blob: 05848df43a997eb94d08f21f7eb0571c92e6aafd [file] [log] [blame]
Greg McGary2124ca12020-08-20 20:05:131//===- UnwindInfoSection.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "UnwindInfoSection.h"
10#include "Config.h"
11#include "InputSection.h"
12#include "MergedOutputSection.h"
13#include "OutputSection.h"
14#include "OutputSegment.h"
15#include "Symbols.h"
16#include "SyntheticSections.h"
17#include "Target.h"
18
19#include "lld/Common/ErrorHandler.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/BinaryFormat/MachO.h"
22
23using namespace llvm;
24using namespace llvm::MachO;
25using namespace lld;
26using namespace lld::macho;
27
28// Compact Unwind format is a Mach-O evolution of DWARF Unwind that
29// optimizes space and exception-time lookup. Most DWARF unwind
30// entries can be replaced with Compact Unwind entries, but the ones
31// that cannot are retained in DWARF form.
32//
33// This comment will address macro-level organization of the pre-link
34// and post-link compact unwind tables. For micro-level organization
35// pertaining to the bitfield layout of the 32-bit compact unwind
36// entries, see libunwind/include/mach-o/compact_unwind_encoding.h
37//
38// Important clarifying factoids:
39//
40// * __LD,__compact_unwind is the compact unwind format for compiler
41// output and linker input. It is never a final output. It could be
42// an intermediate output with the `-r` option which retains relocs.
43//
44// * __TEXT,__unwind_info is the compact unwind format for final
45// linker output. It is never an input.
46//
47// * __TEXT,__eh_frame is the DWARF format for both linker input and output.
48//
49// * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
50// level) by ascending address, and the pages are referenced by an
51// index (1st level) in the section header.
52//
53// * Following the headers in __TEXT,__unwind_info, the bulk of the
54// section contains a vector of compact unwind entries
55// `{functionOffset, encoding}` sorted by ascending `functionOffset`.
56// Adjacent entries with the same encoding can be folded to great
57// advantage, achieving a 3-order-of-magnitude reduction in the
58// number of entries.
59//
60// * The __TEXT,__unwind_info format can accommodate up to 127 unique
61// encodings for the space-efficient compressed format. In practice,
62// fewer than a dozen unique encodings are used by C++ programs of
63// all sizes. Therefore, we don't even bother implementing the regular
64// non-compressed format. Time will tell if anyone in the field ever
65// overflows the 127-encodings limit.
66
67// TODO(gkm): prune __eh_frame entries superseded by __unwind_info
68// TODO(gkm): how do we align the 2nd-level pages?
69
70UnwindInfoSection::UnwindInfoSection()
71 : SyntheticSection(segment_names::text, section_names::unwindInfo) {}
72
73bool UnwindInfoSection::isNeeded() const {
74 return (compactUnwindSection != nullptr);
75}
76
77// Scan the __LD,__compact_unwind entries and compute the space needs of
78// __TEXT,__unwind_info and __TEXT,__eh_frame
79
80void UnwindInfoSection::finalize() {
81 if (compactUnwindSection == nullptr)
82 return;
83
84 // At this point, the address space for __TEXT,__text has been
85 // assigned, so we can relocate the __LD,__compact_unwind entries
86 // into a temporary buffer. Relocation is necessary in order to sort
87 // the CU entries by function address. Sorting is necessary so that
88 // we can fold adjacent CU entries with identical
89 // encoding+personality+lsda. Folding is necessary because it reduces
90 // the number of CU entries by as much as 3 orders of magnitude!
91 compactUnwindSection->finalize();
92 assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry64) == 0);
93 size_t cuCount =
94 compactUnwindSection->getSize() / sizeof(CompactUnwindEntry64);
95 cuVector.resize(cuCount);
96 // Relocate all __LD,__compact_unwind entries
97 compactUnwindSection->writeTo(reinterpret_cast<uint8_t *>(cuVector.data()));
98
99 // Rather than sort & fold the 32-byte entries directly, we create a
100 // vector of pointers to entries and sort & fold that instead.
101 cuPtrVector.reserve(cuCount);
102 for (const auto &cuEntry : cuVector)
103 cuPtrVector.emplace_back(&cuEntry);
104 std::sort(cuPtrVector.begin(), cuPtrVector.end(),
105 [](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
106 return a->functionAddress < b->functionAddress;
107 });
108
109 // Fold adjacent entries with matching encoding+personality+lsda
110 // We use three iterators on the same cuPtrVector to fold in-situ:
111 // (1) `foldBegin` is the first of a potential sequence of matching entries
112 // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
113 // The semi-open interval [ foldBegin .. foldEnd ) contains a range
114 // entries that can be folded into a single entry and written to ...
115 // (3) `foldWrite`
116 auto foldWrite = cuPtrVector.begin();
117 for (auto foldBegin = cuPtrVector.begin(); foldBegin < cuPtrVector.end();) {
118 auto foldEnd = foldBegin;
119 while (++foldEnd < cuPtrVector.end() &&
120 (*foldBegin)->encoding == (*foldEnd)->encoding &&
121 (*foldBegin)->personality == (*foldEnd)->personality &&
122 (*foldBegin)->lsda == (*foldEnd)->lsda)
123 ;
124 *foldWrite++ = *foldBegin;
125 foldBegin = foldEnd;
126 }
127 cuPtrVector.erase(foldWrite, cuPtrVector.end());
128
129 // Count frequencies of the folded encodings
130 llvm::DenseMap<compact_unwind_encoding_t, size_t> encodingFrequencies;
131 for (auto cuPtrEntry : cuPtrVector)
132 encodingFrequencies[cuPtrEntry->encoding]++;
133 if (encodingFrequencies.size() > UNWIND_INFO_COMMON_ENCODINGS_MAX)
134 error("TODO(gkm): handle common encodings table overflow");
135
136 // Make a table of encodings, sorted by descending frequency
137 for (const auto &frequency : encodingFrequencies)
138 commonEncodings.emplace_back(frequency);
139 std::sort(commonEncodings.begin(), commonEncodings.end(),
140 [](const std::pair<compact_unwind_encoding_t, size_t> &a,
141 const std::pair<compact_unwind_encoding_t, size_t> &b) {
142 if (a.second == b.second)
143 // When frequencies match, secondarily sort on encoding
144 // to maintain parity with validate-unwind-info.py
145 return a.first > b.first;
146 return a.second > b.second;
147 });
148
149 // Split folded encodings into pages, limited by capacity of a page
150 // and the 24-bit range of function offset
151 //
152 // Record the page splits as a vector of iterators on cuPtrVector
153 // such that successive elements form a semi-open interval. E.g.,
154 // page X's bounds are thus: [ pageBounds[X] .. pageBounds[X+1] )
155 //
156 // Note that pageBounds.size() is one greater than the number of
157 // pages, and pageBounds.back() holds the sentinel cuPtrVector.cend()
158 pageBounds.push_back(cuPtrVector.cbegin());
159 // TODO(gkm): cut 1st page entries short to accommodate section headers ???
160 CompactUnwindEntry64 cuEntryKey;
161 for (size_t i = 0;;) {
162 // Limit the search to entries that can fit within a 4 KiB page.
163 const auto pageBegin = pageBounds[0] + i;
164 const auto pageMax =
165 pageBounds[0] +
166 std::min(i + UNWIND_INFO_COMPRESSED_SECOND_LEVEL_ENTRIES_MAX,
167 cuPtrVector.size());
168 // Exclude entries with functionOffset that would overflow 24 bits
169 cuEntryKey.functionAddress = (*pageBegin)->functionAddress +
170 UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
171 const auto pageBreak = std::lower_bound(
172 pageBegin, pageMax, &cuEntryKey,
173 [](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
174 return a->functionAddress < b->functionAddress;
175 });
176 pageBounds.push_back(pageBreak);
177 if (pageBreak == cuPtrVector.cend())
178 break;
179 i = pageBreak - cuPtrVector.cbegin();
180 }
181
182 // compute size of __TEXT,__unwind_info section
183 level2PagesOffset =
184 sizeof(unwind_info_section_header) +
185 commonEncodings.size() * sizeof(uint32_t) +
186 personalities.size() * sizeof(uint32_t) +
187 pageBounds.size() * sizeof(unwind_info_section_header_index_entry) +
188 lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
189 unwindInfoSize = level2PagesOffset +
190 (pageBounds.size() - 1) *
191 sizeof(unwind_info_compressed_second_level_page_header) +
192 cuPtrVector.size() * sizeof(uint32_t);
193}
194
195// All inputs are relocated and output adddresses are known, so write!
196
197void UnwindInfoSection::writeTo(uint8_t *buf) const {
198 // section header
199 auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
200 uip->version = 1;
201 uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
202 uip->commonEncodingsArrayCount = commonEncodings.size();
203 uip->personalityArraySectionOffset =
204 uip->commonEncodingsArraySectionOffset +
205 (uip->commonEncodingsArrayCount * sizeof(uint32_t));
206 uip->personalityArrayCount = personalities.size();
207 uip->indexSectionOffset = uip->personalityArraySectionOffset +
208 (uip->personalityArrayCount * sizeof(uint32_t));
209 uip->indexCount = pageBounds.size();
210
211 // Common encodings
212 auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
213 for (const auto &encoding : commonEncodings)
214 *i32p++ = encoding.first;
215
216 // Personalities
217 for (const auto &personality : personalities)
218 *i32p++ = personality;
219
220 // Level-1 index
221 uint32_t lsdaOffset =
222 uip->indexSectionOffset +
223 uip->indexCount * sizeof(unwind_info_section_header_index_entry);
224 uint64_t l2PagesOffset = level2PagesOffset;
225 auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
226 for (size_t i = 0; i < pageBounds.size() - 1; i++) {
227 iep->functionOffset = (*pageBounds[i])->functionAddress;
228 iep->secondLevelPagesSectionOffset = l2PagesOffset;
229 iep->lsdaIndexArraySectionOffset = lsdaOffset;
230 iep++;
231 // TODO(gkm): pad to 4 KiB page boundary ???
232 size_t entryCount = pageBounds[i + 1] - pageBounds[i];
233 uint64_t pageSize = sizeof(unwind_info_section_header_index_entry) +
234 entryCount * sizeof(uint32_t);
235 l2PagesOffset += pageSize;
236 }
237 // Level-1 sentinel
238 const CompactUnwindEntry64 &cuEnd = cuVector.back();
239 iep->functionOffset = cuEnd.functionAddress + cuEnd.functionLength;
240 iep->secondLevelPagesSectionOffset = 0;
241 iep->lsdaIndexArraySectionOffset = lsdaOffset;
242 iep++;
243
244 // LSDAs
245 auto *lep =
246 reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
247 for (const auto &lsda : lsdaEntries) {
248 lep->functionOffset = lsda.functionOffset;
249 lep->lsdaOffset = lsda.lsdaOffset;
250 }
251
252 // create map from encoding to common-encoding-table index compact
253 // encoding entries use 7 bits to index the common-encoding table
254 size_t i = 0;
255 llvm::DenseMap<compact_unwind_encoding_t, size_t> commonEncodingIndexes;
256 for (const auto &encoding : commonEncodings)
257 commonEncodingIndexes[encoding.first] = i++;
258
259 // Level-2 pages
260 auto *p2p =
261 reinterpret_cast<unwind_info_compressed_second_level_page_header *>(lep);
262 for (size_t i = 0; i < pageBounds.size() - 1; i++) {
263 p2p->kind = UNWIND_SECOND_LEVEL_COMPRESSED;
264 p2p->entryPageOffset =
265 sizeof(unwind_info_compressed_second_level_page_header);
266 p2p->entryCount = pageBounds[i + 1] - pageBounds[i];
267 p2p->encodingsPageOffset =
268 p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
269 p2p->encodingsCount = 0;
270 auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
271 auto cuPtrVectorIt = pageBounds[i];
272 uintptr_t functionAddressBase = (*cuPtrVectorIt)->functionAddress;
273 while (cuPtrVectorIt < pageBounds[i + 1]) {
274 const CompactUnwindEntry64 *cuep = *cuPtrVectorIt++;
275 size_t cueIndex = commonEncodingIndexes.lookup(cuep->encoding);
276 *ep++ = ((cueIndex << UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
277 (cuep->functionAddress - functionAddressBase));
278 }
279 p2p =
280 reinterpret_cast<unwind_info_compressed_second_level_page_header *>(ep);
281 }
282 assert(getSize() ==
283 static_cast<size_t>((reinterpret_cast<uint8_t *>(p2p) - buf)));
284}