| //===- TosaToLinalgNamed.cpp - Lowering Tosa to Linalg Named Ops ----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These rewriters lower from the Tosa to the Linalg named ops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Conversion/TosaToLinalg/TosaToLinalg.h" |
| #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" |
| #include "mlir/Dialect/Func/IR/FuncOps.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Math/IR/Math.h" |
| #include "mlir/Dialect/SCF/SCF.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Dialect/Tensor/Utils/Utils.h" |
| #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
| #include "mlir/Dialect/Tosa/Utils/CoversionUtils.h" |
| #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| |
| #include <numeric> |
| |
| using namespace mlir; |
| using namespace mlir::tosa; |
| |
| static mlir::Value applyPad(Location loc, Value input, ArrayRef<int64_t> pad, |
| Attribute padAttr, OpBuilder &rewriter) { |
| // Input should be padded if necessary. |
| if (llvm::all_of(pad, [](int64_t p) { return p == 0; })) |
| return input; |
| |
| ShapedType inputTy = input.getType().cast<ShapedType>(); |
| Type inputETy = inputTy.getElementType(); |
| auto inputShape = inputTy.getShape(); |
| |
| assert((inputShape.size() * 2) == pad.size()); |
| |
| SmallVector<int64_t, 4> paddedShape; |
| SmallVector<OpFoldResult, 8> lowIndices; |
| SmallVector<OpFoldResult, 8> highIndices; |
| for (int i = 0, s = inputShape.size(); i < s; i++) { |
| auto lowPad = pad[i * 2]; |
| auto highPad = pad[i * 2 + 1]; |
| paddedShape.push_back(inputShape[i] + highPad + lowPad); |
| lowIndices.push_back(rewriter.getIndexAttr(lowPad)); |
| highIndices.push_back(rewriter.getIndexAttr(highPad)); |
| } |
| |
| Value padValue = rewriter.create<arith::ConstantOp>(loc, padAttr); |
| |
| return tensor::createPadScalarOp(RankedTensorType::get(paddedShape, inputETy), |
| input, padValue, lowIndices, highIndices, |
| /*nofold=*/false, loc, rewriter) |
| .result(); |
| } |
| |
| namespace { |
| |
| class ConvConverter : public OpConversionPattern<tosa::Conv2DOp> { |
| public: |
| using OpConversionPattern<tosa::Conv2DOp>::OpConversionPattern; |
| LogicalResult |
| matchAndRewrite(tosa::Conv2DOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const final { |
| Location loc = op->getLoc(); |
| Value input = op->getOperand(0); |
| Value weight = op->getOperand(1); |
| Value bias = op->getOperand(2); |
| |
| ShapedType inputTy = input.getType().cast<ShapedType>(); |
| ShapedType weightTy = weight.getType().cast<ShapedType>(); |
| ShapedType biasTy = bias.getType().cast<ShapedType>(); |
| ShapedType resultTy = op->getResult(0).getType().cast<ShapedType>(); |
| |
| Type inputETy = inputTy.getElementType(); |
| Type resultETy = resultTy.getElementType(); |
| |
| auto padAttr = op->getAttr("pad").cast<ArrayAttr>(); |
| auto strideTosaAttr = op->getAttr("stride").cast<ArrayAttr>(); |
| auto dilationTosaAttr = op->getAttr("dilation").cast<ArrayAttr>(); |
| bool isQuantized = op->hasAttr("quantization_info"); |
| |
| if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape()) |
| return rewriter.notifyMatchFailure( |
| op, "tosa.conv ops require static shapes for weight and bias"); |
| |
| auto dynamicDimsOr = |
| checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); |
| if (!dynamicDimsOr.hasValue()) |
| return failure(); |
| SmallVector<Value> dynamicDims = dynamicDimsOr.getValue(); |
| |
| if (inputETy.isUnsignedInteger()) |
| return rewriter.notifyMatchFailure( |
| op, "tosa.conv ops does not support unsigned integer input"); |
| |
| auto weightShape = weightTy.getShape(); |
| |
| // Apply padding as necessary. |
| Attribute zeroAttr = rewriter.getZeroAttr(inputETy); |
| if (isQuantized) { |
| auto quantizationInfo = |
| op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>(); |
| auto iZp = quantizationInfo.input_zp().getValue().getSExtValue(); |
| |
| int64_t intMin = |
| APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth()) |
| .getSExtValue(); |
| int64_t intMax = |
| APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth()) |
| .getSExtValue(); |
| |
| if (iZp < intMin || iZp > intMax) |
| return rewriter.notifyMatchFailure( |
| op, "tosa.conv op quantization has zp outside of input range"); |
| |
| zeroAttr = rewriter.getIntegerAttr(inputETy, iZp); |
| } |
| |
| llvm::SmallVector<int64_t> pad; |
| pad.resize(2, 0); |
| getValuesFromIntArrayAttribute(padAttr, pad); |
| pad.resize(pad.size() + 2, 0); |
| input = applyPad(loc, input, pad, zeroAttr, rewriter); |
| |
| // Transpose the kernel to match dimension ordering of the linalg |
| // convolution operation. |
| // TODO(suderman): See if this can be efficiently folded - check whether |
| // the input is used anywhere else, if not fold the constant. |
| SmallVector<int64_t> weightPerm{1, 2, 3, 0}; |
| SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[2], |
| weightShape[3], weightShape[0]}; |
| auto weightPermAttr = DenseIntElementsAttr::get( |
| RankedTensorType::get({4}, rewriter.getI64Type()), weightPerm); |
| Value weightPermValue = |
| rewriter.create<arith::ConstantOp>(loc, weightPermAttr); |
| Type newWeightTy = |
| RankedTensorType::get(newWeightShape, weightTy.getElementType()); |
| weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight, |
| weightPermValue); |
| |
| Attribute resultZeroAttr = rewriter.getZeroAttr(resultETy); |
| Value initTensor = rewriter.create<linalg::InitTensorOp>( |
| loc, dynamicDims, resultTy.getShape(), resultETy); |
| Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr); |
| Value zeroTensor = |
| rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0); |
| |
| // Extract the attributes for convolution. |
| llvm::SmallVector<int64_t> stride, dilation; |
| getValuesFromIntArrayAttribute(strideTosaAttr, stride); |
| getValuesFromIntArrayAttribute(dilationTosaAttr, dilation); |
| |
| // Create the convolution op. |
| auto strideAttr = DenseIntElementsAttr::get( |
| RankedTensorType::get({2}, rewriter.getI64Type()), stride); |
| auto dilationAttr = DenseIntElementsAttr::get( |
| RankedTensorType::get({2}, rewriter.getI64Type()), dilation); |
| |
| // Create maps for the bias broadcasting |
| SmallVector<AffineMap, 4> indexingMaps; |
| indexingMaps.push_back(AffineMap::get( |
| /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0, |
| {rewriter.getAffineDimExpr(3)}, rewriter.getContext())); |
| indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank())); |
| indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank())); |
| |
| Value biasInitTensor = rewriter.create<linalg::InitTensorOp>( |
| loc, dynamicDims, resultTy.getShape(), resultETy); |
| |
| if (isQuantized) { |
| auto quantizationInfo = |
| op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>(); |
| auto iZp = rewriter.getI32IntegerAttr( |
| quantizationInfo.input_zp().getValue().getSExtValue()); |
| auto kZp = rewriter.getI32IntegerAttr( |
| quantizationInfo.weight_zp().getValue().getSExtValue()); |
| |
| auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp); |
| auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp); |
| Value conv = |
| rewriter |
| .create<linalg::Conv2DNhwcHwcfQOp>( |
| loc, resultTy, ValueRange{input, weight, iZpVal, kZpVal}, |
| ValueRange{zeroTensor}, strideAttr, dilationAttr) |
| ->getResult(0); |
| |
| Value result = |
| rewriter |
| .create<linalg::GenericOp>( |
| loc, resultTy, ValueRange({bias, conv}), biasInitTensor, |
| indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()), |
| [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| ValueRange args) { |
| Value added = nestedBuilder.create<arith::AddIOp>( |
| loc, args[0], args[1]); |
| nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| }) |
| .getResult(0); |
| rewriter.replaceOp(op, result); |
| return success(); |
| } |
| |
| Value conv = rewriter |
| .create<linalg::Conv2DNhwcHwcfOp>( |
| loc, resultTy, ValueRange{input, weight}, |
| ValueRange{zeroTensor}, strideAttr, dilationAttr) |
| ->getResult(0); |
| |
| Value result = |
| rewriter |
| .create<linalg::GenericOp>( |
| loc, resultTy, ValueRange({bias, conv}), biasInitTensor, |
| indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()), |
| [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| ValueRange args) { |
| Value added = nestedBuilder.create<arith::AddFOp>( |
| loc, args[0], args[1]); |
| nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| }) |
| .getResult(0); |
| |
| rewriter.replaceOp(op, result); |
| return success(); |
| } |
| }; |
| |
| class DepthwiseConvConverter |
| : public OpConversionPattern<tosa::DepthwiseConv2DOp> { |
| public: |
| using OpConversionPattern<tosa::DepthwiseConv2DOp>::OpConversionPattern; |
| LogicalResult |
| matchAndRewrite(tosa::DepthwiseConv2DOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const final { |
| Location loc = op->getLoc(); |
| Value input = op->getOperand(0); |
| Value weight = op->getOperand(1); |
| Value bias = op->getOperand(2); |
| |
| ShapedType inputTy = input.getType().cast<ShapedType>(); |
| ShapedType weightTy = weight.getType().cast<ShapedType>(); |
| ShapedType biasTy = bias.getType().cast<ShapedType>(); |
| ShapedType resultTy = op->getResult(0).getType().cast<ShapedType>(); |
| |
| Type inputETy = inputTy.getElementType(); |
| Type resultETy = resultTy.getElementType(); |
| |
| auto padAttr = op->getAttr("pad").cast<ArrayAttr>(); |
| auto strideTosaAttr = op->getAttr("stride").cast<ArrayAttr>(); |
| auto dilationTosaAttr = op->getAttr("dilation").cast<ArrayAttr>(); |
| |
| bool isQuantized = op->hasAttr("quantization_info"); |
| IntegerAttr iZp; |
| IntegerAttr kZp; |
| if (isQuantized) { |
| auto quantizationInfo = |
| op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>(); |
| iZp = rewriter.getI32IntegerAttr( |
| quantizationInfo.input_zp().getValue().getSExtValue()); |
| kZp = rewriter.getI32IntegerAttr( |
| quantizationInfo.weight_zp().getValue().getSExtValue()); |
| } |
| |
| if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape()) |
| return rewriter.notifyMatchFailure( |
| op, "tosa.depthwise_conv ops require static shapes"); |
| |
| auto dynamicDimsOr = |
| checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); |
| if (!dynamicDimsOr.hasValue()) |
| return failure(); |
| SmallVector<Value> dynamicDims = dynamicDimsOr.getValue(); |
| |
| auto weightShape = weightTy.getShape(); |
| auto resultShape = resultTy.getShape(); |
| |
| // Apply padding as necessary. |
| Attribute zeroAttr = rewriter.getZeroAttr(inputETy); |
| if (isQuantized) { |
| auto quantizationInfo = |
| op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>(); |
| auto iZp = quantizationInfo.input_zp().getValue().getSExtValue(); |
| |
| int64_t intMin = |
| APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth()) |
| .getSExtValue(); |
| int64_t intMax = |
| APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth()) |
| .getSExtValue(); |
| |
| if (iZp < intMin || iZp > intMax) |
| return rewriter.notifyMatchFailure( |
| op, "tosa.depthwise_conv op quantization has zp outside of input " |
| "range"); |
| |
| zeroAttr = rewriter.getIntegerAttr(inputETy, iZp); |
| } |
| |
| llvm::SmallVector<int64_t> pad; |
| pad.resize(2, 0); |
| getValuesFromIntArrayAttribute(padAttr, pad); |
| pad.resize(pad.size() + 2, 0); |
| |
| input = applyPad(loc, input, pad, zeroAttr, rewriter); |
| |
| // Extract the attributes for convolution. |
| llvm::SmallVector<int64_t> stride, dilation; |
| getValuesFromIntArrayAttribute(strideTosaAttr, stride); |
| getValuesFromIntArrayAttribute(dilationTosaAttr, dilation); |
| |
| // Create the convolution op. |
| auto strideAttr = DenseIntElementsAttr::get( |
| RankedTensorType::get({2}, rewriter.getI64Type()), stride); |
| auto dilationAttr = DenseIntElementsAttr::get( |
| RankedTensorType::get({2}, rewriter.getI64Type()), dilation); |
| ShapedType linalgConvTy = |
| RankedTensorType::get({resultShape[0], resultShape[1], resultShape[2], |
| weightShape[2], weightShape[3]}, |
| resultETy); |
| |
| // Broadcast the initial value to the output tensor before convolving. |
| SmallVector<AffineMap, 4> indexingMaps; |
| indexingMaps.push_back(AffineMap::get( |
| /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0, |
| {rewriter.getAffineDimExpr(3)}, rewriter.getContext())); |
| indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank())); |
| indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank())); |
| |
| Attribute resultZeroAttr = rewriter.getZeroAttr(resultETy); |
| Value initTensor = rewriter.create<linalg::InitTensorOp>( |
| loc, dynamicDims, linalgConvTy.getShape(), resultETy); |
| Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr); |
| Value zeroTensor = |
| rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0); |
| |
| Value biasInitTensor = rewriter.create<linalg::InitTensorOp>( |
| loc, dynamicDims, resultTy.getShape(), resultETy); |
| if (!isQuantized) { |
| Value conv = rewriter |
| .create<linalg::DepthwiseConv2DNhwcHwcmOp>( |
| loc, linalgConvTy, ValueRange{input, weight}, |
| ValueRange{zeroTensor}, strideAttr, dilationAttr) |
| .getResult(0); |
| Value convReshape = rewriter.create<tosa::ReshapeOp>( |
| loc, resultTy, conv, rewriter.getI64ArrayAttr(resultTy.getShape())); |
| Value result = |
| rewriter |
| .create<linalg::GenericOp>( |
| loc, resultTy, ValueRange({bias, convReshape}), |
| biasInitTensor, indexingMaps, |
| getNParallelLoopsAttrs(resultTy.getRank()), |
| [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| ValueRange args) { |
| Value added = nestedBuilder.create<arith::AddFOp>( |
| loc, args[0], args[1]); |
| nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| }) |
| .getResult(0); |
| rewriter.replaceOp(op, result); |
| } else { |
| auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp); |
| auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp); |
| Value conv = |
| rewriter |
| .create<linalg::DepthwiseConv2DNhwcHwcmQOp>( |
| loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal}, |
| ValueRange{zeroTensor}, strideAttr, dilationAttr) |
| .getResult(0); |
| Value convReshape = rewriter.create<tosa::ReshapeOp>( |
| loc, resultTy, conv, rewriter.getI64ArrayAttr(resultTy.getShape())); |
| Value result = |
| rewriter |
| .create<linalg::GenericOp>( |
| loc, resultTy, ValueRange({bias, convReshape}), |
| biasInitTensor, indexingMaps, |
| getNParallelLoopsAttrs(resultTy.getRank()), |
| [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| ValueRange args) { |
| Value added = nestedBuilder.create<arith::AddIOp>( |
| loc, args[0], args[1]); |
| nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| }) |
| .getResult(0); |
| rewriter.replaceOp(op, result); |
| } |
| return success(); |
| } |
| }; |
| |
| class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> { |
| public: |
| using OpConversionPattern<tosa::MatMulOp>::OpConversionPattern; |
| LogicalResult |
| matchAndRewrite(tosa::MatMulOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const final { |
| Location loc = op.getLoc(); |
| |
| auto outputTy = op.getType().cast<ShapedType>(); |
| auto outputElementTy = outputTy.getElementType(); |
| |
| auto firstOperandTy = op->getOperand(0).getType().cast<ShapedType>(); |
| auto secondOperandTy = op->getOperand(1).getType().cast<ShapedType>(); |
| |
| SmallVector<Value> dynDims; |
| dynDims.resize(op->getResult(0).getType().cast<ShapedType>().getRank()); |
| |
| if (!firstOperandTy.hasRank() || firstOperandTy.isDynamicDim(0)) { |
| dynDims[0] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 0); |
| } |
| |
| if (!firstOperandTy.hasRank() || firstOperandTy.isDynamicDim(1)) { |
| dynDims[1] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 1); |
| } |
| |
| if (!secondOperandTy.hasRank() || secondOperandTy.isDynamicDim(2)) { |
| dynDims[2] = rewriter.create<tensor::DimOp>(loc, op->getOperand(1), 2); |
| } |
| |
| SmallVector<Value> filteredDims = condenseValues(dynDims); |
| |
| auto zeroAttr = rewriter.getZeroAttr(outputElementTy); |
| Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr); |
| auto initTensor = rewriter.create<linalg::InitTensorOp>( |
| loc, filteredDims, outputTy.getShape(), outputTy.getElementType()); |
| Value zeroTensor = |
| rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0); |
| if (!op.quantization_info()) { |
| rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>( |
| op, TypeRange{op.getType()}, ValueRange{adaptor.a(), adaptor.b()}, |
| ValueRange{zeroTensor}); |
| return success(); |
| } |
| |
| auto quantizationInfo = op.quantization_info().getValue(); |
| auto aZp = rewriter.create<arith::ConstantOp>( |
| loc, rewriter.getI32IntegerAttr( |
| quantizationInfo.a_zp().getValue().getSExtValue())); |
| auto bZp = rewriter.create<arith::ConstantOp>( |
| loc, rewriter.getI32IntegerAttr( |
| quantizationInfo.b_zp().getValue().getSExtValue())); |
| rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>( |
| op, TypeRange{op.getType()}, |
| ValueRange{adaptor.a(), adaptor.b(), aZp, bZp}, zeroTensor); |
| |
| return success(); |
| } |
| }; |
| |
| class FullyConnectedConverter |
| : public OpConversionPattern<tosa::FullyConnectedOp> { |
| public: |
| using OpConversionPattern<tosa::FullyConnectedOp>::OpConversionPattern; |
| LogicalResult |
| matchAndRewrite(tosa::FullyConnectedOp op, OpAdaptor adaptor, |
| ConversionPatternRewriter &rewriter) const final { |
| Location loc = op.getLoc(); |
| auto outputTy = op.getType().cast<ShapedType>(); |
| auto input = op.input(); |
| auto inputTy = input.getType().cast<ShapedType>(); |
| |
| auto bias = op.bias(); |
| |
| auto weight = op.weight(); |
| auto weightTy = weight.getType().cast<ShapedType>(); |
| auto weightShape = weightTy.getShape(); |
| |
| auto outputETy = outputTy.getElementType(); |
| |
| SmallVector<Value> dynDims; |
| dynDims.resize(op->getResult(0).getType().cast<ShapedType>().getRank()); |
| |
| if (!inputTy.hasRank() || inputTy.isDynamicDim(0)) { |
| dynDims[0] = rewriter.create<tensor::DimOp>(loc, input, 0); |
| } |
| |
| if (!weightTy.hasRank() || weightTy.isDynamicDim(0)) { |
| dynDims[1] = rewriter.create<tensor::DimOp>(loc, weight, 0); |
| } |
| |
| SmallVector<Value> filteredDims = condenseValues(dynDims); |
| |
| // Creating maps for the output of MatMul and the bias |
| SmallVector<AffineMap, 4> indexingMaps; |
| |
| // Broadcast the bias. |
| indexingMaps.push_back(AffineMap::get(/*dimCount=*/2, /*symbolCount=*/0, |
| {rewriter.getAffineDimExpr(1)}, |
| rewriter.getContext())); |
| |
| indexingMaps.push_back(rewriter.getMultiDimIdentityMap(outputTy.getRank())); |
| indexingMaps.push_back(rewriter.getMultiDimIdentityMap(outputTy.getRank())); |
| |
| auto initTensor = rewriter.create<linalg::InitTensorOp>( |
| loc, filteredDims, outputTy.getShape(), outputTy.getElementType()); |
| |
| // When quantized, the input elemeny type is not the same as the output |
| Attribute resultZeroAttr = rewriter.getZeroAttr(outputETy); |
| Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr); |
| Value zeroTensor = |
| rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0); |
| |
| SmallVector<int64_t> permutation{1, 0}; |
| auto permutationAttr = DenseIntElementsAttr::get( |
| RankedTensorType::get({2}, rewriter.getI64Type()), permutation); |
| Value permutationValue = |
| rewriter.create<arith::ConstantOp>(loc, permutationAttr); |
| |
| SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[0]}; |
| Type newWeightTy = |
| RankedTensorType::get(newWeightShape, weightTy.getElementType()); |
| |
| Value transposedWeight = rewriter.create<tosa::TransposeOp>( |
| loc, newWeightTy, weight, permutationValue); |
| |
| auto biasInitTensor = |
| rewriter |
| .create<linalg::InitTensorOp>(loc, filteredDims, |
| outputTy.getShape(), outputETy) |
| ->getResults(); |
| |
| if (!op.quantization_info()) { |
| Value matmul = rewriter |
| .create<linalg::MatmulOp>( |
| loc, TypeRange{op.getType()}, |
| ValueRange{input, transposedWeight}, zeroTensor) |
| ->getResult(0); |
| |
| Value result = |
| rewriter |
| .create<linalg::GenericOp>( |
| loc, outputTy, ValueRange({bias, matmul}), biasInitTensor, |
| indexingMaps, getNParallelLoopsAttrs(outputTy.getRank()), |
| [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| ValueRange args) { |
| Value added = nestedBuilder.create<arith::AddFOp>( |
| loc, args[0], args[1]); |
| nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| }) |
| .getResult(0); |
| rewriter.replaceOp(op, result); |
| return success(); |
| } |
| |
| auto quantizationInfo = op.quantization_info().getValue(); |
| auto inputZp = rewriter.create<arith::ConstantOp>( |
| loc, rewriter.getI32IntegerAttr( |
| quantizationInfo.input_zp().getValue().getSExtValue())); |
| auto outputZp = rewriter.create<arith::ConstantOp>( |
| loc, rewriter.getI32IntegerAttr( |
| quantizationInfo.weight_zp().getValue().getSExtValue())); |
| Value matmul = |
| rewriter |
| .create<linalg::QuantizedMatmulOp>( |
| loc, TypeRange{op.getType()}, |
| ValueRange{input, transposedWeight, inputZp, outputZp}, |
| zeroTensor) |
| ->getResult(0); |
| Value result = |
| rewriter |
| .create<linalg::GenericOp>( |
| loc, outputTy, ValueRange({bias, matmul}), biasInitTensor, |
| indexingMaps, getNParallelLoopsAttrs(outputTy.getRank()), |
| [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| ValueRange args) { |
| Value added = nestedBuilder.create<arith::AddIOp>( |
| loc, args[0], args[1]); |
| nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| }) |
| .getResult(0); |
| rewriter.replaceOp(op, result); |
| return success(); |
| } |
| }; |
| |
| class MaxPool2dConverter : public OpRewritePattern<tosa::MaxPool2dOp> { |
| public: |
| using OpRewritePattern<tosa::MaxPool2dOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::MaxPool2dOp op, |
| PatternRewriter &rewriter) const final { |
| Location loc = op.getLoc(); |
| Value input = op.input(); |
| ShapedType inputTy = input.getType().cast<ShapedType>(); |
| |
| ShapedType resultTy = op.getType().template cast<ShapedType>(); |
| Type resultETy = inputTy.getElementType(); |
| |
| auto dynamicDimsOr = |
| checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); |
| if (!dynamicDimsOr.hasValue()) |
| return failure(); |
| SmallVector<Value> dynamicDims = dynamicDimsOr.getValue(); |
| |
| // Determine what the initial value needs to be for the max pool op. |
| Attribute initialAttr; |
| if (resultETy.isF32()) |
| initialAttr = rewriter.getFloatAttr( |
| resultETy, |
| APFloat::getLargest(resultETy.cast<FloatType>().getFloatSemantics(), |
| true)); |
| |
| if (resultETy.isa<IntegerType>()) |
| initialAttr = rewriter.getIntegerAttr( |
| resultETy, |
| APInt::getSignedMinValue(resultETy.getIntOrFloatBitWidth())); |
| |
| if (!initialAttr) |
| return rewriter.notifyMatchFailure( |
| op, "Unsupported initial value for tosa.maxpool_2d op"); |
| |
| // Apply padding as necessary. |
| llvm::SmallVector<int64_t> pad; |
| pad.resize(2, 0); |
| getValuesFromIntArrayAttribute(op.pad(), pad); |
| pad.resize(pad.size() + 2, 0); |
| Value paddedInput = applyPad(loc, input, pad, initialAttr, rewriter); |
| |
| Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr); |
| |
| SmallVector<int64_t> kernel, stride; |
| getValuesFromIntArrayAttribute(op.kernel(), kernel); |
| getValuesFromIntArrayAttribute(op.stride(), stride); |
| |
| Attribute strideAttr = rewriter.getI64VectorAttr(stride); |
| Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1}); |
| |
| // Create the linalg op that performs pooling. |
| Value initTensor = rewriter.create<linalg::InitTensorOp>( |
| loc, dynamicDims, resultTy.getShape(), resultTy.getElementType()); |
| |
| Value filledInitTensor = |
| rewriter.create<linalg::FillOp>(loc, initialValue, initTensor).result(); |
| |
| Value fakeWindowDims = |
| rewriter.create<linalg::InitTensorOp>(loc, kernel, resultETy); |
| |
| rewriter.replaceOpWithNewOp<linalg::PoolingNhwcMaxOp>( |
| op, ArrayRef<Type>{resultTy}, ValueRange{paddedInput, fakeWindowDims}, |
| filledInitTensor, strideAttr, dilationAttr); |
| return success(); |
| } |
| }; |
| |
| class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> { |
| public: |
| using OpRewritePattern<tosa::AvgPool2dOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(tosa::AvgPool2dOp op, |
| PatternRewriter &rewriter) const final { |
| Location loc = op.getLoc(); |
| Value input = op.input(); |
| ShapedType inputTy = input.getType().cast<ShapedType>(); |
| Type inElementTy = inputTy.getElementType(); |
| |
| ShapedType resultTy = op.getType().template cast<ShapedType>(); |
| Type resultETy = op.getType().cast<ShapedType>().getElementType(); |
| |
| Type accETy = |
| inElementTy.isa<IntegerType>() ? rewriter.getI32Type() : inElementTy; |
| ShapedType accTy = resultTy.clone(accETy); |
| |
| auto dynamicDimsOr = |
| checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); |
| if (!dynamicDimsOr.hasValue()) |
| return failure(); |
| SmallVector<Value> dynamicDims = dynamicDimsOr.getValue(); |
| |
| // Apply padding as necessary. |
| llvm::SmallVector<int64_t> pad; |
| pad.resize(2, 0); |
| getValuesFromIntArrayAttribute(op.pad(), pad); |
| pad.resize(pad.size() + 2, 0); |
| Attribute padAttr = rewriter.getZeroAttr(inElementTy); |
| Value paddedInput = applyPad(loc, input, pad, padAttr, rewriter); |
| |
| Attribute initialAttr = rewriter.getZeroAttr(accETy); |
| Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr); |
| |
| SmallVector<int64_t> kernel, stride; |
| getValuesFromIntArrayAttribute(op.kernel(), kernel); |
| getValuesFromIntArrayAttribute(op.stride(), stride); |
| |
| Attribute strideAttr = rewriter.getI64VectorAttr(stride); |
| Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1}); |
| |
| // Create the linalg op that performs pooling. |
| Value poolInitTensor = rewriter.create<linalg::InitTensorOp>( |
| loc, dynamicDims, accTy.getShape(), accETy); |
| |
| Value filledInitTensor = |
| rewriter.create<linalg::FillOp>(loc, initialValue, poolInitTensor) |
| .result(); |
| |
| Value fakeWindowDims = |
| rewriter.create<linalg::InitTensorOp>(loc, kernel, accETy); |
| |
| // Sum across the pooled region. |
| Value poolingOp = rewriter |
| .create<linalg::PoolingNhwcSumOp>( |
| loc, ArrayRef<Type>{accTy}, |
| ValueRange{paddedInput, fakeWindowDims}, |
| filledInitTensor, strideAttr, dilationAttr) |
| .getResult(0); |
| |
| // Normalize the summed value by the number of elements grouped in each |
| // pool. |
| auto poolingOpTy = poolingOp.getType().cast<ShapedType>(); |
| auto affineMap = rewriter.getMultiDimIdentityMap(resultTy.getRank()); |
| |
| Value genericInitTensor = rewriter.create<linalg::InitTensorOp>( |
| loc, dynamicDims, resultTy.getShape(), resultETy); |
| |
| auto genericOp = rewriter.create<linalg::GenericOp>( |
| loc, ArrayRef<Type>({resultTy}), ValueRange{poolingOp}, |
| ValueRange{genericInitTensor}, |
| ArrayRef<AffineMap>({affineMap, affineMap}), |
| getNParallelLoopsAttrs(resultTy.getRank()), |
| [&](OpBuilder &b, Location loc, ValueRange args) { |
| auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); |
| auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1); |
| auto iH = rewriter.create<arith::ConstantIndexOp>( |
| loc, poolingOpTy.getDimSize(1) - 1); |
| auto iW = rewriter.create<arith::ConstantIndexOp>( |
| loc, poolingOpTy.getDimSize(2) - 1); |
| |
| // Compute the indices from either end. |
| auto y0 = rewriter.create<linalg::IndexOp>(loc, 1); |
| auto x0 = rewriter.create<linalg::IndexOp>(loc, 2); |
| auto y1 = rewriter.create<arith::SubIOp>(loc, iH, y0); |
| auto x1 = rewriter.create<arith::SubIOp>(loc, iW, x0); |
| |
| // Determines what the portion of valid input is covered by the |
| // kernel. |
| auto padFn = [&](Value v, Value x, int64_t pad) -> Value { |
| if (pad == 0) |
| return v; |
| |
| auto padVal = rewriter.create<arith::ConstantIndexOp>(loc, pad); |
| Value dx = rewriter.create<arith::SubIOp>(loc, x, padVal); |
| |
| Value cmp = rewriter.create<arith::CmpIOp>( |
| loc, arith::CmpIPredicate::slt, dx, zero); |
| Value offset = rewriter.create<arith::SelectOp>(loc, cmp, dx, zero); |
| return rewriter.create<arith::AddIOp>(loc, v, offset)->getResult(0); |
| }; |
| |
| // Compute the vertical component of coverage. |
| auto kH0 = rewriter.create<arith::ConstantIndexOp>(loc, kernel[0]); |
| auto kH1 = padFn(kH0, y0, pad[2]); |
| auto kH2 = padFn(kH1, y1, pad[3]); |
| auto kHCmp = rewriter.create<arith::CmpIOp>( |
| loc, arith::CmpIPredicate::slt, kH2, one); |
| auto kH3 = rewriter.create<arith::SelectOp>(loc, kHCmp, one, kH2); |
| |
| // compute the horizontal component of coverage. |
| auto kW0 = rewriter.create<arith::ConstantIndexOp>(loc, kernel[1]); |
| auto kW1 = padFn(kW0, x0, pad[4]); |
| auto kW2 = padFn(kW1, x1, pad[5]); |
| auto kWCmp = rewriter.create<arith::CmpIOp>( |
| loc, arith::CmpIPredicate::slt, kW2, one); |
| auto kW3 = rewriter.create<arith::SelectOp>(loc, kWCmp, one, kW2); |
| |
| // Compute the total number of elements and normalize. |
| Value count = rewriter.create<arith::MulIOp>(loc, kH3, kW3); |
| auto countI = rewriter.create<arith::IndexCastOp>( |
| loc, rewriter.getI32Type(), count); |
| |
| // Divide by the number of summed values. For floats this is just |
| // a div however for quantized values input normalization had |
| // to be applied. |
| Value poolVal = args[0]; |
| if (accETy.isa<FloatType>()) { |
| auto countF = rewriter.create<arith::SIToFPOp>(loc, accETy, countI); |
| poolVal = rewriter.create<arith::DivFOp>(loc, poolVal, countF) |
| ->getResult(0); |
| } else { |
| |
| // If we have quantization information we need to apply an offset |
| // for the input zp value. |
| if (op.quantization_info()) { |
| auto quantizationInfo = op.quantization_info().getValue(); |
| auto inputZp = rewriter.create<arith::ConstantOp>( |
| loc, quantizationInfo.input_zp()); |
| Value offset = |
| rewriter.create<arith::MulIOp>(loc, accETy, countI, inputZp); |
| poolVal = |
| rewriter.create<arith::SubIOp>(loc, accETy, poolVal, offset); |
| } |
| |
| // Compute the multiplier and shift values for the quantization |
| // normalization. Preferably we would want to compute more bits |
| // however 32-bits should be enough for compute. Honestly we |
| // should probably straight divide. |
| int64_t numerator = ((1 << 30) + 1); |
| int64_t shift = 30; |
| |
| Value numeratorVal = rewriter.create<arith::ConstantOp>( |
| loc, rewriter.getI32IntegerAttr(numerator)); |
| Value multiplierVal = |
| rewriter |
| .create<arith::DivUIOp>(loc, rewriter.getI32Type(), |
| numeratorVal, countI) |
| .getResult(); |
| Value shiftVal = rewriter.create<arith::ConstantOp>( |
| loc, rewriter.getI8IntegerAttr(shift)); |
| |
| auto scaled = |
| rewriter |
| .create<tosa::ApplyScaleOp>( |
| loc, rewriter.getI32Type(), poolVal, multiplierVal, |
| shiftVal, rewriter.getBoolAttr(false)) |
| .getResult(); |
| |
| // If we have quantization information we need to apply output |
| // zeropoint. |
| if (op.quantization_info()) { |
| auto quantizationInfo = op.quantization_info().getValue(); |
| auto outputZp = rewriter.create<arith::ConstantOp>( |
| loc, quantizationInfo.output_zp()); |
| scaled = rewriter.create<arith::AddIOp>(loc, scaled, outputZp) |
| .getResult(); |
| } |
| |
| // Apply Clip. |
| int64_t outBitwidth = resultETy.getIntOrFloatBitWidth(); |
| |
| auto min = rewriter.create<arith::ConstantIntOp>( |
| loc, APInt::getSignedMinValue(outBitwidth).getSExtValue(), |
| accETy); |
| auto max = rewriter.create<arith::ConstantIntOp>( |
| loc, APInt::getSignedMaxValue(outBitwidth).getSExtValue(), |
| accETy); |
| auto clamp = clampHelper<arith::CmpIOp>( |
| loc, scaled, min, max, arith::CmpIPredicate::slt, rewriter); |
| |
| poolVal = clamp; |
| // Convert type. |
| if (resultETy != clamp.getType()) { |
| poolVal = |
| rewriter.create<arith::TruncIOp>(loc, resultETy, poolVal); |
| } |
| } |
| |
| rewriter.create<linalg::YieldOp>(loc, poolVal); |
| }); |
| |
| rewriter.replaceOp(op, genericOp.getResult(0)); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| void mlir::tosa::populateTosaToLinalgNamedConversionPatterns( |
| RewritePatternSet *patterns) { |
| patterns->add< |
| // clang-format off |
| ConvConverter, |
| DepthwiseConvConverter, |
| MatMulConverter, |
| MaxPool2dConverter, |
| AvgPool2dConverter, |
| FullyConnectedConverter>(patterns->getContext()); |
| // clang-format on |
| } |