
- MySQL - Home
- MySQL - Introduction
- MySQL - Features
- MySQL - Versions
- MySQL - Variables
- MySQL - Installation
- MySQL - Administration
- MySQL - PHP Syntax
- MySQL - Node.js Syntax
- MySQL - Java Syntax
- MySQL - Python Syntax
- MySQL - Connection
- MySQL - Workbench
- MySQL Databases
- MySQL - Create Database
- MySQL - Drop Database
- MySQL - Select Database
- MySQL - Show Database
- MySQL - Copy Database
- MySQL - Database Export
- MySQL - Database Import
- MySQL - Database Info
- MySQL Users
- MySQL - Create Users
- MySQL - Drop Users
- MySQL - Show Users
- MySQL - Change Password
- MySQL - Grant Privileges
- MySQL - Show Privileges
- MySQL - Revoke Privileges
- MySQL - Lock User Account
- MySQL - Unlock User Account
- MySQL Tables
- MySQL - Create Tables
- MySQL - Show Tables
- MySQL - Alter Tables
- MySQL - Rename Tables
- MySQL - Clone Tables
- MySQL - Truncate Tables
- MySQL - Temporary Tables
- MySQL - Repair Tables
- MySQL - Describe Tables
- MySQL - Add/Delete Columns
- MySQL - Show Columns
- MySQL - Rename Columns
- MySQL - Table Locking
- MySQL - Drop Tables
- MySQL - Derived Tables
- MySQL Queries
- MySQL - Queries
- MySQL - Constraints
- MySQL - Insert Query
- MySQL - Select Query
- MySQL - Update Query
- MySQL - Delete Query
- MySQL - Replace Query
- MySQL - Insert Ignore
- MySQL - Insert on Duplicate Key Update
- MySQL - Insert Into Select
- MySQL Indexes
- MySQL - Indexes
- MySQL - Create Index
- MySQL - Drop Index
- MySQL - Show Indexes
- MySQL - Unique Index
- MySQL - Clustered Index
- MySQL - Non-Clustered Index
- MySQL Operators and Clauses
- MySQL - Where Clause
- MySQL - Limit Clause
- MySQL - Distinct Clause
- MySQL - Order By Clause
- MySQL - Group By Clause
- MySQL - Having Clause
- MySQL - AND Operator
- MySQL - OR Operator
- MySQL - Like Operator
- MySQL - IN Operator
- MySQL - ANY Operator
- MySQL - EXISTS Operator
- MySQL - NOT Operator
- MySQL - NOT EQUAL Operator
- MySQL - IS NULL Operator
- MySQL - IS NOT NULL Operator
- MySQL - Between Operator
- MySQL - UNION Operator
- MySQL - UNION vs UNION ALL
- MySQL - MINUS Operator
- MySQL - INTERSECT Operator
- MySQL - INTERVAL Operator
- MySQL Joins
- MySQL - Using Joins
- MySQL - Inner Join
- MySQL - Left Join
- MySQL - Right Join
- MySQL - Cross Join
- MySQL - Full Join
- MySQL - Self Join
- MySQL - Delete Join
- MySQL - Update Join
- MySQL - Union vs Join
- MySQL Keys
- MySQL - Unique Key
- MySQL - Primary Key
- MySQL - Foreign Key
- MySQL - Composite Key
- MySQL - Alternate Key
- MySQL Triggers
- MySQL - Triggers
- MySQL - Create Trigger
- MySQL - Show Trigger
- MySQL - Drop Trigger
- MySQL - Before Insert Trigger
- MySQL - After Insert Trigger
- MySQL - Before Update Trigger
- MySQL - After Update Trigger
- MySQL - Before Delete Trigger
- MySQL - After Delete Trigger
- MySQL Data Types
- MySQL - Data Types
- MySQL - VARCHAR
- MySQL - BOOLEAN
- MySQL - ENUM
- MySQL - DECIMAL
- MySQL - INT
- MySQL - FLOAT
- MySQL - BIT
- MySQL - TINYINT
- MySQL - BLOB
- MySQL - SET
- MySQL Regular Expressions
- MySQL - Regular Expressions
- MySQL - RLIKE Operator
- MySQL - NOT LIKE Operator
- MySQL - NOT REGEXP Operator
- MySQL - regexp_instr() Function
- MySQL - regexp_like() Function
- MySQL - regexp_replace() Function
- MySQL - regexp_substr() Function
- MySQL Fulltext Search
- MySQL - Fulltext Search
- MySQL - Natural Language Fulltext Search
- MySQL - Boolean Fulltext Search
- MySQL - Query Expansion Fulltext Search
- MySQL - ngram Fulltext Parser
- MySQL Functions & Operators
- MySQL - Date and Time Functions
- MySQL - Arithmetic Operators
- MySQL - Numeric Functions
- MySQL - String Functions
- MySQL - Aggregate Functions
- MySQL Misc Concepts
- MySQL - NULL Values
- MySQL - Transactions
- MySQL - Using Sequences
- MySQL - Handling Duplicates
- MySQL - SQL Injection
- MySQL - SubQuery
- MySQL - Comments
- MySQL - Check Constraints
- MySQL - Storage Engines
- MySQL - Export Table into CSV File
- MySQL - Import CSV File into Database
- MySQL - UUID
- MySQL - Common Table Expressions
- MySQL - On Delete Cascade
- MySQL - Upsert
- MySQL - Horizontal Partitioning
- MySQL - Vertical Partitioning
- MySQL - Cursor
- MySQL - Stored Functions
- MySQL - Signal
- MySQL - Resignal
- MySQL - Character Set
- MySQL - Collation
- MySQL - Wildcards
- MySQL - Alias
- MySQL - ROLLUP
- MySQL - Today Date
- MySQL - Literals
- MySQL - Stored Procedure
- MySQL - Explain
- MySQL - JSON
- MySQL - Standard Deviation
- MySQL - Find Duplicate Records
- MySQL - Delete Duplicate Records
- MySQL - Select Random Records
- MySQL - Show Processlist
- MySQL - Change Column Type
- MySQL - Reset Auto-Increment
- MySQL - Coalesce() Function
MySQL - CONV() Function
The technique to represent and work with numbers is called number system. Decimal number system is the most common number system. Other popular number systems include binary number system, octal number system, hexadecimal number system, etc.
MySQL provides a set of functions to perform various numerical functions. The CONV() function of MYSQL is used to convert a given value from one number system to other and returns the result in the form of a string.
This function converts numbers between different number bases. Returns a string representation of the number N, converted from base from_base to base to_base. Returns NULL if any argument is NULL. The argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum base is 2 and the maximum base is 36. If from_base is a negative number, N is regarded as a signed number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.
Syntax
Following is the syntax of MySQL CONV() function −
CONV(N, from_base, to_base)
Parameters
This function accepts 3 parameters, they are −
N − the number you need to convert.
from_base − The current representation system of the given number.
to_base − The representation system to which you need to convert the given number.
Return Value
This function returns the number converted to the specified output base as a string.
Example
Following is the example of CONV() function, here it converts 25 from hexadecimal system to binary −
SELECT CONV(25, 16, 2) As Result;
Output
This will produce the following result −
Result |
---|
100101 |
Example
You can also pass the number to be converted as a string value −
SELECT CONV('8E', 18, 2) As Result;
Output
The output for the query above is produced as given below −
Result |
---|
10011110 |
Example
If any of the arguments passed is null this function returns a NULL value −
SELECT CONV('8E', 0, 2) As Result;
Output
This will produce the following result −
Result |
---|
NULL |
Example
If the argument from_base passed to this function, is a negative value the number (N) id considered as a signed number −
SELECT CONV('7F', -16, 10) As Result;
Output
The output for the query above is produced as given below −
4156456 * 56445 |
---|
127 |
Example
For the from_base and to_base values the minimum and maximum values are 2 and 36. If the given values are out of this range the CONV() function returns NULL −
SELECT CONV('7F', 0, 10) As Result;
Output
This will produce the following result −
Result |
---|
NULL |
Example
You can also convert the values of a columns from one representation system to other using the CONV() function. To do so, we create a table named CUSTOMERS using the query below −
CREATE TABLE CUSTOMERS ( ID INT AUTO_INCREMENT, NAME VARCHAR(20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25), SALARY DECIMAL (18, 2), PRIMARY KEY (ID) );
The following query inserts 7 records into the above created table −
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00 ), (2, 'Khilan', 25, 'Delhi', 1500.00 ), (3, 'Kaushik', 23, 'Kota', 2000.00 ), (4, 'Chaitali', 25, 'Mumbai', 6500.00 ), (5, 'Hardik', 27, 'Bhopal', 8500.00 ), (6, 'Komal', 22, 'Hyderabad', 4500.00 ), (7, 'Muffy', 24, 'Indore', 10000.00 );
Execute the below query to fetch all the inserted records in the CUSTOMERS table −
Select * From CUSTOMERS;
Following is the CUSTOMERS table −
ID | NAME | AGE | ADDRESS | SALARY |
---|---|---|---|---|
1 | Ramesh | 32 | Ahmedabad | 2000.00 |
2 | Khilan | 25 | Delhi | 1500.00 |
3 | Kaushik | 23 | Kota | 2000.00 |
4 | Chaitali | 25 | Mumbai | 6500.00 |
5 | Hardik | 27 | Bhopal | 8500.00 |
6 | Komal | 22 | Hyderabad | 4500.00 |
7 | Muffy | 24 | Indore | 10000.00 |
Now, let us use the CONV() function to convert the values of the SALARY column into binary −
Select NAME,AGE,ADDRESS,SALARY, CONV(SALARY, 10, 2) FROM CUSTOMERS;
The output for the query above is produced as given below −
NAME | AGE | ADDRESS | SALARY | CONV(SALARY, 10, 2) |
---|---|---|---|---|
Ramesh | 32 | Ahmedabad | 2000.00 | 11111010000 |
Khilan | 25 | Delhi | 1500.00 | 10111011100 |
Kaushik | 23 | Kota | 2000.00 | 11111010000 |
Chaitali | 25 | Mumbai | 6500.00 | 1100101100100 |
Hardik | 27 | Bhopal | 8500.00 | 10000100110100 |
Komal | 22 | Hyderabad | 4500.00 | 1000110010100 |
Muffy | 24 | Indore | 10000.00 | 10011100010000 |