Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 1 | //===- TosaToLinalgNamed.cpp - Lowering Tosa to Linalg Named Ops ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // These rewriters lower from the Tosa to the Linalg named ops. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "mlir/Conversion/TosaToLinalg/TosaToLinalg.h" |
| 14 | #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" |
River Riddle | 23aa5a7 | 2022-02-26 22:49:54 | [diff] [blame^] | 15 | #include "mlir/Dialect/Func/IR/FuncOps.h" |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 16 | #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| 17 | #include "mlir/Dialect/Math/IR/Math.h" |
| 18 | #include "mlir/Dialect/SCF/SCF.h" |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 19 | #include "mlir/Dialect/Tensor/IR/Tensor.h" |
Alexander Belyaev | fd0c6f5 | 2022-01-21 18:29:08 | [diff] [blame] | 20 | #include "mlir/Dialect/Tensor/Utils/Utils.h" |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 21 | #include "mlir/Dialect/Tosa/IR/TosaOps.h" |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 22 | #include "mlir/Dialect/Tosa/Utils/CoversionUtils.h" |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 23 | #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
| 24 | #include "mlir/IR/Matchers.h" |
| 25 | #include "mlir/IR/PatternMatch.h" |
| 26 | #include "mlir/Transforms/DialectConversion.h" |
| 27 | #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| 28 | |
| 29 | #include <numeric> |
| 30 | |
| 31 | using namespace mlir; |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 32 | using namespace mlir::tosa; |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 33 | |
| 34 | static mlir::Value applyPad(Location loc, Value input, ArrayRef<int64_t> pad, |
| 35 | Attribute padAttr, OpBuilder &rewriter) { |
| 36 | // Input should be padded if necessary. |
| 37 | if (llvm::all_of(pad, [](int64_t p) { return p == 0; })) |
| 38 | return input; |
| 39 | |
| 40 | ShapedType inputTy = input.getType().cast<ShapedType>(); |
| 41 | Type inputETy = inputTy.getElementType(); |
| 42 | auto inputShape = inputTy.getShape(); |
| 43 | |
| 44 | assert((inputShape.size() * 2) == pad.size()); |
| 45 | |
| 46 | SmallVector<int64_t, 4> paddedShape; |
| 47 | SmallVector<OpFoldResult, 8> lowIndices; |
| 48 | SmallVector<OpFoldResult, 8> highIndices; |
| 49 | for (int i = 0, s = inputShape.size(); i < s; i++) { |
| 50 | auto lowPad = pad[i * 2]; |
| 51 | auto highPad = pad[i * 2 + 1]; |
| 52 | paddedShape.push_back(inputShape[i] + highPad + lowPad); |
| 53 | lowIndices.push_back(rewriter.getIndexAttr(lowPad)); |
| 54 | highIndices.push_back(rewriter.getIndexAttr(highPad)); |
| 55 | } |
| 56 | |
| 57 | Value padValue = rewriter.create<arith::ConstantOp>(loc, padAttr); |
| 58 | |
Alexander Belyaev | fd0c6f5 | 2022-01-21 18:29:08 | [diff] [blame] | 59 | return tensor::createPadScalarOp(RankedTensorType::get(paddedShape, inputETy), |
| 60 | input, padValue, lowIndices, highIndices, |
| 61 | /*nofold=*/false, loc, rewriter) |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 62 | .result(); |
| 63 | } |
| 64 | |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 65 | namespace { |
| 66 | |
| 67 | class ConvConverter : public OpConversionPattern<tosa::Conv2DOp> { |
| 68 | public: |
| 69 | using OpConversionPattern<tosa::Conv2DOp>::OpConversionPattern; |
| 70 | LogicalResult |
| 71 | matchAndRewrite(tosa::Conv2DOp op, OpAdaptor adaptor, |
| 72 | ConversionPatternRewriter &rewriter) const final { |
| 73 | Location loc = op->getLoc(); |
| 74 | Value input = op->getOperand(0); |
| 75 | Value weight = op->getOperand(1); |
| 76 | Value bias = op->getOperand(2); |
| 77 | |
| 78 | ShapedType inputTy = input.getType().cast<ShapedType>(); |
| 79 | ShapedType weightTy = weight.getType().cast<ShapedType>(); |
| 80 | ShapedType biasTy = bias.getType().cast<ShapedType>(); |
| 81 | ShapedType resultTy = op->getResult(0).getType().cast<ShapedType>(); |
| 82 | |
| 83 | Type inputETy = inputTy.getElementType(); |
| 84 | Type resultETy = resultTy.getElementType(); |
| 85 | |
| 86 | auto padAttr = op->getAttr("pad").cast<ArrayAttr>(); |
| 87 | auto strideTosaAttr = op->getAttr("stride").cast<ArrayAttr>(); |
| 88 | auto dilationTosaAttr = op->getAttr("dilation").cast<ArrayAttr>(); |
| 89 | bool isQuantized = op->hasAttr("quantization_info"); |
| 90 | |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 91 | if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape()) |
| 92 | return rewriter.notifyMatchFailure( |
| 93 | op, "tosa.conv ops require static shapes for weight and bias"); |
| 94 | |
| 95 | auto dynamicDimsOr = |
| 96 | checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); |
| 97 | if (!dynamicDimsOr.hasValue()) |
| 98 | return failure(); |
| 99 | SmallVector<Value> dynamicDims = dynamicDimsOr.getValue(); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 100 | |
| 101 | if (inputETy.isUnsignedInteger()) |
| 102 | return rewriter.notifyMatchFailure( |
| 103 | op, "tosa.conv ops does not support unsigned integer input"); |
| 104 | |
| 105 | auto weightShape = weightTy.getShape(); |
| 106 | |
| 107 | // Apply padding as necessary. |
| 108 | Attribute zeroAttr = rewriter.getZeroAttr(inputETy); |
| 109 | if (isQuantized) { |
| 110 | auto quantizationInfo = |
| 111 | op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>(); |
| 112 | auto iZp = quantizationInfo.input_zp().getValue().getSExtValue(); |
| 113 | |
| 114 | int64_t intMin = |
| 115 | APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth()) |
| 116 | .getSExtValue(); |
| 117 | int64_t intMax = |
| 118 | APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth()) |
| 119 | .getSExtValue(); |
| 120 | |
| 121 | if (iZp < intMin || iZp > intMax) |
| 122 | return rewriter.notifyMatchFailure( |
| 123 | op, "tosa.conv op quantization has zp outside of input range"); |
| 124 | |
| 125 | zeroAttr = rewriter.getIntegerAttr(inputETy, iZp); |
| 126 | } |
| 127 | |
| 128 | llvm::SmallVector<int64_t> pad; |
| 129 | pad.resize(2, 0); |
| 130 | getValuesFromIntArrayAttribute(padAttr, pad); |
| 131 | pad.resize(pad.size() + 2, 0); |
| 132 | input = applyPad(loc, input, pad, zeroAttr, rewriter); |
| 133 | |
| 134 | // Transpose the kernel to match dimension ordering of the linalg |
| 135 | // convolution operation. |
| 136 | // TODO(suderman): See if this can be efficiently folded - check whether |
| 137 | // the input is used anywhere else, if not fold the constant. |
| 138 | SmallVector<int64_t> weightPerm{1, 2, 3, 0}; |
| 139 | SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[2], |
| 140 | weightShape[3], weightShape[0]}; |
| 141 | auto weightPermAttr = DenseIntElementsAttr::get( |
| 142 | RankedTensorType::get({4}, rewriter.getI64Type()), weightPerm); |
| 143 | Value weightPermValue = |
| 144 | rewriter.create<arith::ConstantOp>(loc, weightPermAttr); |
| 145 | Type newWeightTy = |
| 146 | RankedTensorType::get(newWeightShape, weightTy.getElementType()); |
| 147 | weight = rewriter.create<tosa::TransposeOp>(loc, newWeightTy, weight, |
| 148 | weightPermValue); |
| 149 | |
| 150 | Attribute resultZeroAttr = rewriter.getZeroAttr(resultETy); |
| 151 | Value initTensor = rewriter.create<linalg::InitTensorOp>( |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 152 | loc, dynamicDims, resultTy.getShape(), resultETy); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 153 | Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr); |
| 154 | Value zeroTensor = |
| 155 | rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0); |
| 156 | |
| 157 | // Extract the attributes for convolution. |
| 158 | llvm::SmallVector<int64_t> stride, dilation; |
| 159 | getValuesFromIntArrayAttribute(strideTosaAttr, stride); |
| 160 | getValuesFromIntArrayAttribute(dilationTosaAttr, dilation); |
| 161 | |
| 162 | // Create the convolution op. |
| 163 | auto strideAttr = DenseIntElementsAttr::get( |
| 164 | RankedTensorType::get({2}, rewriter.getI64Type()), stride); |
| 165 | auto dilationAttr = DenseIntElementsAttr::get( |
| 166 | RankedTensorType::get({2}, rewriter.getI64Type()), dilation); |
| 167 | |
| 168 | // Create maps for the bias broadcasting |
| 169 | SmallVector<AffineMap, 4> indexingMaps; |
| 170 | indexingMaps.push_back(AffineMap::get( |
| 171 | /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0, |
| 172 | {rewriter.getAffineDimExpr(3)}, rewriter.getContext())); |
| 173 | indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank())); |
| 174 | indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank())); |
| 175 | |
| 176 | Value biasInitTensor = rewriter.create<linalg::InitTensorOp>( |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 177 | loc, dynamicDims, resultTy.getShape(), resultETy); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 178 | |
| 179 | if (isQuantized) { |
| 180 | auto quantizationInfo = |
| 181 | op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>(); |
| 182 | auto iZp = rewriter.getI32IntegerAttr( |
| 183 | quantizationInfo.input_zp().getValue().getSExtValue()); |
| 184 | auto kZp = rewriter.getI32IntegerAttr( |
| 185 | quantizationInfo.weight_zp().getValue().getSExtValue()); |
| 186 | |
| 187 | auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp); |
| 188 | auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp); |
| 189 | Value conv = |
| 190 | rewriter |
| 191 | .create<linalg::Conv2DNhwcHwcfQOp>( |
| 192 | loc, resultTy, ValueRange{input, weight, iZpVal, kZpVal}, |
| 193 | ValueRange{zeroTensor}, strideAttr, dilationAttr) |
| 194 | ->getResult(0); |
| 195 | |
| 196 | Value result = |
| 197 | rewriter |
| 198 | .create<linalg::GenericOp>( |
| 199 | loc, resultTy, ValueRange({bias, conv}), biasInitTensor, |
| 200 | indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()), |
| 201 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| 202 | ValueRange args) { |
| 203 | Value added = nestedBuilder.create<arith::AddIOp>( |
| 204 | loc, args[0], args[1]); |
| 205 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| 206 | }) |
| 207 | .getResult(0); |
| 208 | rewriter.replaceOp(op, result); |
| 209 | return success(); |
| 210 | } |
| 211 | |
| 212 | Value conv = rewriter |
| 213 | .create<linalg::Conv2DNhwcHwcfOp>( |
| 214 | loc, resultTy, ValueRange{input, weight}, |
| 215 | ValueRange{zeroTensor}, strideAttr, dilationAttr) |
| 216 | ->getResult(0); |
| 217 | |
| 218 | Value result = |
| 219 | rewriter |
| 220 | .create<linalg::GenericOp>( |
| 221 | loc, resultTy, ValueRange({bias, conv}), biasInitTensor, |
| 222 | indexingMaps, getNParallelLoopsAttrs(resultTy.getRank()), |
| 223 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| 224 | ValueRange args) { |
| 225 | Value added = nestedBuilder.create<arith::AddFOp>( |
| 226 | loc, args[0], args[1]); |
| 227 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| 228 | }) |
| 229 | .getResult(0); |
| 230 | |
| 231 | rewriter.replaceOp(op, result); |
| 232 | return success(); |
| 233 | } |
| 234 | }; |
| 235 | |
| 236 | class DepthwiseConvConverter |
| 237 | : public OpConversionPattern<tosa::DepthwiseConv2DOp> { |
| 238 | public: |
| 239 | using OpConversionPattern<tosa::DepthwiseConv2DOp>::OpConversionPattern; |
| 240 | LogicalResult |
| 241 | matchAndRewrite(tosa::DepthwiseConv2DOp op, OpAdaptor adaptor, |
| 242 | ConversionPatternRewriter &rewriter) const final { |
| 243 | Location loc = op->getLoc(); |
| 244 | Value input = op->getOperand(0); |
| 245 | Value weight = op->getOperand(1); |
| 246 | Value bias = op->getOperand(2); |
| 247 | |
| 248 | ShapedType inputTy = input.getType().cast<ShapedType>(); |
| 249 | ShapedType weightTy = weight.getType().cast<ShapedType>(); |
| 250 | ShapedType biasTy = bias.getType().cast<ShapedType>(); |
| 251 | ShapedType resultTy = op->getResult(0).getType().cast<ShapedType>(); |
| 252 | |
| 253 | Type inputETy = inputTy.getElementType(); |
| 254 | Type resultETy = resultTy.getElementType(); |
| 255 | |
| 256 | auto padAttr = op->getAttr("pad").cast<ArrayAttr>(); |
| 257 | auto strideTosaAttr = op->getAttr("stride").cast<ArrayAttr>(); |
| 258 | auto dilationTosaAttr = op->getAttr("dilation").cast<ArrayAttr>(); |
| 259 | |
| 260 | bool isQuantized = op->hasAttr("quantization_info"); |
| 261 | IntegerAttr iZp; |
| 262 | IntegerAttr kZp; |
| 263 | if (isQuantized) { |
| 264 | auto quantizationInfo = |
| 265 | op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>(); |
| 266 | iZp = rewriter.getI32IntegerAttr( |
| 267 | quantizationInfo.input_zp().getValue().getSExtValue()); |
| 268 | kZp = rewriter.getI32IntegerAttr( |
| 269 | quantizationInfo.weight_zp().getValue().getSExtValue()); |
| 270 | } |
| 271 | |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 272 | if (!weightTy.hasStaticShape() || !biasTy.hasStaticShape()) |
| 273 | return rewriter.notifyMatchFailure( |
| 274 | op, "tosa.depthwise_conv ops require static shapes"); |
| 275 | |
| 276 | auto dynamicDimsOr = |
| 277 | checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); |
| 278 | if (!dynamicDimsOr.hasValue()) |
| 279 | return failure(); |
| 280 | SmallVector<Value> dynamicDims = dynamicDimsOr.getValue(); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 281 | |
| 282 | auto weightShape = weightTy.getShape(); |
| 283 | auto resultShape = resultTy.getShape(); |
| 284 | |
| 285 | // Apply padding as necessary. |
| 286 | Attribute zeroAttr = rewriter.getZeroAttr(inputETy); |
| 287 | if (isQuantized) { |
| 288 | auto quantizationInfo = |
| 289 | op->getAttr("quantization_info").cast<tosa::ConvOpQuantizationAttr>(); |
| 290 | auto iZp = quantizationInfo.input_zp().getValue().getSExtValue(); |
| 291 | |
| 292 | int64_t intMin = |
| 293 | APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth()) |
| 294 | .getSExtValue(); |
| 295 | int64_t intMax = |
| 296 | APInt::getSignedMaxValue(inputETy.getIntOrFloatBitWidth()) |
| 297 | .getSExtValue(); |
| 298 | |
| 299 | if (iZp < intMin || iZp > intMax) |
| 300 | return rewriter.notifyMatchFailure( |
| 301 | op, "tosa.depthwise_conv op quantization has zp outside of input " |
| 302 | "range"); |
| 303 | |
| 304 | zeroAttr = rewriter.getIntegerAttr(inputETy, iZp); |
| 305 | } |
| 306 | |
| 307 | llvm::SmallVector<int64_t> pad; |
| 308 | pad.resize(2, 0); |
| 309 | getValuesFromIntArrayAttribute(padAttr, pad); |
| 310 | pad.resize(pad.size() + 2, 0); |
| 311 | |
| 312 | input = applyPad(loc, input, pad, zeroAttr, rewriter); |
| 313 | |
| 314 | // Extract the attributes for convolution. |
| 315 | llvm::SmallVector<int64_t> stride, dilation; |
| 316 | getValuesFromIntArrayAttribute(strideTosaAttr, stride); |
| 317 | getValuesFromIntArrayAttribute(dilationTosaAttr, dilation); |
| 318 | |
| 319 | // Create the convolution op. |
| 320 | auto strideAttr = DenseIntElementsAttr::get( |
| 321 | RankedTensorType::get({2}, rewriter.getI64Type()), stride); |
| 322 | auto dilationAttr = DenseIntElementsAttr::get( |
| 323 | RankedTensorType::get({2}, rewriter.getI64Type()), dilation); |
| 324 | ShapedType linalgConvTy = |
| 325 | RankedTensorType::get({resultShape[0], resultShape[1], resultShape[2], |
| 326 | weightShape[2], weightShape[3]}, |
| 327 | resultETy); |
| 328 | |
| 329 | // Broadcast the initial value to the output tensor before convolving. |
| 330 | SmallVector<AffineMap, 4> indexingMaps; |
| 331 | indexingMaps.push_back(AffineMap::get( |
| 332 | /*dimCount=*/resultTy.getRank(), /*symbolCount=*/0, |
| 333 | {rewriter.getAffineDimExpr(3)}, rewriter.getContext())); |
| 334 | indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank())); |
| 335 | indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultTy.getRank())); |
| 336 | |
| 337 | Attribute resultZeroAttr = rewriter.getZeroAttr(resultETy); |
| 338 | Value initTensor = rewriter.create<linalg::InitTensorOp>( |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 339 | loc, dynamicDims, linalgConvTy.getShape(), resultETy); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 340 | Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr); |
| 341 | Value zeroTensor = |
| 342 | rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0); |
| 343 | |
| 344 | Value biasInitTensor = rewriter.create<linalg::InitTensorOp>( |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 345 | loc, dynamicDims, resultTy.getShape(), resultETy); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 346 | if (!isQuantized) { |
| 347 | Value conv = rewriter |
| 348 | .create<linalg::DepthwiseConv2DNhwcHwcmOp>( |
| 349 | loc, linalgConvTy, ValueRange{input, weight}, |
| 350 | ValueRange{zeroTensor}, strideAttr, dilationAttr) |
| 351 | .getResult(0); |
| 352 | Value convReshape = rewriter.create<tosa::ReshapeOp>( |
| 353 | loc, resultTy, conv, rewriter.getI64ArrayAttr(resultTy.getShape())); |
| 354 | Value result = |
| 355 | rewriter |
| 356 | .create<linalg::GenericOp>( |
| 357 | loc, resultTy, ValueRange({bias, convReshape}), |
| 358 | biasInitTensor, indexingMaps, |
| 359 | getNParallelLoopsAttrs(resultTy.getRank()), |
| 360 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| 361 | ValueRange args) { |
| 362 | Value added = nestedBuilder.create<arith::AddFOp>( |
| 363 | loc, args[0], args[1]); |
| 364 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| 365 | }) |
| 366 | .getResult(0); |
| 367 | rewriter.replaceOp(op, result); |
| 368 | } else { |
| 369 | auto iZpVal = rewriter.create<arith::ConstantOp>(loc, iZp); |
| 370 | auto kZpVal = rewriter.create<arith::ConstantOp>(loc, kZp); |
| 371 | Value conv = |
| 372 | rewriter |
| 373 | .create<linalg::DepthwiseConv2DNhwcHwcmQOp>( |
| 374 | loc, linalgConvTy, ValueRange{input, weight, iZpVal, kZpVal}, |
| 375 | ValueRange{zeroTensor}, strideAttr, dilationAttr) |
| 376 | .getResult(0); |
| 377 | Value convReshape = rewriter.create<tosa::ReshapeOp>( |
| 378 | loc, resultTy, conv, rewriter.getI64ArrayAttr(resultTy.getShape())); |
| 379 | Value result = |
| 380 | rewriter |
| 381 | .create<linalg::GenericOp>( |
| 382 | loc, resultTy, ValueRange({bias, convReshape}), |
| 383 | biasInitTensor, indexingMaps, |
| 384 | getNParallelLoopsAttrs(resultTy.getRank()), |
| 385 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| 386 | ValueRange args) { |
| 387 | Value added = nestedBuilder.create<arith::AddIOp>( |
| 388 | loc, args[0], args[1]); |
| 389 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| 390 | }) |
| 391 | .getResult(0); |
| 392 | rewriter.replaceOp(op, result); |
| 393 | } |
| 394 | return success(); |
| 395 | } |
| 396 | }; |
| 397 | |
| 398 | class MatMulConverter : public OpConversionPattern<tosa::MatMulOp> { |
| 399 | public: |
| 400 | using OpConversionPattern<tosa::MatMulOp>::OpConversionPattern; |
| 401 | LogicalResult |
| 402 | matchAndRewrite(tosa::MatMulOp op, OpAdaptor adaptor, |
| 403 | ConversionPatternRewriter &rewriter) const final { |
| 404 | Location loc = op.getLoc(); |
| 405 | |
| 406 | auto outputTy = op.getType().cast<ShapedType>(); |
| 407 | auto outputElementTy = outputTy.getElementType(); |
| 408 | |
| 409 | auto firstOperandTy = op->getOperand(0).getType().cast<ShapedType>(); |
| 410 | auto secondOperandTy = op->getOperand(1).getType().cast<ShapedType>(); |
| 411 | |
| 412 | SmallVector<Value> dynDims; |
| 413 | dynDims.resize(op->getResult(0).getType().cast<ShapedType>().getRank()); |
| 414 | |
| 415 | if (!firstOperandTy.hasRank() || firstOperandTy.isDynamicDim(0)) { |
| 416 | dynDims[0] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 0); |
| 417 | } |
| 418 | |
| 419 | if (!firstOperandTy.hasRank() || firstOperandTy.isDynamicDim(1)) { |
| 420 | dynDims[1] = rewriter.create<tensor::DimOp>(loc, op->getOperand(0), 1); |
| 421 | } |
| 422 | |
| 423 | if (!secondOperandTy.hasRank() || secondOperandTy.isDynamicDim(2)) { |
| 424 | dynDims[2] = rewriter.create<tensor::DimOp>(loc, op->getOperand(1), 2); |
| 425 | } |
| 426 | |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 427 | SmallVector<Value> filteredDims = condenseValues(dynDims); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 428 | |
| 429 | auto zeroAttr = rewriter.getZeroAttr(outputElementTy); |
| 430 | Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr); |
| 431 | auto initTensor = rewriter.create<linalg::InitTensorOp>( |
| 432 | loc, filteredDims, outputTy.getShape(), outputTy.getElementType()); |
| 433 | Value zeroTensor = |
| 434 | rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0); |
| 435 | if (!op.quantization_info()) { |
| 436 | rewriter.replaceOpWithNewOp<linalg::BatchMatmulOp>( |
| 437 | op, TypeRange{op.getType()}, ValueRange{adaptor.a(), adaptor.b()}, |
| 438 | ValueRange{zeroTensor}); |
| 439 | return success(); |
| 440 | } |
| 441 | |
| 442 | auto quantizationInfo = op.quantization_info().getValue(); |
| 443 | auto aZp = rewriter.create<arith::ConstantOp>( |
| 444 | loc, rewriter.getI32IntegerAttr( |
| 445 | quantizationInfo.a_zp().getValue().getSExtValue())); |
| 446 | auto bZp = rewriter.create<arith::ConstantOp>( |
| 447 | loc, rewriter.getI32IntegerAttr( |
| 448 | quantizationInfo.b_zp().getValue().getSExtValue())); |
| 449 | rewriter.replaceOpWithNewOp<linalg::QuantizedBatchMatmulOp>( |
| 450 | op, TypeRange{op.getType()}, |
| 451 | ValueRange{adaptor.a(), adaptor.b(), aZp, bZp}, zeroTensor); |
| 452 | |
| 453 | return success(); |
| 454 | } |
| 455 | }; |
| 456 | |
| 457 | class FullyConnectedConverter |
| 458 | : public OpConversionPattern<tosa::FullyConnectedOp> { |
| 459 | public: |
| 460 | using OpConversionPattern<tosa::FullyConnectedOp>::OpConversionPattern; |
| 461 | LogicalResult |
| 462 | matchAndRewrite(tosa::FullyConnectedOp op, OpAdaptor adaptor, |
| 463 | ConversionPatternRewriter &rewriter) const final { |
| 464 | Location loc = op.getLoc(); |
| 465 | auto outputTy = op.getType().cast<ShapedType>(); |
| 466 | auto input = op.input(); |
| 467 | auto inputTy = input.getType().cast<ShapedType>(); |
| 468 | |
| 469 | auto bias = op.bias(); |
| 470 | |
| 471 | auto weight = op.weight(); |
| 472 | auto weightTy = weight.getType().cast<ShapedType>(); |
| 473 | auto weightShape = weightTy.getShape(); |
| 474 | |
| 475 | auto outputETy = outputTy.getElementType(); |
| 476 | |
| 477 | SmallVector<Value> dynDims; |
| 478 | dynDims.resize(op->getResult(0).getType().cast<ShapedType>().getRank()); |
| 479 | |
| 480 | if (!inputTy.hasRank() || inputTy.isDynamicDim(0)) { |
| 481 | dynDims[0] = rewriter.create<tensor::DimOp>(loc, input, 0); |
| 482 | } |
| 483 | |
| 484 | if (!weightTy.hasRank() || weightTy.isDynamicDim(0)) { |
| 485 | dynDims[1] = rewriter.create<tensor::DimOp>(loc, weight, 0); |
| 486 | } |
| 487 | |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 488 | SmallVector<Value> filteredDims = condenseValues(dynDims); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 489 | |
| 490 | // Creating maps for the output of MatMul and the bias |
| 491 | SmallVector<AffineMap, 4> indexingMaps; |
| 492 | |
| 493 | // Broadcast the bias. |
| 494 | indexingMaps.push_back(AffineMap::get(/*dimCount=*/2, /*symbolCount=*/0, |
| 495 | {rewriter.getAffineDimExpr(1)}, |
| 496 | rewriter.getContext())); |
| 497 | |
| 498 | indexingMaps.push_back(rewriter.getMultiDimIdentityMap(outputTy.getRank())); |
| 499 | indexingMaps.push_back(rewriter.getMultiDimIdentityMap(outputTy.getRank())); |
| 500 | |
| 501 | auto initTensor = rewriter.create<linalg::InitTensorOp>( |
| 502 | loc, filteredDims, outputTy.getShape(), outputTy.getElementType()); |
| 503 | |
| 504 | // When quantized, the input elemeny type is not the same as the output |
| 505 | Attribute resultZeroAttr = rewriter.getZeroAttr(outputETy); |
| 506 | Value zero = rewriter.create<arith::ConstantOp>(loc, resultZeroAttr); |
| 507 | Value zeroTensor = |
| 508 | rewriter.create<linalg::FillOp>(loc, zero, initTensor).getResult(0); |
| 509 | |
| 510 | SmallVector<int64_t> permutation{1, 0}; |
| 511 | auto permutationAttr = DenseIntElementsAttr::get( |
| 512 | RankedTensorType::get({2}, rewriter.getI64Type()), permutation); |
| 513 | Value permutationValue = |
| 514 | rewriter.create<arith::ConstantOp>(loc, permutationAttr); |
| 515 | |
| 516 | SmallVector<int64_t> newWeightShape{weightShape[1], weightShape[0]}; |
| 517 | Type newWeightTy = |
| 518 | RankedTensorType::get(newWeightShape, weightTy.getElementType()); |
| 519 | |
| 520 | Value transposedWeight = rewriter.create<tosa::TransposeOp>( |
| 521 | loc, newWeightTy, weight, permutationValue); |
| 522 | |
| 523 | auto biasInitTensor = |
| 524 | rewriter |
| 525 | .create<linalg::InitTensorOp>(loc, filteredDims, |
| 526 | outputTy.getShape(), outputETy) |
| 527 | ->getResults(); |
| 528 | |
| 529 | if (!op.quantization_info()) { |
| 530 | Value matmul = rewriter |
| 531 | .create<linalg::MatmulOp>( |
| 532 | loc, TypeRange{op.getType()}, |
| 533 | ValueRange{input, transposedWeight}, zeroTensor) |
| 534 | ->getResult(0); |
| 535 | |
| 536 | Value result = |
| 537 | rewriter |
| 538 | .create<linalg::GenericOp>( |
| 539 | loc, outputTy, ValueRange({bias, matmul}), biasInitTensor, |
| 540 | indexingMaps, getNParallelLoopsAttrs(outputTy.getRank()), |
| 541 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| 542 | ValueRange args) { |
| 543 | Value added = nestedBuilder.create<arith::AddFOp>( |
| 544 | loc, args[0], args[1]); |
| 545 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| 546 | }) |
| 547 | .getResult(0); |
| 548 | rewriter.replaceOp(op, result); |
| 549 | return success(); |
| 550 | } |
| 551 | |
| 552 | auto quantizationInfo = op.quantization_info().getValue(); |
| 553 | auto inputZp = rewriter.create<arith::ConstantOp>( |
| 554 | loc, rewriter.getI32IntegerAttr( |
| 555 | quantizationInfo.input_zp().getValue().getSExtValue())); |
| 556 | auto outputZp = rewriter.create<arith::ConstantOp>( |
| 557 | loc, rewriter.getI32IntegerAttr( |
| 558 | quantizationInfo.weight_zp().getValue().getSExtValue())); |
| 559 | Value matmul = |
| 560 | rewriter |
| 561 | .create<linalg::QuantizedMatmulOp>( |
| 562 | loc, TypeRange{op.getType()}, |
| 563 | ValueRange{input, transposedWeight, inputZp, outputZp}, |
| 564 | zeroTensor) |
| 565 | ->getResult(0); |
| 566 | Value result = |
| 567 | rewriter |
| 568 | .create<linalg::GenericOp>( |
| 569 | loc, outputTy, ValueRange({bias, matmul}), biasInitTensor, |
| 570 | indexingMaps, getNParallelLoopsAttrs(outputTy.getRank()), |
| 571 | [&](OpBuilder &nestedBuilder, Location nestedLoc, |
| 572 | ValueRange args) { |
| 573 | Value added = nestedBuilder.create<arith::AddIOp>( |
| 574 | loc, args[0], args[1]); |
| 575 | nestedBuilder.create<linalg::YieldOp>(nestedLoc, added); |
| 576 | }) |
| 577 | .getResult(0); |
| 578 | rewriter.replaceOp(op, result); |
| 579 | return success(); |
| 580 | } |
| 581 | }; |
| 582 | |
| 583 | class MaxPool2dConverter : public OpRewritePattern<tosa::MaxPool2dOp> { |
| 584 | public: |
| 585 | using OpRewritePattern<tosa::MaxPool2dOp>::OpRewritePattern; |
| 586 | |
| 587 | LogicalResult matchAndRewrite(tosa::MaxPool2dOp op, |
| 588 | PatternRewriter &rewriter) const final { |
| 589 | Location loc = op.getLoc(); |
| 590 | Value input = op.input(); |
| 591 | ShapedType inputTy = input.getType().cast<ShapedType>(); |
| 592 | |
| 593 | ShapedType resultTy = op.getType().template cast<ShapedType>(); |
| 594 | Type resultETy = inputTy.getElementType(); |
| 595 | |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 596 | auto dynamicDimsOr = |
| 597 | checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); |
| 598 | if (!dynamicDimsOr.hasValue()) |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 599 | return failure(); |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 600 | SmallVector<Value> dynamicDims = dynamicDimsOr.getValue(); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 601 | |
| 602 | // Determine what the initial value needs to be for the max pool op. |
| 603 | Attribute initialAttr; |
| 604 | if (resultETy.isF32()) |
| 605 | initialAttr = rewriter.getFloatAttr( |
| 606 | resultETy, |
| 607 | APFloat::getLargest(resultETy.cast<FloatType>().getFloatSemantics(), |
| 608 | true)); |
| 609 | |
| 610 | if (resultETy.isa<IntegerType>()) |
| 611 | initialAttr = rewriter.getIntegerAttr( |
| 612 | resultETy, |
| 613 | APInt::getSignedMinValue(resultETy.getIntOrFloatBitWidth())); |
| 614 | |
| 615 | if (!initialAttr) |
| 616 | return rewriter.notifyMatchFailure( |
| 617 | op, "Unsupported initial value for tosa.maxpool_2d op"); |
| 618 | |
| 619 | // Apply padding as necessary. |
| 620 | llvm::SmallVector<int64_t> pad; |
| 621 | pad.resize(2, 0); |
| 622 | getValuesFromIntArrayAttribute(op.pad(), pad); |
| 623 | pad.resize(pad.size() + 2, 0); |
| 624 | Value paddedInput = applyPad(loc, input, pad, initialAttr, rewriter); |
| 625 | |
| 626 | Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr); |
| 627 | |
| 628 | SmallVector<int64_t> kernel, stride; |
| 629 | getValuesFromIntArrayAttribute(op.kernel(), kernel); |
| 630 | getValuesFromIntArrayAttribute(op.stride(), stride); |
| 631 | |
| 632 | Attribute strideAttr = rewriter.getI64VectorAttr(stride); |
| 633 | Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1}); |
| 634 | |
| 635 | // Create the linalg op that performs pooling. |
| 636 | Value initTensor = rewriter.create<linalg::InitTensorOp>( |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 637 | loc, dynamicDims, resultTy.getShape(), resultTy.getElementType()); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 638 | |
| 639 | Value filledInitTensor = |
| 640 | rewriter.create<linalg::FillOp>(loc, initialValue, initTensor).result(); |
| 641 | |
| 642 | Value fakeWindowDims = |
| 643 | rewriter.create<linalg::InitTensorOp>(loc, kernel, resultETy); |
| 644 | |
| 645 | rewriter.replaceOpWithNewOp<linalg::PoolingNhwcMaxOp>( |
| 646 | op, ArrayRef<Type>{resultTy}, ValueRange{paddedInput, fakeWindowDims}, |
| 647 | filledInitTensor, strideAttr, dilationAttr); |
| 648 | return success(); |
| 649 | } |
| 650 | }; |
| 651 | |
| 652 | class AvgPool2dConverter : public OpRewritePattern<tosa::AvgPool2dOp> { |
| 653 | public: |
| 654 | using OpRewritePattern<tosa::AvgPool2dOp>::OpRewritePattern; |
| 655 | |
| 656 | LogicalResult matchAndRewrite(tosa::AvgPool2dOp op, |
| 657 | PatternRewriter &rewriter) const final { |
| 658 | Location loc = op.getLoc(); |
| 659 | Value input = op.input(); |
| 660 | ShapedType inputTy = input.getType().cast<ShapedType>(); |
| 661 | Type inElementTy = inputTy.getElementType(); |
| 662 | |
| 663 | ShapedType resultTy = op.getType().template cast<ShapedType>(); |
| 664 | Type resultETy = op.getType().cast<ShapedType>().getElementType(); |
| 665 | |
| 666 | Type accETy = |
| 667 | inElementTy.isa<IntegerType>() ? rewriter.getI32Type() : inElementTy; |
| 668 | ShapedType accTy = resultTy.clone(accETy); |
| 669 | |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 670 | auto dynamicDimsOr = |
| 671 | checkHasDynamicBatchDims(rewriter, op, {input, op.output()}); |
| 672 | if (!dynamicDimsOr.hasValue()) |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 673 | return failure(); |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 674 | SmallVector<Value> dynamicDims = dynamicDimsOr.getValue(); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 675 | |
| 676 | // Apply padding as necessary. |
| 677 | llvm::SmallVector<int64_t> pad; |
| 678 | pad.resize(2, 0); |
| 679 | getValuesFromIntArrayAttribute(op.pad(), pad); |
| 680 | pad.resize(pad.size() + 2, 0); |
| 681 | Attribute padAttr = rewriter.getZeroAttr(inElementTy); |
| 682 | Value paddedInput = applyPad(loc, input, pad, padAttr, rewriter); |
| 683 | |
| 684 | Attribute initialAttr = rewriter.getZeroAttr(accETy); |
| 685 | Value initialValue = rewriter.create<arith::ConstantOp>(loc, initialAttr); |
| 686 | |
| 687 | SmallVector<int64_t> kernel, stride; |
| 688 | getValuesFromIntArrayAttribute(op.kernel(), kernel); |
| 689 | getValuesFromIntArrayAttribute(op.stride(), stride); |
| 690 | |
| 691 | Attribute strideAttr = rewriter.getI64VectorAttr(stride); |
| 692 | Attribute dilationAttr = rewriter.getI64VectorAttr({1, 1}); |
| 693 | |
| 694 | // Create the linalg op that performs pooling. |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 695 | Value poolInitTensor = rewriter.create<linalg::InitTensorOp>( |
| 696 | loc, dynamicDims, accTy.getShape(), accETy); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 697 | |
| 698 | Value filledInitTensor = |
| 699 | rewriter.create<linalg::FillOp>(loc, initialValue, poolInitTensor) |
| 700 | .result(); |
| 701 | |
| 702 | Value fakeWindowDims = |
| 703 | rewriter.create<linalg::InitTensorOp>(loc, kernel, accETy); |
| 704 | |
| 705 | // Sum across the pooled region. |
| 706 | Value poolingOp = rewriter |
| 707 | .create<linalg::PoolingNhwcSumOp>( |
| 708 | loc, ArrayRef<Type>{accTy}, |
| 709 | ValueRange{paddedInput, fakeWindowDims}, |
| 710 | filledInitTensor, strideAttr, dilationAttr) |
| 711 | .getResult(0); |
| 712 | |
| 713 | // Normalize the summed value by the number of elements grouped in each |
| 714 | // pool. |
| 715 | auto poolingOpTy = poolingOp.getType().cast<ShapedType>(); |
| 716 | auto affineMap = rewriter.getMultiDimIdentityMap(resultTy.getRank()); |
| 717 | |
| 718 | Value genericInitTensor = rewriter.create<linalg::InitTensorOp>( |
natashaknk | 310e963 | 2022-01-12 22:10:27 | [diff] [blame] | 719 | loc, dynamicDims, resultTy.getShape(), resultETy); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 720 | |
| 721 | auto genericOp = rewriter.create<linalg::GenericOp>( |
| 722 | loc, ArrayRef<Type>({resultTy}), ValueRange{poolingOp}, |
| 723 | ValueRange{genericInitTensor}, |
| 724 | ArrayRef<AffineMap>({affineMap, affineMap}), |
| 725 | getNParallelLoopsAttrs(resultTy.getRank()), |
| 726 | [&](OpBuilder &b, Location loc, ValueRange args) { |
| 727 | auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); |
| 728 | auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1); |
| 729 | auto iH = rewriter.create<arith::ConstantIndexOp>( |
| 730 | loc, poolingOpTy.getDimSize(1) - 1); |
| 731 | auto iW = rewriter.create<arith::ConstantIndexOp>( |
| 732 | loc, poolingOpTy.getDimSize(2) - 1); |
| 733 | |
| 734 | // Compute the indices from either end. |
| 735 | auto y0 = rewriter.create<linalg::IndexOp>(loc, 1); |
| 736 | auto x0 = rewriter.create<linalg::IndexOp>(loc, 2); |
| 737 | auto y1 = rewriter.create<arith::SubIOp>(loc, iH, y0); |
| 738 | auto x1 = rewriter.create<arith::SubIOp>(loc, iW, x0); |
| 739 | |
| 740 | // Determines what the portion of valid input is covered by the |
| 741 | // kernel. |
| 742 | auto padFn = [&](Value v, Value x, int64_t pad) -> Value { |
| 743 | if (pad == 0) |
| 744 | return v; |
| 745 | |
| 746 | auto padVal = rewriter.create<arith::ConstantIndexOp>(loc, pad); |
| 747 | Value dx = rewriter.create<arith::SubIOp>(loc, x, padVal); |
| 748 | |
| 749 | Value cmp = rewriter.create<arith::CmpIOp>( |
| 750 | loc, arith::CmpIPredicate::slt, dx, zero); |
River Riddle | dec8af7 | 2022-01-31 20:44:35 | [diff] [blame] | 751 | Value offset = rewriter.create<arith::SelectOp>(loc, cmp, dx, zero); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 752 | return rewriter.create<arith::AddIOp>(loc, v, offset)->getResult(0); |
| 753 | }; |
| 754 | |
| 755 | // Compute the vertical component of coverage. |
| 756 | auto kH0 = rewriter.create<arith::ConstantIndexOp>(loc, kernel[0]); |
| 757 | auto kH1 = padFn(kH0, y0, pad[2]); |
| 758 | auto kH2 = padFn(kH1, y1, pad[3]); |
| 759 | auto kHCmp = rewriter.create<arith::CmpIOp>( |
| 760 | loc, arith::CmpIPredicate::slt, kH2, one); |
River Riddle | dec8af7 | 2022-01-31 20:44:35 | [diff] [blame] | 761 | auto kH3 = rewriter.create<arith::SelectOp>(loc, kHCmp, one, kH2); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 762 | |
| 763 | // compute the horizontal component of coverage. |
| 764 | auto kW0 = rewriter.create<arith::ConstantIndexOp>(loc, kernel[1]); |
| 765 | auto kW1 = padFn(kW0, x0, pad[4]); |
| 766 | auto kW2 = padFn(kW1, x1, pad[5]); |
| 767 | auto kWCmp = rewriter.create<arith::CmpIOp>( |
| 768 | loc, arith::CmpIPredicate::slt, kW2, one); |
River Riddle | dec8af7 | 2022-01-31 20:44:35 | [diff] [blame] | 769 | auto kW3 = rewriter.create<arith::SelectOp>(loc, kWCmp, one, kW2); |
Rob Suderman | f0cb77d | 2021-12-24 00:25:53 | [diff] [blame] | 770 | |
| 771 | // Compute the total number of elements and normalize. |
| 772 | Value count = rewriter.create<arith::MulIOp>(loc, kH3, kW3); |
| 773 | auto countI = rewriter.create<arith::IndexCastOp>( |
| 774 | loc, rewriter.getI32Type(), count); |
| 775 | |
| 776 | // Divide by the number of summed values. For floats this is just |
| 777 | // a div however for quantized values input normalization had |
| 778 | // to be applied. |
| 779 | Value poolVal = args[0]; |
| 780 | if (accETy.isa<FloatType>()) { |
| 781 | auto countF = rewriter.create<arith::SIToFPOp>(loc, accETy, countI); |
| 782 | poolVal = rewriter.create<arith::DivFOp>(loc, poolVal, countF) |
| 783 | ->getResult(0); |
| 784 | } else { |
| 785 | |
| 786 | // If we have quantization information we need to apply an offset |
| 787 | // for the input zp value. |
| 788 | if (op.quantization_info()) { |
| 789 | auto quantizationInfo = op.quantization_info().getValue(); |
| 790 | auto inputZp = rewriter.create<arith::ConstantOp>( |
| 791 | loc, quantizationInfo.input_zp()); |
| 792 | Value offset = |
| 793 | rewriter.create<arith::MulIOp>(loc, accETy, countI, inputZp); |
| 794 | poolVal = |
| 795 | rewriter.create<arith::SubIOp>(loc, accETy, poolVal, offset); |
| 796 | } |
| 797 | |
| 798 | // Compute the multiplier and shift values for the quantization |
| 799 | // normalization. Preferably we would want to compute more bits |
| 800 | // however 32-bits should be enough for compute. Honestly we |
| 801 | // should probably straight divide. |
| 802 | int64_t numerator = ((1 << 30) + 1); |
| 803 | int64_t shift = 30; |
| 804 | |
| 805 | Value numeratorVal = rewriter.create<arith::ConstantOp>( |
| 806 | loc, rewriter.getI32IntegerAttr(numerator)); |
| 807 | Value multiplierVal = |
| 808 | rewriter |
| 809 | .create<arith::DivUIOp>(loc, rewriter.getI32Type(), |
| 810 | numeratorVal, countI) |
| 811 | .getResult(); |
| 812 | Value shiftVal = rewriter.create<arith::ConstantOp>( |
| 813 | loc, rewriter.getI8IntegerAttr(shift)); |
| 814 | |
| 815 | auto scaled = |
| 816 | rewriter |
| 817 | .create<tosa::ApplyScaleOp>( |
| 818 | loc, rewriter.getI32Type(), poolVal, multiplierVal, |
| 819 | shiftVal, rewriter.getBoolAttr(false)) |
| 820 | .getResult(); |
| 821 | |
| 822 | // If we have quantization information we need to apply output |
| 823 | // zeropoint. |
| 824 | if (op.quantization_info()) { |
| 825 | auto quantizationInfo = op.quantization_info().getValue(); |
| 826 | auto outputZp = rewriter.create<arith::ConstantOp>( |
| 827 | loc, quantizationInfo.output_zp()); |
| 828 | scaled = rewriter.create<arith::AddIOp>(loc, scaled, outputZp) |
| 829 | .getResult(); |
| 830 | } |
| 831 | |
| 832 | // Apply Clip. |
| 833 | int64_t outBitwidth = resultETy.getIntOrFloatBitWidth(); |
| 834 | |
| 835 | auto min = rewriter.create<arith::ConstantIntOp>( |
| 836 | loc, APInt::getSignedMinValue(outBitwidth).getSExtValue(), |
| 837 | accETy); |
| 838 | auto max = rewriter.create<arith::ConstantIntOp>( |
| 839 | loc, APInt::getSignedMaxValue(outBitwidth).getSExtValue(), |
| 840 | accETy); |
| 841 | auto clamp = clampHelper<arith::CmpIOp>( |
| 842 | loc, scaled, min, max, arith::CmpIPredicate::slt, rewriter); |
| 843 | |
| 844 | poolVal = clamp; |
| 845 | // Convert type. |
| 846 | if (resultETy != clamp.getType()) { |
| 847 | poolVal = |
| 848 | rewriter.create<arith::TruncIOp>(loc, resultETy, poolVal); |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | rewriter.create<linalg::YieldOp>(loc, poolVal); |
| 853 | }); |
| 854 | |
| 855 | rewriter.replaceOp(op, genericOp.getResult(0)); |
| 856 | return success(); |
| 857 | } |
| 858 | }; |
| 859 | |
| 860 | } // namespace |
| 861 | |
| 862 | void mlir::tosa::populateTosaToLinalgNamedConversionPatterns( |
| 863 | RewritePatternSet *patterns) { |
| 864 | patterns->add< |
| 865 | // clang-format off |
| 866 | ConvConverter, |
| 867 | DepthwiseConvConverter, |
| 868 | MatMulConverter, |
| 869 | MaxPool2dConverter, |
| 870 | AvgPool2dConverter, |
| 871 | FullyConnectedConverter>(patterns->getContext()); |
| 872 | // clang-format on |
| 873 | } |