tts |
| } |
| } |
| |
| /// A sequence of token trees |
| #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)] |
| pub struct SequenceRepetition { |
| /// The sequence of token trees |
| pub tts: Vec<TokenTree>, |
| /// The optional separator |
| pub separator: Option<token::Token>, |
| /// Whether the sequence can be repeated zero (*), or one or more times (+) |
| pub op: KleeneOp, |
| /// The number of `MatchNt`s that appear in the sequence (and subsequences) |
| pub num_captures: usize, |
| } |
| |
| /// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star) |
| /// for token sequences. |
| #[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)] |
| pub enum KleeneOp { |
| ZeroOrMore, |
| OneOrMore, |
| } |
| |
| /// When the main rust parser encounters a syntax-extension invocation, it |
| /// parses the arguments to the invocation as a token-tree. This is a very |
| /// loose structure, such that all sorts of different AST-fragments can |
| /// be passed to syntax extensions using a uniform type. |
| /// |
| /// If the syntax extension is an MBE macro, it will attempt to match its |
| /// LHS token tree against the provided token tree, and if it finds a |
| /// match, will transcribe the RHS token tree, splicing in any captured |
| /// macro_parser::matched_nonterminals into the `SubstNt`s it finds. |
| /// |
| /// The RHS of an MBE macro is the only place `SubstNt`s are substituted. |
| /// Nothing special happens to misnamed or misplaced `SubstNt`s. |
| #[derive(Debug, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)] |
| pub enum TokenTree { |
| /// A single token |
| Token(Span, token::Token), |
| /// A delimited sequence of token trees |
| Delimited(Span, Rc<Delimited>), |
| |
| // This only makes sense in MBE macros. |
| /// A kleene-style repetition sequence with a span |
| Sequence(Span, Rc<SequenceRepetition>), |
| } |
| |
| impl TokenTree { |
| pub fn len(&self) -> usize { |
| match *self { |
| TokenTree::Token(_, token::DocComment(name)) => { |
| match doc_comment_style(&name.as_str()) { |
| AttrStyle::Outer => 2, |
| AttrStyle::Inner => 3, |
| } |
| } |
| TokenTree::Token(_, token::Interpolated(ref nt)) => { |
| if let Nonterminal::NtTT(..) = **nt { 1 } else { 0 } |
| }, |
| TokenTree::Token(_, token::MatchNt(..)) => 3, |
| TokenTree::Delimited(_, ref delimed) => delimed.tts.len() + 2, |
| TokenTree::Sequence(_, ref seq) => seq.tts.len(), |
| TokenTree::Token(..) => 0, |
| } |
| } |
| |
| pub fn get_tt(&self, index: usize) -> TokenTree { |
| match (self, index) { |
| (&TokenTree::Token(sp, token::DocComment(_)), 0) => TokenTree::Token(sp, token::Pound), |
| (&TokenTree::Token(sp, token::DocComment(name)), 1) |
| if doc_comment_style(&name.as_str()) == AttrStyle::Inner => { |
| TokenTree::Token(sp, token::Not) |
| } |
| (&TokenTree::Token(sp, token::DocComment(name)), _) => { |
| let stripped = strip_doc_comment_decoration(&name.as_str()); |
| |
| // Searches for the occurrences of `"#*` and returns the minimum number of `#`s |
| // required to wrap the text. |
| let num_of_hashes = stripped.chars() |
| .scan(0, |cnt, x| { |
| *cnt = if x == '"' { |
| 1 |
| } else if *cnt != 0 && x == '#' { |
| *cnt + 1 |
| } else { |
| 0 |
| }; |
| Some(*cnt) |
| }) |
| .max() |
| .unwrap_or(0); |
| |
| TokenTree::Delimited(sp, Rc::new(Delimited { |
| delim: token::Bracket, |
| open_span: sp, |
| tts: vec![TokenTree::Token(sp, token::Ident(ast::Ident::from_str("doc"))), |
| TokenTree::Token(sp, token::Eq), |
| TokenTree::Token(sp, token::Literal( |
| token::StrRaw(Symbol::intern(&stripped), num_of_hashes), None))], |
| close_span: sp, |
| })) |
| } |
| (&TokenTree::Delimited(_, ref delimed), _) => { |
| if index == 0 { |
| return delimed.open_tt(); |
| } |
| if index == delimed.tts.len() + 1 { |
| return delimed.close_tt(); |
| } |
| delimed.tts[index - 1].clone() |
| } |
| (&TokenTree::Token(sp, token::MatchNt(name, kind)), _) => { |
| let v = [TokenTree::Token(sp, token::SubstNt(name)), |
| TokenTree::Token(sp, token::Colon), |
| TokenTree::Token(sp, token::Ident(kind))]; |
| v[index].clone() |
| } |
| (&TokenTree::Sequence(_, ref seq), _) => seq.tts[index].clone(), |
| _ => panic!("Cannot expand a token tree"), |
| } |
| } |
| |
| /// Returns the `Span` corresponding to this token tree. |
| pub fn get_span(&self) -> Span { |
| match *self { |
| TokenTree::Token(span, _) => span, |
| TokenTree::Delimited(span, _) => span, |
| TokenTree::Sequence(span, _) => span, |
| } |
| } |
| |
| /// Use this token tree as a matcher to parse given tts. |
| pub fn parse(cx: &base::ExtCtxt, |
| mtch: &[TokenTree], |
| tts: &[TokenTree]) |
| -> macro_parser::NamedParseResult { |
| let diag = &cx.parse_sess().span_diagnostic; |
| // `None` is because we're not interpolating |
| let arg_rdr = lexer::new_tt_reader(diag, None, tts.iter().cloned().collect()); |
| macro_parser::parse(cx.parse_sess(), arg_rdr, mtch) |
| } |
| |
| /// Check if this TokenTree is equal to the other, regardless of span information. |
| pub fn eq_unspanned(&self, other: &TokenTree) -> bool { |
| match (self, other) { |
| (&TokenTree::Token(_, ref tk), &TokenTree::Token(_, ref tk2)) => tk == tk2, |
| (&TokenTree::Delimited(_, ref dl), &TokenTree::Delimited(_, ref dl2)) => { |
| (*dl).delim == (*dl2).delim && dl.tts.len() == dl2.tts.len() && |
| { |
| for (tt1, tt2) in dl.tts.iter().zip(dl2.tts.iter()) { |
| if !tt1.eq_unspanned(tt2) { |
| return false; |
| } |
| } |
| true |
| } |
| } |
| (_, _) => false, |
| } |
| } |
| |
| /// Retrieve the TokenTree's span. |
| pub fn span(&self) -> Span { |
| match *self { |
| TokenTree::Token(sp, _) | |
| TokenTree::Delimited(sp, _) | |
| TokenTree::Sequence(sp, _) => sp, |
| } |
| } |
| |
| /// Indicates if the stream is a token that is equal to the provided token. |
| pub fn eq_token(&self, t: Token) -> bool { |
| match *self { |
| TokenTree::Token(_, ref tk) => *tk == t, |
| _ => false, |
| } |
| } |
| |
| /// Indicates if the token is an identifier. |
| pub fn is_ident(&self) -> bool { |
| self.maybe_ident().is_some() |
| } |
| |
| /// Returns an identifier. |
| pub fn maybe_ident(&self) -> Option<ast::Ident> { |
| match *self { |
| TokenTree::Token(_, Token::Ident(t)) => Some(t.clone()), |
| TokenTree::Delimited(_, ref dl) => { |
| let tts = dl.subtrees(); |
| if tts.len() != 1 { |
| return None; |
| } |
| tts[0].maybe_ident() |
| } |
| _ => None, |
| } |
| } |
| |
| /// Returns a Token literal. |
| pub fn maybe_lit(&self) -> Option<token::Lit> { |
| match *self { |
| TokenTree::Token(_, Token::Literal(l, _)) => Some(l.clone()), |
| TokenTree::Delimited(_, ref dl) => { |
| let tts = dl.subtrees(); |
| if tts.len() != 1 { |
| return None; |
| } |
| tts[0].maybe_lit() |
| } |
| _ => None, |
| } |
| } |
| |
| /// Returns an AST string literal. |
| pub fn maybe_str(&self) -> Option<ast::Lit> { |
| match *self { |
| TokenTree::Token(sp, Token::Literal(Lit::Str_(s), _)) => { |
| let l = LitKind::Str(symbol::intern_and_get_ident(&parse::str_lit(&s.as_str())), |
| ast::StrStyle::Cooked); |
| Some(Spanned { |
| node: l, |
| span: sp, |
| }) |
| } |
| TokenTree::Token(sp, Token::Literal(Lit::StrRaw(s, n), _)) => { |
| let l = LitKind::Str(symbol::intern_and_get_ident(&parse::raw_str_lit(&s.as_str())), |
| ast::StrStyle::Raw(n)); |
| Some(Spanned { |
| node: l, |
| span: sp, |
| }) |
| } |
| _ => None, |
| } |
| } |
| } |
| |
| /// #Token Streams |
| /// |
| /// TokenStreams are a syntactic abstraction over TokenTrees. The goal is for procedural |
| /// macros to work over TokenStreams instead of arbitrary syntax. For now, however, we |
| /// are going to cut a few corners (i.e., use some of the AST structure) when we need to |
| /// for backwards compatibility. |
| |
| /// TokenStreams are collections of TokenTrees that represent a syntactic structure. The |
| /// struct itself shouldn't be directly manipulated; the internal structure is not stable, |
| /// and may be changed at any time in the future. The operators will not, however (except |
| /// for signatures, later on). |
| #[derive(Clone, Eq, Hash, RustcEncodable, RustcDecodable)] |
| pub struct TokenStream { |
| ts: InternalTS, |
| } |
| |
| // This indicates the maximum size for a leaf in the concatenation algorithm. |
| // If two leafs will be collectively smaller than this, they will be merged. |
| // If a leaf is larger than this, it will be concatenated at the top. |
| const LEAF_SIZE : usize = 32; |
| |
| // NB If Leaf access proves to be slow, inroducing a secondary Leaf without the bounds |
| // for unsliced Leafs may lead to some performance improvemenet. |
| #[derive(Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)] |
| pub enum InternalTS { |
| Empty(Span), |
| Leaf { |
| tts: Rc<Vec<TokenTree>>, |
| offset: usize, |
| len: usize, |
| sp: Span, |
| }, |
| Node { |
| left: Rc<InternalTS>, |
| right: Rc<InternalTS>, |
| len: usize, |
| sp: Span, |
| }, |
| } |
| |
| impl fmt::Debug for TokenStream { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| self.ts.fmt(f) |
| } |
| } |
| |
| impl fmt::Debug for InternalTS { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| match *self { |
| InternalTS::Empty(..) => Ok(()), |
| InternalTS::Leaf { ref tts, offset, len, .. } => { |
| for t in tts.iter().skip(offset).take(len) { |
| try!(write!(f, "{:?}", t)); |
| } |
| Ok(()) |
| } |
| InternalTS::Node { ref left, ref right, .. } => { |
| try!(left.fmt(f)); |
| right.fmt(f) |
| } |
| } |
| } |
| } |
| |
| /// Checks if two TokenStreams are equivalent (including spans). For unspanned |
| /// equality, see `eq_unspanned`. |
| impl PartialEq<TokenStream> for TokenStream { |
| fn eq(&self, other: &TokenStream) -> bool { |
| self.iter().eq(other.iter()) |
| } |
| } |
| |
| // NB this will disregard gaps. if we have [a|{2,5} , b|{11,13}], the resultant span |
| // will be at {2,13}. Without finer-grained span structures, however, this seems to be |
| // our only recourse. |
| // FIXME Do something smarter to compute the expansion id. |
| fn covering_span(trees: &[TokenTree]) -> Span { |
| // disregard any dummy spans we have |
| let trees = trees.iter().filter(|t| t.span() != DUMMY_SP).collect::<Vec<&TokenTree>>(); |
| |
| // if we're out of spans, stop |
| if trees.len() < 1 { |
| return DUMMY_SP; |
| } |
| |
| // set up the initial values |
| let fst_span = trees[0].span(); |
| |
| let mut lo_span = fst_span.lo; |
| let mut hi_span = fst_span.hi; |
| let mut expn_id = fst_span.expn_id; |
| |
| // compute the spans iteratively |
| for t in trees.iter().skip(1) { |
| let sp = t.span(); |
| if sp.lo < lo_span { |
| lo_span = sp.lo; |
| } |
| if hi_span < sp.hi { |
| hi_span = sp.hi; |
| } |
| if expn_id != sp.expn_id { |
| expn_id = NO_EXPANSION; |
| } |
| } |
| |
| Span { |
| lo: lo_span, |
| hi: hi_span, |
| expn_id: expn_id, |
| } |
| } |
| |
| impl InternalTS { |
| fn len(&self) -> usize { |
| match *self { |
| InternalTS::Empty(..) => 0, |
| InternalTS::Leaf { len, .. } => len, |
| InternalTS::Node { len, .. } => len, |
| } |
| } |
| |
| fn span(&self) -> Span { |
| match *self { |
| InternalTS::Empty(sp) | |
| InternalTS::Leaf { sp, .. } | |
| InternalTS::Node { sp, .. } => sp, |
| } |
| } |
| |
| fn slice(&self, range: ops::Range<usize>) -> TokenStream { |
| let from = range.start; |
| let to = range.end; |
| if from == to { |
| return TokenStream::mk_empty(); |
| } |
| if from > to { |
| panic!("Invalid range: {} to {}", from, to); |
| } |
| if from == 0 && to == self.len() { |
| return TokenStream { ts: self.clone() }; /* should be cheap */ |
| } |
| match *self { |
| InternalTS::Empty(..) => panic!("Invalid index"), |
| InternalTS::Leaf { ref tts, offset, .. } => { |
| let offset = offset + from; |
| let len = to - from; |
| TokenStream::mk_sub_leaf(tts.clone(), |
| offset, |
| len, |
| covering_span(&tts[offset..offset + len])) |
| } |
| InternalTS::Node { ref left, ref right, .. } => { |
| let left_len = left.len(); |
| if to <= left_len { |
| left.slice(range) |
| } else if from >= left_len { |
| right.slice(from - left_len..to - left_len) |
| } else { |
| TokenStream::concat(left.slice(from..left_len), right.slice(0..to - left_len)) |
| } |
| } |
| } |
| } |
| |
| fn to_vec(&self) -> Vec<&TokenTree> { |
| let mut res = Vec::with_capacity(self.len()); |
| fn traverse_and_append<'a>(res: &mut Vec<&'a TokenTree>, ts: &'a InternalTS) { |
| match *ts { |
| InternalTS::Empty(..) => {}, |
| InternalTS::Leaf { ref tts, offset, len, .. } => { |
| let mut to_app = tts[offset..offset + len].iter().collect(); |
| res.append(&mut to_app); |
| } |
| InternalTS::Node { ref left, ref right, .. } => { |
| traverse_and_append(res, left); |
| traverse_and_append(res, right); |
| } |
| } |
| } |
| traverse_and_append(&mut res, self); |
| res |
| } |
| |
| fn to_tts(&self) -> Vec<TokenTree> { |
| self.to_vec().into_iter().cloned().collect::<Vec<TokenTree>>() |
| } |
| |
| // Returns an internal node's children. |
| fn children(&self) -> Option<(Rc<InternalTS>, Rc<InternalTS>)> { |
| match *self { |
| InternalTS::Node { ref left, ref right, .. } => Some((left.clone(), right.clone())), |
| _ => None, |
| } |
| } |
| } |
| |
| /// TokenStream operators include basic destructuring, boolean operations, `maybe_...` |
| /// operations, and `maybe_..._prefix` operations. Boolean operations are straightforward, |
| /// indicating information about the structure of the stream. The `maybe_...` operations |
| /// return `Some<...>` if the tokenstream contains the appropriate item. |
| /// |
| /// Similarly, the `maybe_..._prefix` operations potentially return a |
| /// partially-destructured stream as a pair where the first element is the expected item |
| /// and the second is the remainder of the stream. As anb example, |
| /// |
| /// `maybe_path_prefix("a::b::c(a,b,c).foo()") -> (a::b::c, "(a,b,c).foo()")` |
| impl TokenStream { |
| // Construct an empty node with a dummy span. |
| pub fn mk_empty() -> TokenStream { |
| TokenStream { ts: InternalTS::Empty(DUMMY_SP) } |
| } |
| |
| // Construct an empty node with the provided span. |
| fn mk_spanned_empty(sp: Span) -> TokenStream { |
| TokenStream { ts: InternalTS::Empty(sp) } |
| } |
| |
| // Construct a leaf node with a 0 offset and length equivalent to the input. |
| fn mk_leaf(tts: Rc<Vec<TokenTree>>, sp: Span) -> TokenStream { |
| let len = tts.len(); |
| TokenStream { |
| ts: InternalTS::Leaf { |
| tts: tts, |
| offset: 0, |
| len: len, |
| sp: sp, |
| }, |
| } |
| } |
| |
| // Construct a leaf node with the provided values. |
| fn mk_sub_leaf(tts: Rc<Vec<TokenTree>>, offset: usize, len: usize, sp: Span) -> TokenStream { |
| TokenStream { |
| ts: InternalTS::Leaf { |
| tts: tts, |
| offset: offset, |
| len: len, |
| sp: sp, |
| }, |
| } |
| } |
| |
| // Construct an internal node with the provided values. |
| fn mk_int_node(left: Rc<InternalTS>, |
| right: Rc<InternalTS>, |
| len: usize, |
| sp: Span) |
| -> TokenStream { |
| TokenStream { |
| ts: InternalTS::Node { |
| left: left, |
| right: right, |
| len: len, |
| sp: sp, |
| }, |
| } |
| } |
| |
| /// Convert a vector of `TokenTree`s into a `TokenStream`. |
| pub fn from_tts(trees: Vec<TokenTree>) -> TokenStream { |
| let span = covering_span(&trees[..]); |
| TokenStream::mk_leaf(Rc::new(trees), span) |
| } |
| |
| /// Convert a vector of Tokens into a TokenStream. |
| pub fn from_tokens(tokens: Vec<Token>) -> TokenStream { |
| // FIXME do something nicer with the spans |
| TokenStream::from_tts(tokens.into_iter().map(|t| TokenTree::Token(DUMMY_SP, t)).collect()) |
| } |
| |
| /// Manually change a TokenStream's span. |
| pub fn respan(self, span: Span) -> TokenStream { |
| match self.ts { |
| InternalTS::Empty(..) => TokenStream::mk_spanned_empty(span), |
| InternalTS::Leaf { tts, offset, len, .. } => { |
| TokenStream::mk_sub_leaf(tts, offset, len, span) |
| } |
| InternalTS::Node { left, right, len, .. } => { |
| TokenStream::mk_int_node(left, right, len, span) |
| } |
| } |
| } |
| |
| /// Concatenates two TokenStreams into a new TokenStream. |
| pub fn concat(left: TokenStream, right: TokenStream) -> TokenStream { |
| // This internal procedure performs 'aggressive compacting' during concatenation as |
| // follows: |
| // - If the nodes' combined total total length is less than 32, we copy both of |
| // them into a new vector and build a new leaf node. |
| // - If one node is an internal node and the other is a 'small' leaf (length<32), |
| // we recur down the internal node on the appropriate side. |
| // - Otherwise, we construct a new internal node that points to them as left and |
| // right. |
| fn concat_internal(left: Rc<InternalTS>, right: Rc<InternalTS>) -> TokenStream { |
| let llen = left.len(); |
| let rlen = right.len(); |
| let len = llen + rlen; |
| let span = combine_spans(left.span(), right.span()); |
| if len <= LEAF_SIZE { |
| let mut new_vec = left.to_tts(); |
| let mut rvec = right.to_tts(); |
| new_vec.append(&mut rvec); |
| return TokenStream::mk_leaf(Rc::new(new_vec), span); |
| } |
| |
| match (left.children(), right.children()) { |
| (Some((lleft, lright)), None) => { |
| if rlen <= LEAF_SIZE { |
| let new_right = concat_internal(lright, right); |
| TokenStream::mk_int_node(lleft, Rc::new(new_right.ts), len, span) |
| } else { |
| TokenStream::mk_int_node(left, right, len, span) |
| } |
| } |
| (None, Some((rleft, rright))) => { |
| if rlen <= LEAF_SIZE { |
| let new_left = concat_internal(left, rleft); |
| TokenStream::mk_int_node(Rc::new(new_left.ts), rright, len, span) |
| } else { |
| TokenStream::mk_int_node(left, right, len, span) |
| } |
| } |
| (_, _) => TokenStream::mk_int_node(left, right, len, span), |
| } |
| } |
| |
| if left.is_empty() { |
| right |
| } else if right.is_empty() { |
| left |
| } else { |
| concat_internal(Rc::new(left.ts), Rc::new(right.ts)) |
| } |
| } |
| |
| /// Indicate if the TokenStream is empty. |
| pub fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| /// Return a TokenStream's length. |
| pub fn len(&self) -> usize { |
| self.ts.len() |
| } |
| |
| /// Convert a TokenStream into a vector of borrowed TokenTrees. |
| pub fn to_vec(&self) -> Vec<&TokenTree> { |
| self.ts.to_vec() |
| } |
| |
| /// Convert a TokenStream into a vector of TokenTrees (by cloning the TokenTrees). |
| /// (This operation is an O(n) deep copy of the underlying structure.) |
| pub fn to_tts(&self) -> Vec<TokenTree> { |
| self.ts.to_tts() |
| } |
| |
| /// Return the TokenStream's span. |
| pub fn span(&self) -> Span { |
| self.ts.span() |
| } |
| |
| /// Returns an iterator over a TokenStream (as a sequence of TokenTrees). |
| pub fn iter<'a>(&self) -> Iter { |
| Iter { vs: self, idx: 0 } |
| } |
| |
| /// Splits a TokenStream based on the provided `&TokenTree -> bool` predicate. |
| pub fn split<P>(&self, pred: P) -> Split<P> |
| where P: FnMut(&TokenTree) -> bool |
| { |
| Split { |
| vs: self, |
| pred: pred, |
| finished: false, |
| idx: 0, |
| } |
| } |
| |
| /// Produce a slice of the input TokenStream from the `from` index, inclusive, to the |
| /// `to` index, non-inclusive. |
| pub fn slice(&self, range: ops::Range<usize>) -> TokenStream { |
| self.ts.slice(range) |
| } |
| |
| /// Slice starting at the provided index, inclusive. |
| pub fn slice_from(&self, from: ops::RangeFrom<usize>) -> TokenStream { |
| self.slice(from.start..self.len()) |
| } |
| |
| /// Slice up to the provided index, non-inclusive. |
| pub fn slice_to(&self, to: ops::RangeTo<usize>) -> TokenStream { |
| self.slice(0..to.end) |
| } |
| |
| /// Indicates where the stream is a single, delimited expression (e.g., `(a,b,c)` or |
| /// `{a,b,c}`). |
| pub fn is_delimited(&self) -> bool { |
| self.maybe_delimited().is_some() |
| } |
| |
| /// Returns the inside of the delimited term as a new TokenStream. |
| pub fn maybe_delimited(&self) -> Option<TokenStream> { |
| if !(self.len() == 1) { |
| return None; |
| } |
| |
| // FIXME It would be nice to change Delimited to move the Rc around the TokenTree |
| // vector directly in order to avoid the clone here. |
| match self[0] { |
| TokenTree::Delimited(_, ref rc) => Some(TokenStream::from_tts(rc.tts.clone())), |
| _ => None, |
| } |
| } |
| |
| /// Indicates if the stream is exactly one identifier. |
| pub fn is_ident(&self) -> bool { |
| self.maybe_ident().is_some() |
| } |
| |
| /// Returns an identifier |
| pub fn maybe_ident(&self) -> Option<ast::Ident> { |
| if !(self.len() == 1) { |
| return None; |
| } |
| |
| match self[0] { |
| TokenTree::Token(_, Token::Ident(t)) => Some(t), |
| _ => None, |
| } |
| } |
| |
| /// Compares two TokenStreams, checking equality without regarding span information. |
| pub fn eq_unspanned(&self, other: &TokenStream) -> bool { |
| for (t1, t2) in self.iter().zip(other.iter()) { |
| if !t1.eq_unspanned(t2) { |
| return false; |
| } |
| } |
| true |
| } |
| |
| /// Convert a vector of TokenTrees into a parentheses-delimited TokenStream. |
| pub fn as_delimited_stream(tts: Vec<TokenTree>, delim: token::DelimToken) -> TokenStream { |
| let new_sp = covering_span(&tts); |
| |
| let new_delim = Rc::new(Delimited { |
| delim: delim, |
| open_span: DUMMY_SP, |
| tts: tts, |
| close_span: DUMMY_SP, |
| }); |
| |
| TokenStream::from_tts(vec![TokenTree::Delimited(new_sp, new_delim)]) |
| } |
| } |
| |
| impl fmt::Display for TokenStream { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| f.write_str(&pprust::tts_to_string(&self.to_tts())) |
| } |
| } |
| |
| // FIXME Reimplement this iterator to hold onto a slice iterator for a leaf, getting the |
| // next leaf's iterator when the current one is exhausted. |
| pub struct Iter<'a> { |
| vs: &'a TokenStream, |
| idx: usize, |
| } |
| |
| impl<'a> Iterator for Iter<'a> { |
| type Item = &'a TokenTree; |
| |
| fn next(&mut self) -> Option<&'a TokenTree> { |
| if self.vs.is_empty() || self.idx >= self.vs.len() { |
| return None; |
| } |
| |
| let ret = Some(&self.vs[self.idx]); |
| self.idx = self.idx + 1; |
| ret |
| } |
| } |
| |
| pub struct Split<'a, P> |
| where P: FnMut(&TokenTree) -> bool |
| { |
| vs: &'a TokenStream, |
| pred: P, |
| finished: bool, |
| idx: usize, |
| } |
| |
| impl<'a, P> Iterator for Split<'a, P> |
| where P: FnMut(&TokenTree) -> bool |
| { |
| type Item = TokenStream; |
| |
| fn next(&mut self) -> Option<TokenStream> { |
| if self.finished { |
| return None; |
| } |
| if self.idx >= self.vs.len() { |
| self.finished = true; |
| return None; |
| } |
| |
| let mut lookup = self.vs.iter().skip(self.idx); |
| match lookup.position(|x| (self.pred)(&x)) { |
| None => { |
| self.finished = true; |
| Some(self.vs.slice_from(self.idx..)) |
| } |
| Some(edx) => { |
| let ret = Some(self.vs.slice(self.idx..self.idx + edx)); |
| self.idx += edx + 1; |
| ret |
| } |
| } |
| } |
| } |
| |
| impl Index<usize> for TokenStream { |
| type Output = TokenTree; |
| |
| fn index(&self, index: usize) -> &TokenTree { |
| &self.ts[index] |
| } |
| } |
| |
| impl Index<usize> for InternalTS { |
| type Output = TokenTree; |
| |
| fn index(&self, index: usize) -> &TokenTree { |
| if self.len() <= index { |
| panic!("Index {} too large for {:?}", index, self); |
| } |
| match *self { |
| InternalTS::Empty(..) => panic!("Invalid index"), |
| InternalTS::Leaf { ref tts, offset, .. } => tts.get(index + offset).unwrap(), |
| InternalTS::Node { ref left, ref right, .. } => { |
| let left_len = left.len(); |
| if index < left_len { |
| Index::index(&**left, index) |
| } else { |
| Index::index(&**right, index - left_len) |
| } |
| } |
| } |
| } |
| } |
| |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| use syntax_pos::{Span, BytePos, NO_EXPANSION, DUMMY_SP}; |
| use parse::token::{self, str_to_ident, Token}; |
| use util::parser_testing::string_to_tts; |
| use std::rc::Rc; |
| |
| fn sp(a: u32, b: u32) -> Span { |
| Span { |
| lo: BytePos(a), |
| hi: BytePos(b), |
| expn_id: NO_EXPANSION, |
| } |
| } |
| |
| fn as_paren_delimited_stream(tts: Vec<TokenTree>) -> TokenStream { |
| TokenStream::as_delimited_stream(tts, token::DelimToken::Paren) |
| } |
| |
| #[test] |
| fn test_concat() { |
| let test_res = TokenStream::from_tts(string_to_tts("foo::bar::baz".to_string())); |
| let test_fst = TokenStream::from_tts(string_to_tts("foo::bar".to_string())); |
| let test_snd = TokenStream::from_tts(string_to_tts("::baz".to_string())); |
| let eq_res = TokenStream::concat(test_fst, test_snd); |
| assert_eq!(test_res.len(), 5); |
| assert_eq!(eq_res.len(), 5); |
| assert_eq!(test_res.eq_unspanned(&eq_res), true); |
| } |
| |
| #[test] |
| fn test_from_to_bijection() { |
| let test_start = string_to_tts("foo::bar(baz)".to_string()); |
| let test_end = TokenStream::from_tts(string_to_tts("foo::bar(baz)".to_string())).to_tts(); |
| assert_eq!(test_start, test_end) |
| } |
| |
| #[test] |
| fn test_to_from_bijection() { |
| let test_start = TokenStream::from_tts(string_to_tts("foo::bar(baz)".to_string())); |
| let test_end = TokenStream::from_tts(test_start.clone().to_tts()); |
| assert_eq!(test_start, test_end) |
| } |
| |
| #[test] |
| fn test_eq_0() { |
| let test_res = TokenStream::from_tts(string_to_tts("foo".to_string())); |
| let test_eqs = TokenStream::from_tts(string_to_tts("foo".to_string())); |
| assert_eq!(test_res, test_eqs) |
| } |
| |
| #[test] |
| fn test_eq_1() { |
| let test_res = TokenStream::from_tts(string_to_tts("::bar::baz".to_string())); |
| let test_eqs = TokenStream::from_tts(string_to_tts("::bar::baz".to_string())); |
| assert_eq!(test_res, test_eqs) |
| } |
| |
| #[test] |
| fn test_eq_2() { |
| let test_res = TokenStream::from_tts(string_to_tts("foo::bar".to_string())); |
| let test_eqs = TokenStream::from_tts(string_to_tts("foo::bar::baz".to_string())); |
| assert_eq!(test_res, test_eqs.slice(0..3)) |
| } |
| |
| #[test] |
| fn test_eq_3() { |
| let test_res = TokenStream::from_tts(string_to_tts("".to_string())); |
| let test_eqs = TokenStream::from_tts(string_to_tts("".to_string())); |
| assert_eq!(test_res, test_eqs) |
| } |
| |
| #[test] |
| fn test_diseq_0() { |
| let test_res = TokenStream::from_tts(string_to_tts("::bar::baz".to_string())); |
| let test_eqs = TokenStream::from_tts(string_to_tts("bar::baz".to_string())); |
| assert_eq!(test_res == test_eqs, false) |
| } |
| |
| #[test] |
| fn test_diseq_1() { |
| let test_res = TokenStream::from_tts(string_to_tts("(bar,baz)".to_string())); |
| let test_eqs = TokenStream::from_tts(string_to_tts("bar,baz".to_string())); |
| assert_eq!(test_res == test_eqs, false) |
| } |
| |
| #[test] |
| fn test_slice_0() { |
| let test_res = TokenStream::from_tts(string_to_tts("foo::bar".to_string())); |
| let test_eqs = TokenStream::from_tts(string_to_tts("foo::bar::baz".to_string())); |
| assert_eq!(test_res, test_eqs.slice(0..3)) |
| } |
| |
| #[test] |
| fn test_slice_1() { |
| let test_res = TokenStream::from_tts(string_to_tts("foo::bar::baz".to_string())) |
| .slice(2..3); |
| let test_eqs = TokenStream::from_tts(vec![TokenTree::Token(sp(5,8), |
| token::Ident(str_to_ident("bar")))]); |
| assert_eq!(test_res, test_eqs) |
| } |
| |
| #[test] |
| fn test_is_empty() { |
| let test0 = TokenStream::from_tts(Vec::new()); |
| let test1 = TokenStream::from_tts(vec![TokenTree::Token(sp(0, 1), |
| Token::Ident(str_to_ident("a")))]); |
| let test2 = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string())); |
| |
| assert_eq!(test0.is_empty(), true); |
| assert_eq!(test1.is_empty(), false); |
| assert_eq!(test2.is_empty(), false); |
| } |
| |
| #[test] |
| fn test_is_delimited() { |
| let test0 = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string())); |
| let test1 = TokenStream::from_tts(string_to_tts("(bar::baz)".to_string())); |
| let test2 = TokenStream::from_tts(string_to_tts("(foo,bar,baz)".to_string())); |
| let test3 = TokenStream::from_tts(string_to_tts("(foo,bar,baz)(zab,rab,oof)".to_string())); |
| let test4 = TokenStream::from_tts(string_to_tts("(foo,bar,baz)foo".to_string())); |
| let test5 = TokenStream::from_tts(string_to_tts("".to_string())); |
| |
| assert_eq!(test0.is_delimited(), false); |
| assert_eq!(test1.is_delimited(), true); |
| assert_eq!(test2.is_delimited(), true); |
| assert_eq!(test3.is_delimited(), false); |
| assert_eq!(test4.is_delimited(), false); |
| assert_eq!(test5.is_delimited(), false); |
| } |
| |
| #[test] |
| fn test_is_ident() { |
| let test0 = TokenStream::from_tts(string_to_tts("\"foo\"".to_string())); |
| let test1 = TokenStream::from_tts(string_to_tts("5".to_string())); |
| let test2 = TokenStream::from_tts(string_to_tts("foo".to_string())); |
| let test3 = TokenStream::from_tts(string_to_tts("foo::bar".to_string())); |
| let test4 = TokenStream::from_tts(string_to_tts("foo(bar)".to_string())); |
| |
| assert_eq!(test0.is_ident(), false); |
| assert_eq!(test1.is_ident(), false); |
| assert_eq!(test2.is_ident(), true); |
| assert_eq!(test3.is_ident(), false); |
| assert_eq!(test4.is_ident(), false); |
| } |
| |
| #[test] |
| fn test_maybe_delimited() { |
| let test0_input = TokenStream::from_tts(string_to_tts("foo(bar::baz)".to_string())); |
| let test1_input = TokenStream::from_tts(string_to_tts("(bar::baz)".to_string())); |
| let test2_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)".to_string())); |
| let test3_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)(zab,rab)" |
| .to_string())); |
| let test4_input = TokenStream::from_tts(string_to_tts("(foo,bar,baz)foo".to_string())); |
| let test5_input = TokenStream::from_tts(string_to_tts("".to_string())); |
| |
| let test0 = test0_input.maybe_delimited(); |
| let test1 = test1_input.maybe_delimited(); |
| let test2 = test2_input.maybe_delimited(); |
| let test3 = test3_input.maybe_delimited(); |
| let test4 = test4_input.maybe_delimited(); |
| let test5 = test5_input.maybe_delimited(); |
| |
| assert_eq!(test0, None); |
| |
| let test1_expected = TokenStream::from_tts(vec![TokenTree::Token(sp(1, 4), |
| token::Ident(str_to_ident("bar"))), |
| TokenTree::Token(sp(4, 6), token::ModSep), |
| TokenTree::Token(sp(6, 9), |
| token::Ident(str_to_ident("baz")))]); |
| assert_eq!(test1, Some(test1_expected)); |
| |
| let test2_expected = TokenStream::from_tts(vec![TokenTree::Token(sp(1, 4), |
| token::Ident(str_to_ident("foo"))), |
| TokenTree::Token(sp(4, 5), token::Comma), |
| TokenTree::Token(sp(5, 8), |
| token::Ident(str_to_ident("bar"))), |
| TokenTree::Token(sp(8, 9), token::Comma), |
| TokenTree::Token(sp(9, 12), |
| token::Ident(str_to_ident("baz")))]); |
| assert_eq!(test2, Some(test2_expected)); |
| |
| assert_eq!(test3, None); |
| |
| assert_eq!(test4, None); |
| |
| assert_eq!(test5, None); |
| } |
| |
| // pub fn maybe_ident(&self) -> Option<ast::Ident> |
| #[test] |
| fn test_maybe_ident() { |
| let test0 = TokenStream::from_tts(string_to_tts("\"foo\"".to_string())).maybe_ident(); |
| let test1 = TokenStream::from_tts(string_to_tts("5".to_string())).maybe_ident(); |
| let test2 = TokenStream::from_tts(string_to_tts("foo".to_string())).maybe_ident(); |
| let test3 = TokenStream::from_tts(string_to_tts("foo::bar".to_string())).maybe_ident(); |
| let test4 = TokenStream::from_tts(string_to_tts("foo(bar)".to_string())).maybe_ident(); |
| |
| assert_eq!(test0, None); |
| assert_eq!(test1, None); |
| assert_eq!(test2, Some(str_to_ident("foo"))); |
| assert_eq!(test3, None); |
| assert_eq!(test4, None); |
| } |
| |
| #[test] |
| fn test_as_delimited_stream() { |
| let test0 = as_paren_delimited_stream(string_to_tts("foo,bar,".to_string())); |
| let test1 = as_paren_delimited_stream(string_to_tts("baz(foo,bar)".to_string())); |
| |
| let test0_tts = vec![TokenTree::Token(sp(0, 3), token::Ident(str_to_ident("foo"))), |
| TokenTree::Token(sp(3, 4), token::Comma), |
| TokenTree::Token(sp(4, 7), token::Ident(str_to_ident("bar"))), |
| TokenTree::Token(sp(7, 8), token::Comma)]; |
| let test0_stream = TokenStream::from_tts(vec![TokenTree::Delimited(sp(0, 8), |
| Rc::new(Delimited { |
| delim: token::DelimToken::Paren, |
| open_span: DUMMY_SP, |
| tts: test0_tts, |
| close_span: DUMMY_SP, |
| }))]); |
| |
| assert_eq!(test0, test0_stream); |
| |
| |
| let test1_tts = vec![TokenTree::Token(sp(4, 7), token::Ident(str_to_ident("foo"))), |
| TokenTree::Token(sp(7, 8), token::Comma), |
| TokenTree::Token(sp(8, 11), token::Ident(str_to_ident("bar")))]; |
| |
| let test1_parse = vec![TokenTree::Token(sp(0, 3), token::Ident(str_to_ident("baz"))), |
| TokenTree::Delimited(sp(3, 12), |
| Rc::new(Delimited { |
| delim: token::DelimToken::Paren, |
| open_span: sp(3, 4), |
| tts: test1_tts, |
| close_span: sp(11, 12), |
| }))]; |
| |
| let test1_stream = TokenStream::from_tts(vec![TokenTree::Delimited(sp(0, 12), |
| Rc::new(Delimited { |
| delim: token::DelimToken::Paren, |
| open_span: DUMMY_SP, |
| tts: test1_parse, |
| close_span: DUMMY_SP, |
| }))]); |
| |
| assert_eq!(test1, test1_stream); |
| } |
| } |