Egor Pasko | 167ac2b | 2010-05-18 12:26:51 | [diff] [blame^] | 1 | /* Implementation of the MAXLOC intrinsic |
| 2 | Copyright 2002, 2007, 2009 Free Software Foundation, Inc. |
| 3 | Contributed by Paul Brook <[email protected]> |
| 4 | |
| 5 | This file is part of the GNU Fortran 95 runtime library (libgfortran). |
| 6 | |
| 7 | Libgfortran is free software; you can redistribute it and/or |
| 8 | modify it under the terms of the GNU General Public |
| 9 | License as published by the Free Software Foundation; either |
| 10 | version 3 of the License, or (at your option) any later version. |
| 11 | |
| 12 | Libgfortran is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | Under Section 7 of GPL version 3, you are granted additional |
| 18 | permissions described in the GCC Runtime Library Exception, version |
| 19 | 3.1, as published by the Free Software Foundation. |
| 20 | |
| 21 | You should have received a copy of the GNU General Public License and |
| 22 | a copy of the GCC Runtime Library Exception along with this program; |
| 23 | see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 24 | <http://www.gnu.org/licenses/>. */ |
| 25 | |
| 26 | #include "libgfortran.h" |
| 27 | #include <stdlib.h> |
| 28 | #include <assert.h> |
| 29 | #include <limits.h> |
| 30 | |
| 31 | |
| 32 | #if defined (HAVE_GFC_INTEGER_8) && defined (HAVE_GFC_INTEGER_4) |
| 33 | |
| 34 | |
| 35 | extern void maxloc1_4_i8 (gfc_array_i4 * const restrict, |
| 36 | gfc_array_i8 * const restrict, const index_type * const restrict); |
| 37 | export_proto(maxloc1_4_i8); |
| 38 | |
| 39 | void |
| 40 | maxloc1_4_i8 (gfc_array_i4 * const restrict retarray, |
| 41 | gfc_array_i8 * const restrict array, |
| 42 | const index_type * const restrict pdim) |
| 43 | { |
| 44 | index_type count[GFC_MAX_DIMENSIONS]; |
| 45 | index_type extent[GFC_MAX_DIMENSIONS]; |
| 46 | index_type sstride[GFC_MAX_DIMENSIONS]; |
| 47 | index_type dstride[GFC_MAX_DIMENSIONS]; |
| 48 | const GFC_INTEGER_8 * restrict base; |
| 49 | GFC_INTEGER_4 * restrict dest; |
| 50 | index_type rank; |
| 51 | index_type n; |
| 52 | index_type len; |
| 53 | index_type delta; |
| 54 | index_type dim; |
| 55 | int continue_loop; |
| 56 | |
| 57 | /* Make dim zero based to avoid confusion. */ |
| 58 | dim = (*pdim) - 1; |
| 59 | rank = GFC_DESCRIPTOR_RANK (array) - 1; |
| 60 | |
| 61 | len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; |
| 62 | if (len < 0) |
| 63 | len = 0; |
| 64 | delta = array->dim[dim].stride; |
| 65 | |
| 66 | for (n = 0; n < dim; n++) |
| 67 | { |
| 68 | sstride[n] = array->dim[n].stride; |
| 69 | extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; |
| 70 | |
| 71 | if (extent[n] < 0) |
| 72 | extent[n] = 0; |
| 73 | } |
| 74 | for (n = dim; n < rank; n++) |
| 75 | { |
| 76 | sstride[n] = array->dim[n + 1].stride; |
| 77 | extent[n] = |
| 78 | array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; |
| 79 | |
| 80 | if (extent[n] < 0) |
| 81 | extent[n] = 0; |
| 82 | } |
| 83 | |
| 84 | if (retarray->data == NULL) |
| 85 | { |
| 86 | size_t alloc_size; |
| 87 | |
| 88 | for (n = 0; n < rank; n++) |
| 89 | { |
| 90 | retarray->dim[n].lbound = 0; |
| 91 | retarray->dim[n].ubound = extent[n]-1; |
| 92 | if (n == 0) |
| 93 | retarray->dim[n].stride = 1; |
| 94 | else |
| 95 | retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; |
| 96 | } |
| 97 | |
| 98 | retarray->offset = 0; |
| 99 | retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; |
| 100 | |
| 101 | alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride |
| 102 | * extent[rank-1]; |
| 103 | |
| 104 | if (alloc_size == 0) |
| 105 | { |
| 106 | /* Make sure we have a zero-sized array. */ |
| 107 | retarray->dim[0].lbound = 0; |
| 108 | retarray->dim[0].ubound = -1; |
| 109 | return; |
| 110 | } |
| 111 | else |
| 112 | retarray->data = internal_malloc_size (alloc_size); |
| 113 | } |
| 114 | else |
| 115 | { |
| 116 | if (rank != GFC_DESCRIPTOR_RANK (retarray)) |
| 117 | runtime_error ("rank of return array incorrect in" |
| 118 | " MAXLOC intrinsic: is %ld, should be %ld", |
| 119 | (long int) (GFC_DESCRIPTOR_RANK (retarray)), |
| 120 | (long int) rank); |
| 121 | |
| 122 | if (unlikely (compile_options.bounds_check)) |
| 123 | { |
| 124 | for (n=0; n < rank; n++) |
| 125 | { |
| 126 | index_type ret_extent; |
| 127 | |
| 128 | ret_extent = retarray->dim[n].ubound + 1 |
| 129 | - retarray->dim[n].lbound; |
| 130 | if (extent[n] != ret_extent) |
| 131 | runtime_error ("Incorrect extent in return value of" |
| 132 | " MAXLOC intrinsic in dimension %ld:" |
| 133 | " is %ld, should be %ld", (long int) n + 1, |
| 134 | (long int) ret_extent, (long int) extent[n]); |
| 135 | } |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | for (n = 0; n < rank; n++) |
| 140 | { |
| 141 | count[n] = 0; |
| 142 | dstride[n] = retarray->dim[n].stride; |
| 143 | if (extent[n] <= 0) |
| 144 | len = 0; |
| 145 | } |
| 146 | |
| 147 | base = array->data; |
| 148 | dest = retarray->data; |
| 149 | |
| 150 | continue_loop = 1; |
| 151 | while (continue_loop) |
| 152 | { |
| 153 | const GFC_INTEGER_8 * restrict src; |
| 154 | GFC_INTEGER_4 result; |
| 155 | src = base; |
| 156 | { |
| 157 | |
| 158 | GFC_INTEGER_8 maxval; |
| 159 | maxval = (-GFC_INTEGER_8_HUGE-1); |
| 160 | result = 0; |
| 161 | if (len <= 0) |
| 162 | *dest = 0; |
| 163 | else |
| 164 | { |
| 165 | for (n = 0; n < len; n++, src += delta) |
| 166 | { |
| 167 | |
| 168 | if (*src > maxval || !result) |
| 169 | { |
| 170 | maxval = *src; |
| 171 | result = (GFC_INTEGER_4)n + 1; |
| 172 | } |
| 173 | } |
| 174 | *dest = result; |
| 175 | } |
| 176 | } |
| 177 | /* Advance to the next element. */ |
| 178 | count[0]++; |
| 179 | base += sstride[0]; |
| 180 | dest += dstride[0]; |
| 181 | n = 0; |
| 182 | while (count[n] == extent[n]) |
| 183 | { |
| 184 | /* When we get to the end of a dimension, reset it and increment |
| 185 | the next dimension. */ |
| 186 | count[n] = 0; |
| 187 | /* We could precalculate these products, but this is a less |
| 188 | frequently used path so probably not worth it. */ |
| 189 | base -= sstride[n] * extent[n]; |
| 190 | dest -= dstride[n] * extent[n]; |
| 191 | n++; |
| 192 | if (n == rank) |
| 193 | { |
| 194 | /* Break out of the look. */ |
| 195 | continue_loop = 0; |
| 196 | break; |
| 197 | } |
| 198 | else |
| 199 | { |
| 200 | count[n]++; |
| 201 | base += sstride[n]; |
| 202 | dest += dstride[n]; |
| 203 | } |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | |
| 209 | extern void mmaxloc1_4_i8 (gfc_array_i4 * const restrict, |
| 210 | gfc_array_i8 * const restrict, const index_type * const restrict, |
| 211 | gfc_array_l1 * const restrict); |
| 212 | export_proto(mmaxloc1_4_i8); |
| 213 | |
| 214 | void |
| 215 | mmaxloc1_4_i8 (gfc_array_i4 * const restrict retarray, |
| 216 | gfc_array_i8 * const restrict array, |
| 217 | const index_type * const restrict pdim, |
| 218 | gfc_array_l1 * const restrict mask) |
| 219 | { |
| 220 | index_type count[GFC_MAX_DIMENSIONS]; |
| 221 | index_type extent[GFC_MAX_DIMENSIONS]; |
| 222 | index_type sstride[GFC_MAX_DIMENSIONS]; |
| 223 | index_type dstride[GFC_MAX_DIMENSIONS]; |
| 224 | index_type mstride[GFC_MAX_DIMENSIONS]; |
| 225 | GFC_INTEGER_4 * restrict dest; |
| 226 | const GFC_INTEGER_8 * restrict base; |
| 227 | const GFC_LOGICAL_1 * restrict mbase; |
| 228 | int rank; |
| 229 | int dim; |
| 230 | index_type n; |
| 231 | index_type len; |
| 232 | index_type delta; |
| 233 | index_type mdelta; |
| 234 | int mask_kind; |
| 235 | |
| 236 | dim = (*pdim) - 1; |
| 237 | rank = GFC_DESCRIPTOR_RANK (array) - 1; |
| 238 | |
| 239 | len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; |
| 240 | if (len <= 0) |
| 241 | return; |
| 242 | |
| 243 | mbase = mask->data; |
| 244 | |
| 245 | mask_kind = GFC_DESCRIPTOR_SIZE (mask); |
| 246 | |
| 247 | if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 |
| 248 | #ifdef HAVE_GFC_LOGICAL_16 |
| 249 | || mask_kind == 16 |
| 250 | #endif |
| 251 | ) |
| 252 | mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); |
| 253 | else |
| 254 | runtime_error ("Funny sized logical array"); |
| 255 | |
| 256 | delta = array->dim[dim].stride; |
| 257 | mdelta = mask->dim[dim].stride * mask_kind; |
| 258 | |
| 259 | for (n = 0; n < dim; n++) |
| 260 | { |
| 261 | sstride[n] = array->dim[n].stride; |
| 262 | mstride[n] = mask->dim[n].stride * mask_kind; |
| 263 | extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; |
| 264 | |
| 265 | if (extent[n] < 0) |
| 266 | extent[n] = 0; |
| 267 | |
| 268 | } |
| 269 | for (n = dim; n < rank; n++) |
| 270 | { |
| 271 | sstride[n] = array->dim[n + 1].stride; |
| 272 | mstride[n] = mask->dim[n + 1].stride * mask_kind; |
| 273 | extent[n] = |
| 274 | array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; |
| 275 | |
| 276 | if (extent[n] < 0) |
| 277 | extent[n] = 0; |
| 278 | } |
| 279 | |
| 280 | if (retarray->data == NULL) |
| 281 | { |
| 282 | size_t alloc_size; |
| 283 | |
| 284 | for (n = 0; n < rank; n++) |
| 285 | { |
| 286 | retarray->dim[n].lbound = 0; |
| 287 | retarray->dim[n].ubound = extent[n]-1; |
| 288 | if (n == 0) |
| 289 | retarray->dim[n].stride = 1; |
| 290 | else |
| 291 | retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; |
| 292 | } |
| 293 | |
| 294 | alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride |
| 295 | * extent[rank-1]; |
| 296 | |
| 297 | retarray->offset = 0; |
| 298 | retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; |
| 299 | |
| 300 | if (alloc_size == 0) |
| 301 | { |
| 302 | /* Make sure we have a zero-sized array. */ |
| 303 | retarray->dim[0].lbound = 0; |
| 304 | retarray->dim[0].ubound = -1; |
| 305 | return; |
| 306 | } |
| 307 | else |
| 308 | retarray->data = internal_malloc_size (alloc_size); |
| 309 | |
| 310 | } |
| 311 | else |
| 312 | { |
| 313 | if (rank != GFC_DESCRIPTOR_RANK (retarray)) |
| 314 | runtime_error ("rank of return array incorrect in MAXLOC intrinsic"); |
| 315 | |
| 316 | if (unlikely (compile_options.bounds_check)) |
| 317 | { |
| 318 | for (n=0; n < rank; n++) |
| 319 | { |
| 320 | index_type ret_extent; |
| 321 | |
| 322 | ret_extent = retarray->dim[n].ubound + 1 |
| 323 | - retarray->dim[n].lbound; |
| 324 | if (extent[n] != ret_extent) |
| 325 | runtime_error ("Incorrect extent in return value of" |
| 326 | " MAXLOC intrinsic in dimension %ld:" |
| 327 | " is %ld, should be %ld", (long int) n + 1, |
| 328 | (long int) ret_extent, (long int) extent[n]); |
| 329 | } |
| 330 | for (n=0; n<= rank; n++) |
| 331 | { |
| 332 | index_type mask_extent, array_extent; |
| 333 | |
| 334 | array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound; |
| 335 | mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound; |
| 336 | if (array_extent != mask_extent) |
| 337 | runtime_error ("Incorrect extent in MASK argument of" |
| 338 | " MAXLOC intrinsic in dimension %ld:" |
| 339 | " is %ld, should be %ld", (long int) n + 1, |
| 340 | (long int) mask_extent, (long int) array_extent); |
| 341 | } |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | for (n = 0; n < rank; n++) |
| 346 | { |
| 347 | count[n] = 0; |
| 348 | dstride[n] = retarray->dim[n].stride; |
| 349 | if (extent[n] <= 0) |
| 350 | return; |
| 351 | } |
| 352 | |
| 353 | dest = retarray->data; |
| 354 | base = array->data; |
| 355 | |
| 356 | while (base) |
| 357 | { |
| 358 | const GFC_INTEGER_8 * restrict src; |
| 359 | const GFC_LOGICAL_1 * restrict msrc; |
| 360 | GFC_INTEGER_4 result; |
| 361 | src = base; |
| 362 | msrc = mbase; |
| 363 | { |
| 364 | |
| 365 | GFC_INTEGER_8 maxval; |
| 366 | maxval = (-GFC_INTEGER_8_HUGE-1); |
| 367 | result = 0; |
| 368 | if (len <= 0) |
| 369 | *dest = 0; |
| 370 | else |
| 371 | { |
| 372 | for (n = 0; n < len; n++, src += delta, msrc += mdelta) |
| 373 | { |
| 374 | |
| 375 | if (*msrc && (*src > maxval || !result)) |
| 376 | { |
| 377 | maxval = *src; |
| 378 | result = (GFC_INTEGER_4)n + 1; |
| 379 | } |
| 380 | } |
| 381 | *dest = result; |
| 382 | } |
| 383 | } |
| 384 | /* Advance to the next element. */ |
| 385 | count[0]++; |
| 386 | base += sstride[0]; |
| 387 | mbase += mstride[0]; |
| 388 | dest += dstride[0]; |
| 389 | n = 0; |
| 390 | while (count[n] == extent[n]) |
| 391 | { |
| 392 | /* When we get to the end of a dimension, reset it and increment |
| 393 | the next dimension. */ |
| 394 | count[n] = 0; |
| 395 | /* We could precalculate these products, but this is a less |
| 396 | frequently used path so probably not worth it. */ |
| 397 | base -= sstride[n] * extent[n]; |
| 398 | mbase -= mstride[n] * extent[n]; |
| 399 | dest -= dstride[n] * extent[n]; |
| 400 | n++; |
| 401 | if (n == rank) |
| 402 | { |
| 403 | /* Break out of the look. */ |
| 404 | base = NULL; |
| 405 | break; |
| 406 | } |
| 407 | else |
| 408 | { |
| 409 | count[n]++; |
| 410 | base += sstride[n]; |
| 411 | mbase += mstride[n]; |
| 412 | dest += dstride[n]; |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | |
| 419 | extern void smaxloc1_4_i8 (gfc_array_i4 * const restrict, |
| 420 | gfc_array_i8 * const restrict, const index_type * const restrict, |
| 421 | GFC_LOGICAL_4 *); |
| 422 | export_proto(smaxloc1_4_i8); |
| 423 | |
| 424 | void |
| 425 | smaxloc1_4_i8 (gfc_array_i4 * const restrict retarray, |
| 426 | gfc_array_i8 * const restrict array, |
| 427 | const index_type * const restrict pdim, |
| 428 | GFC_LOGICAL_4 * mask) |
| 429 | { |
| 430 | index_type count[GFC_MAX_DIMENSIONS]; |
| 431 | index_type extent[GFC_MAX_DIMENSIONS]; |
| 432 | index_type sstride[GFC_MAX_DIMENSIONS]; |
| 433 | index_type dstride[GFC_MAX_DIMENSIONS]; |
| 434 | GFC_INTEGER_4 * restrict dest; |
| 435 | index_type rank; |
| 436 | index_type n; |
| 437 | index_type dim; |
| 438 | |
| 439 | |
| 440 | if (*mask) |
| 441 | { |
| 442 | maxloc1_4_i8 (retarray, array, pdim); |
| 443 | return; |
| 444 | } |
| 445 | /* Make dim zero based to avoid confusion. */ |
| 446 | dim = (*pdim) - 1; |
| 447 | rank = GFC_DESCRIPTOR_RANK (array) - 1; |
| 448 | |
| 449 | for (n = 0; n < dim; n++) |
| 450 | { |
| 451 | sstride[n] = array->dim[n].stride; |
| 452 | extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; |
| 453 | |
| 454 | if (extent[n] <= 0) |
| 455 | extent[n] = 0; |
| 456 | } |
| 457 | |
| 458 | for (n = dim; n < rank; n++) |
| 459 | { |
| 460 | sstride[n] = array->dim[n + 1].stride; |
| 461 | extent[n] = |
| 462 | array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; |
| 463 | |
| 464 | if (extent[n] <= 0) |
| 465 | extent[n] = 0; |
| 466 | } |
| 467 | |
| 468 | if (retarray->data == NULL) |
| 469 | { |
| 470 | size_t alloc_size; |
| 471 | |
| 472 | for (n = 0; n < rank; n++) |
| 473 | { |
| 474 | retarray->dim[n].lbound = 0; |
| 475 | retarray->dim[n].ubound = extent[n]-1; |
| 476 | if (n == 0) |
| 477 | retarray->dim[n].stride = 1; |
| 478 | else |
| 479 | retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; |
| 480 | } |
| 481 | |
| 482 | retarray->offset = 0; |
| 483 | retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; |
| 484 | |
| 485 | alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride |
| 486 | * extent[rank-1]; |
| 487 | |
| 488 | if (alloc_size == 0) |
| 489 | { |
| 490 | /* Make sure we have a zero-sized array. */ |
| 491 | retarray->dim[0].lbound = 0; |
| 492 | retarray->dim[0].ubound = -1; |
| 493 | return; |
| 494 | } |
| 495 | else |
| 496 | retarray->data = internal_malloc_size (alloc_size); |
| 497 | } |
| 498 | else |
| 499 | { |
| 500 | if (rank != GFC_DESCRIPTOR_RANK (retarray)) |
| 501 | runtime_error ("rank of return array incorrect in" |
| 502 | " MAXLOC intrinsic: is %ld, should be %ld", |
| 503 | (long int) (GFC_DESCRIPTOR_RANK (retarray)), |
| 504 | (long int) rank); |
| 505 | |
| 506 | if (unlikely (compile_options.bounds_check)) |
| 507 | { |
| 508 | for (n=0; n < rank; n++) |
| 509 | { |
| 510 | index_type ret_extent; |
| 511 | |
| 512 | ret_extent = retarray->dim[n].ubound + 1 |
| 513 | - retarray->dim[n].lbound; |
| 514 | if (extent[n] != ret_extent) |
| 515 | runtime_error ("Incorrect extent in return value of" |
| 516 | " MAXLOC intrinsic in dimension %ld:" |
| 517 | " is %ld, should be %ld", (long int) n + 1, |
| 518 | (long int) ret_extent, (long int) extent[n]); |
| 519 | } |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | for (n = 0; n < rank; n++) |
| 524 | { |
| 525 | count[n] = 0; |
| 526 | dstride[n] = retarray->dim[n].stride; |
| 527 | } |
| 528 | |
| 529 | dest = retarray->data; |
| 530 | |
| 531 | while(1) |
| 532 | { |
| 533 | *dest = 0; |
| 534 | count[0]++; |
| 535 | dest += dstride[0]; |
| 536 | n = 0; |
| 537 | while (count[n] == extent[n]) |
| 538 | { |
| 539 | /* When we get to the end of a dimension, reset it and increment |
| 540 | the next dimension. */ |
| 541 | count[n] = 0; |
| 542 | /* We could precalculate these products, but this is a less |
| 543 | frequently used path so probably not worth it. */ |
| 544 | dest -= dstride[n] * extent[n]; |
| 545 | n++; |
| 546 | if (n == rank) |
| 547 | return; |
| 548 | else |
| 549 | { |
| 550 | count[n]++; |
| 551 | dest += dstride[n]; |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | #endif |