Spark SQL合并小文件的一种方法

小文件问题原因:

spark.sql.shuffle.partitions=200
spark sql默认shuffle分区是200个,如果数据量比较小时,写hdfs时会产生200个小文件。可通过如下调整,使其自适应的合并小文件(本人测试环境从原来的200个小文件合并成一个文件)


控制输出文件的个数 DataFrame输出结果保存为文件时,尤其是根据某个条件分区时,可以控制输出文件的个数,从而减少小文件的个数

DataFrame..coalesce(1).write.format("parquet").mode(SaveMode.Overwrite).partitionBy("分区条件列名").save("路径")


下边方法作用不大

解决方法:

spark-sql> set spark.sql.adaptive.enabled=true;

启用 Adaptive Execution ,从而启用自动设置 Shuffle Reducer 特性

spark-sql> set spark.sql.adaptive.shuffle.targetPostShuffleInputSize=128000000;

设置每个 Reducer 读取的目标数据量,其单位是字节。默认64M,一般改成集群块大小

参考

sparksession.sqlContext.setConf("hive.merge.mapfiles","true")
sparksession.sqlContext.setConf("mapred.max.split.size","256000000")
sparksession.sqlContext.setConf("mapred.min.split.size.per.node","192000000")
sparksession.sqlContext.setConf("mapred.min.split.size.per.rack","192000000")
sparksession.sqlContext.setConf("hive.input.format","org.apache.hadoop.hive.ql.io.CombineHiveInputFormat")
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大怀特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值