peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 1 | <!-- |
| 2 | Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. |
| 3 | --> |
| 4 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 5 | # A categorization of standard (2018) and extended Fortran intrinsic procedures |
| 6 | |
| 7 | This note attempts to group the intrinsic procedures of Fortran into categories |
| 8 | of functions or subroutines with similar interfaces as an aid to |
| 9 | comprehension beyond that which might be gained from the standard's |
| 10 | alphabetical list. |
| 11 | |
| 12 | Few procedures are actually described here apart from their interfaces; see the |
| 13 | Fortran 2018 standard (section 16) for the complete story. |
| 14 | |
| 15 | Intrinsic modules are not covered here. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 16 | |
| 17 | ## General rules |
| 18 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 19 | 1. The value of any intrinsic function's `KIND` actual argument, if present, |
| 20 | must be a scalar constant integer expression, of any kind, whose value |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 21 | resolves to some supported kind of the function's result type. |
| 22 | If optional and absent, the kind of the function's result is |
| 23 | either the default kind of that category or to the kind of an argument |
| 24 | (e.g., as in `AINT`). |
| 25 | 1. Procedures are summarized with a non-Fortran syntax for brevity. |
| 26 | Wherever a function has a short definition, it appears after an |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 27 | equal sign as if it were a statement function. Any functions referenced |
| 28 | in these short summaries are intrinsic. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 29 | 1. Unless stated otherwise, an actual argument may have any supported kind |
| 30 | of a particular intrinsic type. Sometimes a pattern variable |
| 31 | can appear in a description (e.g., `REAL(k)`) when the kind of an |
| 32 | actual argument's type must match the kind of another argument, or |
| 33 | determines the kind type parameter of the function result. |
| 34 | 1. When an intrinsic type name appears without a kind (e.g., `REAL`), |
| 35 | it refers to the default kind of that type. Sometimes the word |
| 36 | `default` will appear for clarity. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 37 | 1. The names of the dummy arguments actually matter because they can |
| 38 | be used as keywords for actual arguments. |
| 39 | 1. All standard intrinsic functions are pure, even when not elemental. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 40 | 1. Assumed-rank arguments may not appear as actual arguments unless |
| 41 | expressly permitted. |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 42 | 1. When an argument is described with a default value, e.g. `KIND=KIND(0)`, |
| 43 | it is an optional argument. Optional arguments without defaults, |
| 44 | e.g. `DIM` on many transformationals, are wrapped in `[]` brackets |
| 45 | as in the Fortran standard. When an intrinsic has optional arguments |
| 46 | with and without default values, the arguments with default values |
| 47 | may appear within the brackets to preserve the order of arguments |
| 48 | (e.g., `COUNT`). |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 49 | |
| 50 | # Elemental intrinsic functions |
| 51 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 52 | Pure elemental semantics apply to these functions, to wit: when one or more of |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 53 | the actual arguments are arrays, the arguments must be conformable, and |
| 54 | the result is also an array. |
| 55 | Scalar arguments are expanded when the arguments are not all scalars. |
| 56 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 57 | ## Elemental intrinsic functions that may have unrestricted specific procedures |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame] | 58 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 59 | When an elemental intrinsic function is documented here as having an |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 60 | _unrestricted specific name_, that name may be passed as an actual |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 61 | argument, used as the target of a procedure pointer, appear in |
| 62 | a generic interface, and be otherwise used as if it were an external |
| 63 | procedure. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 64 | An `INTRINSIC` statement or attribute may have to be applied to an |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame] | 65 | unrestricted specific name to enable such usage. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 66 | |
peter klausler | 42d17f2 | 2018-09-26 19:58:43 | [diff] [blame] | 67 | When a name is being used as a specific procedure for any purpose other |
| 68 | than that of a called function, the specific instance of the function |
| 69 | that accepts and returns values of the default kinds of the intrinsic |
| 70 | types is used. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 71 | A Fortran `INTERFACE` could be written to define each of |
| 72 | these unrestricted specific intrinsic function names. |
| 73 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 74 | Calls to dummy arguments and procedure pointers that correspond to these |
| 75 | specific names must pass only scalar actual argument values. |
| 76 | |
| 77 | No other intrinsic function name can be passed as an actual argument, |
peter klausler | 42d17f2 | 2018-09-26 19:58:43 | [diff] [blame] | 78 | used as a pointer target, appear in a generic interface, or be otherwise |
| 79 | used except as the name of a called function. |
| 80 | Some of these _restricted specific intrinsic functions_, e.g. `FLOAT`, |
| 81 | provide a means for invoking a corresponding generic (`REAL` in the case of `FLOAT`) |
| 82 | with forced argument and result kinds. |
| 83 | Others, viz. `CHAR`, `ICHAR`, `INT`, `REAL`, and the lexical comparisons like `LGE`, |
| 84 | have the same name as their generic functions, and it is not clear what purpose |
| 85 | is accomplished by the standard by defining them as specific functions. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 86 | |
| 87 | ### Trigonometric elemental intrinsic functions, generic and (mostly) specific |
| 88 | All of these functions can be used as unrestricted specific names. |
| 89 | |
| 90 | ``` |
| 91 | ACOS(REAL(k) X) -> REAL(k) |
| 92 | ASIN(REAL(k) X) -> REAL(k) |
| 93 | ATAN(REAL(k) X) -> REAL(k) |
| 94 | ATAN(REAL(k) Y, REAL(k) X) -> REAL(k) = ATAN2(Y, X) |
| 95 | ATAN2(REAL(k) Y, REAL(k) X) -> REAL(k) |
| 96 | COS(REAL(k) X) -> REAL(k) |
| 97 | COSH(REAL(k) X) -> REAL(k) |
| 98 | SIN(REAL(k) X) -> REAL(k) |
| 99 | SINH(REAL(k) X) -> REAL(k) |
| 100 | TAN(REAL(k) X) -> REAL(k) |
| 101 | TANH(REAL(k) X) -> REAL(k) |
| 102 | ``` |
| 103 | |
| 104 | These `COMPLEX` versions of some of those functions, and the |
| 105 | inverse hyperbolic functions, cannot be used as specific names. |
| 106 | ``` |
| 107 | ACOS(COMPLEX(k) X) -> COMPLEX(k) |
| 108 | ASIN(COMPLEX(k) X) -> COMPLEX(k) |
| 109 | ATAN(COMPLEX(k) X) -> COMPLEX(k) |
| 110 | ACOSH(REAL(k) X) -> REAL(k) |
| 111 | ACOSH(COMPLEX(k) X) -> COMPLEX(k) |
| 112 | ASINH(REAL(k) X) -> REAL(k) |
| 113 | ASINH(COMPLEX(k) X) -> COMPLEX(k) |
| 114 | ATANH(REAL(k) X) -> REAL(k) |
| 115 | ATANH(COMPLEX(k) X) -> COMPLEX(k) |
| 116 | COS(COMPLEX(k) X) -> COMPLEX(k) |
| 117 | COSH(COMPLEX(k) X) -> COMPLEX(k) |
| 118 | SIN(COMPLEX(k) X) -> COMPLEX(k) |
| 119 | SINH(COMPLEX(k) X) -> COMPLEX(k) |
| 120 | TAN(COMPLEX(k) X) -> COMPLEX(k) |
| 121 | TANH(COMPLEX(k) X) -> COMPLEX(k) |
| 122 | ``` |
| 123 | |
| 124 | ### Non-trigonometric elemental intrinsic functions, generic and specific |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 125 | These functions *can* be used as unrestricted specific names. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 126 | ``` |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 127 | ABS(REAL(k) A) -> REAL(k) = SIGN(A, 0.0) |
| 128 | AIMAG(COMPLEX(k) Z) -> REAL(k) = Z%IM |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 129 | AINT(REAL(k) A, KIND=k) -> REAL(KIND) |
| 130 | ANINT(REAL(k) A, KIND=k) -> REAL(KIND) |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 131 | CONJG(COMPLEX(k) Z) -> COMPLEX(k) = CMPLX(Z%RE, -Z%IM) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame] | 132 | DIM(REAL(k) X, REAL(k) Y) -> REAL(k) = X-MIN(X,Y) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 133 | DPROD(default REAL X, default REAL Y) -> DOUBLE PRECISION = DBLE(X)*DBLE(Y) |
| 134 | EXP(REAL(k) X) -> REAL(k) |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 135 | INDEX(CHARACTER(k) STRING, CHARACTER(k) SUBSTRING, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND) |
| 136 | LEN(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 137 | LOG(REAL(k) X) -> REAL(k) |
| 138 | LOG10(REAL(k) X) -> REAL(k) |
| 139 | MOD(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k) = A-P*INT(A/P) |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 140 | NINT(REAL(k) A, KIND=KIND(0)) -> INTEGER(KIND) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 141 | SIGN(REAL(k) A, REAL(k) B) -> REAL(k) |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 142 | SQRT(REAL(k) X) -> REAL(k) = X ** 0.5 |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 143 | ``` |
| 144 | |
peter klausler | 970e746c | 2018-09-25 22:36:00 | [diff] [blame] | 145 | These variants, however *cannot* be used as specific names without recourse to an alias |
| 146 | from the following section: |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 147 | ``` |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 148 | ABS(INTEGER(k) A) -> INTEGER(k) = SIGN(A, 0) |
| 149 | ABS(COMPLEX(k) A) -> REAL(k) = HYPOT(A%RE, A%IM) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame] | 150 | DIM(INTEGER(k) X, INTEGER(k) Y) -> INTEGER(k) = X-MIN(X,Y) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 151 | EXP(COMPLEX(k) X) -> COMPLEX(k) |
| 152 | LOG(COMPLEX(k) X) -> COMPLEX(k) |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 153 | MOD(REAL(k) A, REAL(k) P) -> REAL(k) = A-P*INT(A/P) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 154 | SIGN(INTEGER(k) A, INTEGER(k) B) -> INTEGER(k) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame] | 155 | SQRT(COMPLEX(k) X) -> COMPLEX(k) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 156 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 157 | |
| 158 | ### Unrestricted specific aliases for some elemental intrinsic functions with distinct names |
| 159 | |
| 160 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 161 | ALOG(REAL X) -> REAL = LOG(X) |
| 162 | ALOG10(REAL X) -> REAL = LOG10(X) |
| 163 | AMOD(REAL A, REAL P) -> REAL = MOD(A, P) |
| 164 | CABS(COMPLEX A) = ABS(A) |
| 165 | CCOS(COMPLEX X) = COS(X) |
| 166 | CEXP(COMPLEX A) -> COMPLEX = EXP(A) |
| 167 | CLOG(COMPLEX X) -> COMPLEX = LOG(X) |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 168 | CSIN(COMPLEX X) -> COMPLEX = SIN(X) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 169 | CSQRT(COMPLEX X) -> COMPLEX = SQRT(X) |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 170 | CTAN(COMPLEX X) -> COMPLEX = TAN(X) |
| 171 | DABS(DOUBLE PRECISION A) -> DOUBLE PRECISION = ABS(A) |
| 172 | DACOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = ACOS(X) |
| 173 | DASIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ASIN(X) |
| 174 | DATAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN(X) |
| 175 | DATAN2(DOUBLE PRECISION Y, DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN2(Y, X) |
| 176 | DCOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = COS(X) |
| 177 | DCOSH(DOUBLE PRECISION X) -> DOUBLE PRECISION = COSH(X) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame] | 178 | DDIM(DOUBLE PRECISION X, DOUBLE PRECISION Y) -> DOUBLE PRECISION = X-MIN(X,Y) |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 179 | DEXP(DOUBLE PRECISION X) -> DOUBLE PRECISION = EXP(X) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 180 | DINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = AINT(A) |
| 181 | DLOG(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG(X) |
| 182 | DLOG10(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG10(X) |
| 183 | DMOD(DOUBLE PRECISION A, DOUBLE PRECISION P) -> DOUBLE PRECISION = MOD(A, P) |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 184 | DNINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = ANINT(A) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 185 | DSIGN(DOUBLE PRECISION A, DOUBLE PRECISION B) -> DOUBLE PRECISION = SIGN(A, B) |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 186 | DSIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = SIN(X) |
| 187 | DSINH(DOUBLE PRECISION X) -> DOUBLE PRECISION = SINH(X) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 188 | DSQRT(DOUBLE PRECISION X) -> DOUBLE PRECISION = SQRT(X) |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 189 | DTAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = TAN(X) |
| 190 | DTANH(DOUBLE PRECISION X) -> DOUBLE PRECISION = TANH(X) |
| 191 | IABS(INTEGER A) -> INTEGER = ABS(A) |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame] | 192 | IDIM(INTEGER X, INTEGER Y) -> INTEGER = X-MIN(X,Y) |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 193 | IDNINT(DOUBLE PRECISION A) -> INTEGER = NINT(A) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 194 | ISIGN(INTEGER A, INTEGER B) -> INTEGER = SIGN(A, B) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 195 | ``` |
| 196 | |
| 197 | ## Generic elemental intrinsic functions without specific names |
| 198 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 199 | (No procedures after this point can be passed as actual arguments, used as |
| 200 | pointer targets, or appear as specific procedures in generic interfaces.) |
| 201 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 202 | ### Elemental conversions |
| 203 | |
| 204 | ``` |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 205 | ACHAR(INTEGER(k) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1) |
| 206 | CEILING(REAL() A, KIND=KIND(0)) -> INTEGER(KIND) |
| 207 | CHAR(INTEGER(any) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1) |
| 208 | CMPLX(COMPLEX(k) X, KIND=KIND(0.0D0)) -> COMPLEX(KIND) |
| 209 | CMPLX(INTEGER or REAL or BOZ X, INTEGER or REAL or BOZ Y=0, KIND=KIND((0,0))) -> COMPLEX(KIND) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 210 | EXPONENT(REAL(any) X) -> default INTEGER |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 211 | FLOOR(REAL(any) A, KIND=KIND(0)) -> INTEGER(KIND) |
| 212 | IACHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND) |
| 213 | ICHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND) |
| 214 | INT(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0)) -> INTEGER(KIND) |
| 215 | LOGICAL(LOGICAL(any) L, KIND=KIND(.TRUE.)) -> LOGICAL(KIND) |
| 216 | REAL(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0.0)) -> REAL(KIND) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 217 | ``` |
| 218 | |
| 219 | ### Other generic elemental intrinsic functions without specific names |
| 220 | N.B. `BESSEL_JN(N1, N2, X)` and `BESSEL_YN(N1, N2, X)` are categorized |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 221 | below with the _transformational_ intrinsic functions. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 222 | |
| 223 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 224 | BESSEL_J0(REAL(k) X) -> REAL(k) |
| 225 | BESSEL_J1(REAL(k) X) -> REAL(k) |
| 226 | BESSEL_JN(INTEGER(n) N, REAL(k) X) -> REAL(k) |
| 227 | BESSEL_Y0(REAL(k) X) -> REAL(k) |
| 228 | BESSEL_Y1(REAL(k) X) -> REAL(k) |
| 229 | BESSEL_YN(INTEGER(n) N, REAL(k) X) -> REAL(k) |
| 230 | ERF(REAL(k) X) -> REAL(k) |
| 231 | ERFC(REAL(k) X) -> REAL(k) |
| 232 | ERFC_SCALED(REAL(k) X) -> REAL(k) |
| 233 | FRACTION(REAL(k) X) -> REAL(k) |
| 234 | GAMMA(REAL(k) X) -> REAL(k) |
peter klausler | 970e746c | 2018-09-25 22:36:00 | [diff] [blame] | 235 | HYPOT(REAL(k) X, REAL(k) Y) -> REAL(k) = SQRT(X*X+Y*Y) without spurious overflow |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 236 | IMAGE_STATUS(INTEGER(any) IMAGE [, scalar TEAM_TYPE TEAM ]) -> default INTEGER |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 237 | IS_IOSTAT_END(INTEGER(any) I) -> default LOGICAL |
| 238 | IS_IOSTAT_EOR(INTEGER(any) I) -> default LOGICAL |
| 239 | LOG_GAMMA(REAL(k) X) -> REAL(k) |
| 240 | MAX(INTEGER(k) ...) -> INTEGER(k) |
| 241 | MAX(REAL(k) ...) -> REAL(k) |
| 242 | MAX(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...))) |
| 243 | MERGE(any type TSOURCE, same type FSOURCE, LOGICAL(any) MASK) -> type of FSOURCE |
| 244 | MIN(INTEGER(k) ...) -> INTEGER(k) |
| 245 | MIN(REAL(k) ...) -> REAL(k) |
| 246 | MIN(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...))) |
| 247 | MODULO(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k); P*result >= 0 |
| 248 | MODULO(REAL(k) A, REAL(k) P) -> REAL(k) = A - P*FLOOR(A/P) |
| 249 | NEAREST(REAL(k) X, REAL(any) S) -> REAL(k) |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 250 | OUT_OF_RANGE(INTEGER(any) X, scalar INTEGER or REAL(k) MOLD) -> default LOGICAL |
| 251 | OUT_OF_RANGE(REAL(any) X, scalar REAL(k) MOLD) -> default LOGICAL |
| 252 | OUT_OF_RANGE(REAL(any) X, scalar INTEGER(any) MOLD, scalar LOGICAL(any) ROUND=.FALSE.) -> default LOGICAL |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 253 | RRSPACING(REAL(k) X) -> REAL(k) |
| 254 | SCALE(REAL(k) X, INTEGER(any) I) -> REAL(k) |
| 255 | SET_EXPONENT(REAL(k) X, INTEGER(any) I) -> REAL(k) |
| 256 | SPACING(REAL(k) X) -> REAL(k) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 257 | ``` |
| 258 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 259 | ### Restricted specific aliases for elemental conversions &/or extrema with default intrinsic types |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 260 | |
| 261 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 262 | AMAX0(INTEGER ...) = REAL(MAX(...)) |
| 263 | AMAX1(REAL ...) = MAX(...) |
| 264 | AMIN0(INTEGER...) = REAL(MIN(...)) |
| 265 | AMIN1(REAL ...) = MIN(...) |
| 266 | DBLE(REAL A) = REAL(A, KIND=KIND(0.0D0)) |
| 267 | DMAX1(DOUBLE PRECISION ...) = MAX(...) |
| 268 | DMIN1(DOUBLE PRECISION ...) = MIN(...) |
| 269 | FLOAT(INTEGER I) = REAL(I) |
| 270 | IDINT(DOUBLE PRECISION A) = INT(A) |
| 271 | IFIX(REAL A) = INT(A) |
| 272 | MAX0(INTEGER ...) = MAX(...) |
| 273 | MAX1(REAL ...) = INT(MAX(...)) |
| 274 | MIN0(INTEGER ...) = MIN(...) |
| 275 | MIN1(REAL ...) = INT(MIN(...)) |
| 276 | SNGL(DOUBLE PRECISION A) = REAL(A) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 277 | ``` |
| 278 | |
| 279 | ### Generic elemental bit manipulation intrinsic functions |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 280 | Many of these accept a typeless "BOZ" literal as an actual argument. |
| 281 | It is interpreted as having the kind of intrinsic `INTEGER` type |
| 282 | as another argument, as if the typeless were implicitly wrapped |
| 283 | in a call to `INT()`. |
| 284 | When multiple arguments can be either `INTEGER` values or typeless |
| 285 | constants, it is forbidden for *all* of them to be typeless |
| 286 | constants if the result of the function is `INTEGER` |
| 287 | (i.e., only `BGE`, `BGT`, `BLE`, and `BLT` can have multiple |
| 288 | typeless arguments). |
| 289 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 290 | ``` |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 291 | BGE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL |
| 292 | BGT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL |
| 293 | BLE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL |
| 294 | BLT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 295 | BTEST(INTEGER(n1) I, INTEGER(n2) POS) -> default LOGICAL |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 296 | DSHIFTL(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 297 | DSHIFTL(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k) |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 298 | DSHIFTR(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 299 | DSHIFTR(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k) |
| 300 | IAND(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) |
| 301 | IAND(BOZ I, INTEGER(k) J) -> INTEGER(k) |
| 302 | IBCLR(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 303 | IBITS(INTEGER(k) I, INTEGER(n1) POS, INTEGER(n2) LEN) -> INTEGER(k) |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 304 | IBSET(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 305 | IEOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) |
| 306 | IEOR(BOZ I, INTEGER(k) J) -> INTEGER(k) |
| 307 | IOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) |
| 308 | IOR(BOZ I, INTEGER(k) J) -> INTEGER(k) |
| 309 | ISHFT(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 310 | ISHFTC(INTEGER(k) I, INTEGER(n1) SHIFT, INTEGER(n2) SIZE=BIT_SIZE(I)) -> INTEGER(k) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 311 | LEADZ(INTEGER(any) I) -> default INTEGER |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 312 | MASKL(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND) |
| 313 | MASKR(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 314 | MERGE_BITS(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK))) |
| 315 | MERGE_BITS(BOZ I, INTEGER(k) J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK))) |
| 316 | NOT(INTEGER(k) I) -> INTEGER(k) |
| 317 | POPCNT(INTEGER(any) I) -> default INTEGER |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 318 | POPPAR(INTEGER(any) I) -> default INTEGER = IAND(POPCNT(I), Z'1') |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 319 | SHIFTA(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) |
| 320 | SHIFTL(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) |
| 321 | SHIFTR(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) |
| 322 | TRAILZ(INTEGER(any) I) -> default INTEGER |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 323 | ``` |
| 324 | |
| 325 | ### Character elemental intrinsic functions |
| 326 | See also `INDEX` and `LEN` above among the elemental intrinsic functions with |
| 327 | unrestricted specific names. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 328 | ``` |
| 329 | ADJUSTL(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n) |
| 330 | ADJUSTR(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n) |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 331 | LEN_TRIM(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 332 | LGE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL |
| 333 | LGT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL |
| 334 | LLE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL |
| 335 | LLT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 336 | SCAN(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND) |
| 337 | VERIFY(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 338 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 339 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 340 | `SCAN` returns the index of the first (or last, if `BACK=.TRUE.`) character in `STRING` |
| 341 | that is present in `SET`, or zero if none is. |
| 342 | |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 343 | `VERIFY` is essentially the opposite: it returns the index of the first (or last) character |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 344 | in `STRING` that is *not* present in `SET`, or zero if all are. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 345 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 346 | # Transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 347 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 348 | This category comprises a large collection of intrinsic functions that |
| 349 | are collected together because they somehow transform their arguments |
| 350 | in a way that prevents them from being elemental. |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 351 | All of them are pure, however. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 352 | |
| 353 | Some general rules apply to the transformational intrinsic functions: |
| 354 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 355 | 1. `DIM` arguments are optional; if present, the actual argument must be |
| 356 | a scalar integer of any kind. |
| 357 | 1. When an optional `DIM` argument is absent, or an `ARRAY` or `MASK` |
| 358 | argument is a vector, the result of the function is scalar; otherwise, |
| 359 | the result is an array of the same shape as the `ARRAY` or `MASK` |
| 360 | argument with the dimension `DIM` removed from the shape. |
| 361 | 1. When a function takes an optional `MASK` argument, it must be conformable |
| 362 | with its `ARRAY` argument if it is present, and the mask can be any kind |
| 363 | of `LOGICAL`. It can be scalar. |
| 364 | 1. The type `numeric` here can be any kind of `INTEGER`, `REAL`, or `COMPLEX`. |
| 365 | 1. The type `relational` here can be any kind of `INTEGER`, `REAL`, or `CHARACTER`. |
| 366 | 1. The type `any` here denotes any intrinsic or derived type. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 367 | 1. The notation `(..)` denotes an array of any rank (but not an assumed-rank array). |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 368 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 369 | ## Logical reduction transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 370 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 371 | ALL(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) |
| 372 | ANY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) |
| 373 | COUNT(LOGICAL(any) MASK(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 374 | PARITY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 375 | ``` |
| 376 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 377 | ## Numeric reduction transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 378 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 379 | IALL(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) |
| 380 | IANY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) |
| 381 | IPARITY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) |
| 382 | NORM2(REAL(k) X(..) [, DIM ]) -> REAL(k) |
| 383 | PRODUCT(numeric ARRAY(..) [, DIM, MASK ]) -> numeric |
| 384 | SUM(numeric ARRAY(..) [, DIM, MASK ]) -> numeric |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 385 | ``` |
| 386 | |
peter klausler | 970e746c | 2018-09-25 22:36:00 | [diff] [blame] | 387 | `NORM2` generalizes `HYPOT` by computing `SQRT(SUM(X*X))` while avoiding spurious overflows. |
| 388 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 389 | ## Extrema reduction transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 390 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 391 | MAXVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k) |
| 392 | MINVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 393 | ``` |
| 394 | |
| 395 | ### Locational transformational intrinsic functions |
| 396 | When the optional `DIM` argument is absent, the result is an `INTEGER(KIND)` |
| 397 | vector whose length is the rank of `ARRAY`. |
| 398 | When the optional `DIM` argument is present, the result is an `INTEGER(KIND)` |
| 399 | array of rank `RANK(ARRAY)-1` and shape equal to that of `ARRAY` with |
| 400 | the dimension `DIM` removed. |
| 401 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 402 | The optional `BACK` argument is a scalar LOGICAL value of any kind. |
| 403 | When present and `.TRUE.`, it causes the function to return the index |
| 404 | of the *last* occurence of the target or extreme value. |
| 405 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 406 | For `FINDLOC`, `ARRAY` may have any of the five intrinsic types, and `VALUE` |
| 407 | must a scalar value of a type for which `ARRAY==VALUE` or `ARRAY .EQV. VALUE` |
| 408 | is an acceptable expression. |
| 409 | |
| 410 | ``` |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 411 | FINDLOC(intrinsic ARRAY(..), scalar VALUE [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ]) |
| 412 | MAXLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ]) |
| 413 | MINLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ]) |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 414 | ``` |
| 415 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 416 | ## Data rearrangement transformational intrinsic functions |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 417 | The optional `DIM` argument to these functions must be a scalar integer of |
| 418 | any kind, and it takes a default value of 1 when absent. |
| 419 | |
| 420 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 421 | CSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, DIM ]) -> same type/kind/shape as ARRAY |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 422 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 423 | Either `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 424 | |
| 425 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 426 | EOSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, BOUNDARY, DIM ]) -> same type/kind/shape as ARRAY |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 427 | ``` |
| 428 | * `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed. |
| 429 | * If `BOUNDARY` is present, it must have the same type and parameters as `ARRAY`. |
| 430 | * If `BOUNDARY` is absent, `ARRAY` must be of an intrinsic type, and the default `BOUNDARY` is the obvious `0`, `' '`, or `.FALSE.` value of `KIND(ARRAY)`. |
| 431 | * If `BOUNDARY` is present, either it is scalar, or `RANK(BOUNDARY) == RANK(ARRAY) - 1` and `SHAPE(BOUNDARY)` is that of `SHAPE(ARRAY)` with element `DIM` |
| 432 | removed. |
| 433 | |
| 434 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 435 | PACK(any ARRAY(..), LOGICAL(any) MASK(..)) -> vector of same type and kind as ARRAY |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 436 | ``` |
| 437 | * `MASK` is conformable with `ARRAY` and may be scalar. |
| 438 | * The length of the result vector is `COUNT(MASK)` if `MASK` is an array, else `SIZE(ARRAY)` if `MASK` is `.TRUE.`, else zero. |
| 439 | |
| 440 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 441 | PACK(any ARRAY(..), LOGICAL(any) MASK(..), any VECTOR(n)) -> vector of same type, kind, and size as VECTOR |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 442 | ``` |
| 443 | * `MASK` is conformable with `ARRAY` and may be scalar. |
| 444 | * `VECTOR` has the same type and kind as `ARRAY`. |
| 445 | * `VECTOR` must not be smaller than result of `PACK` with no `VECTOR` argument. |
| 446 | * The leading elements of `VECTOR` are replaced with elements from `ARRAY` as |
| 447 | if `PACK` had been invoked without `VECTOR`. |
| 448 | |
| 449 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 450 | RESHAPE(any SOURCE(..), INTEGER(k) SHAPE(n) [, PAD(..), INTEGER(k2) ORDER(n) ]) -> SOURCE array with shape SHAPE |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 451 | ``` |
| 452 | * If `ORDER` is present, it is a vector of the same size as `SHAPE`, and |
| 453 | contains a permutation. |
| 454 | * The element(s) of `PAD` are used to fill out the result once `SOURCE` |
| 455 | has been consumed. |
| 456 | |
| 457 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 458 | SPREAD(any SOURCE, DIM, scalar INTEGER(any) NCOPIES) -> same type as SOURCE, rank=RANK(SOURCE)+1 |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 459 | TRANSFER(any SOURCE, any MOLD) -> scalar if MOLD is scalar, else vector; same type and kind as MOLD |
| 460 | TRANSFER(any SOURCE, any MOLD, scalar INTEGER(any) SIZE) -> vector(SIZE) of type and kind of MOLD |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 461 | TRANSPOSE(any MATRIX(n,m)) -> matrix(m,n) of same type and kind as MATRIX |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 462 | ``` |
| 463 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 464 | The shape of the result of `SPREAD` is the same as that of `SOURCE`, with `NCOPIES` inserted |
| 465 | at position `DIM`. |
| 466 | |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 467 | ``` |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 468 | UNPACK(any VECTOR(n), LOGICAL(any) MASK(..), FIELD) -> type and kind of VECTOR, shape of MASK |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 469 | ``` |
| 470 | `FIELD` has same type and kind as `VECTOR` and is conformable with `MASK`. |
| 471 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 472 | ## Other transformational intrinsic functions |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 473 | ``` |
| 474 | BESSEL_JN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0)) |
| 475 | BESSEL_YN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0)) |
| 476 | COMMAND_ARGUMENT_COUNT() -> scalar default INTEGER |
| 477 | DOT_PRODUCT(LOGICAL(k) VECTOR_A(n), LOGICAL(k) VECTOR_B(n)) -> LOGICAL(k) = ANY(VECTOR_A .AND. VECTOR_B) |
| 478 | DOT_PRODUCT(COMPLEX(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(CONJG(VECTOR_A) * VECTOR_B) |
| 479 | DOT_PRODUCT(INTEGER(any) or REAL(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(VECTOR_A * VECTOR_B) |
| 480 | MATMUL(numeric ARRAY_A(j), numeric ARRAY_B(j,k)) -> numeric vector(k) |
| 481 | MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k)) -> numeric vector(j) |
| 482 | MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k,m)) -> numeric matrix(j,m) |
| 483 | MATMUL(LOGICAL(n1) ARRAY_A(j), LOGICAL(n2) ARRAY_B(j,k)) -> LOGICAL vector(k) |
| 484 | MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k)) -> LOGICAL vector(j) |
| 485 | MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k,m)) -> LOGICAL matrix(j,m) |
| 486 | NULL([POINTER/ALLOCATABLE MOLD]) -> POINTER |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 487 | REDUCE(any ARRAY(..), function OPERATION [, DIM, LOGICAL(any) MASK(..), IDENTITY, LOGICAL ORDERED=.FALSE. ]) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 488 | REPEAT(CHARACTER(k,n) STRING, INTEGER(any) NCOPIES) -> CHARACTER(k,n*NCOPIES) |
| 489 | SELECTED_CHAR_KIND('DEFAULT' or 'ASCII' or 'ISO_10646' or ...) -> scalar default INTEGER |
| 490 | SELECTED_INT_KIND(scalar INTEGER(any) R) -> scalar default INTEGER |
| 491 | SELECTED_REAL_KIND([scalar INTEGER(any) P, scalar INTEGER(any) R, scalar INTEGER(any) RADIX]) -> scalar default INTEGER |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 492 | SHAPE(SOURCE, KIND=KIND(0)) -> INTEGER(KIND)(RANK(SOURCE)) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 493 | TRIM(CHARACTER(k,n) STRING) -> CHARACTER(k) |
| 494 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 495 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 496 | The type and kind of the result of a numeric `MATMUL` is the same as would result from |
| 497 | a multiplication of an element of ARRAY_A and an element of ARRAY_B. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 498 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 499 | The kind of the `LOGICAL` result of a `LOGICAL` `MATMUL` is the same as would result |
| 500 | from an intrinsic `.AND.` operation between an element of `ARRAY_A` and an element |
| 501 | of `ARRAY_B`. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 502 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 503 | Note that `DOT_PRODUCT` with a `COMPLEX` first argument operates on its complex conjugate, |
| 504 | but that `MATMUL` with a `COMPLEX` argument does not. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 505 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 506 | The `MOLD` argument to `NULL` may be omitted only in a context where the type of the pointer is known, |
| 507 | such as an initializer or pointer assignment statement. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 508 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 509 | At least one argument must be present in a call to `SELECTED_REAL_KIND`. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 510 | |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 511 | An assumed-rank array may be passed to `SHAPE`, and if it is associated with an assumed-size array, |
| 512 | the last element of the result will be -1. |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 513 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 514 | ## Coarray transformational intrinsic functions |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 515 | ``` |
| 516 | FAILED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector |
| 517 | GET_TEAM([scalar INTEGER(?) LEVEL]) -> scalar TEAM_TYPE |
| 518 | IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n) [, scalar TEAM_TYPE TEAM ]) -> scalar default INTEGER |
| 519 | IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n), scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER |
| 520 | NUM_IMAGES([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER |
| 521 | NUM_IMAGES(scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER |
| 522 | STOPPED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector |
| 523 | TEAM_NUMBER([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER |
| 524 | THIS_IMAGE([COARRAY, DIM, scalar TEAM_TYPE TEAM]) -> default INTEGER |
| 525 | ``` |
| 526 | The result of `THIS_IMAGE` is a scalar if `DIM` is present or if `COARRAY` is absent, |
| 527 | and a vector whose length is the corank of `COARRAY` otherwise. |
| 528 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 529 | # Inquiry intrinsic functions |
| 530 | These are neither elemental nor transformational; all are pure. |
| 531 | |
| 532 | ## Type inquiry intrinsic functions |
peter klausler | ad9aede | 2018-10-11 21:51:14 | [diff] [blame^] | 533 | All of these functions return constants. |
| 534 | The value of the argument is not used, and may well be undefined. |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 535 | ``` |
| 536 | BIT_SIZE(INTEGER(k) I(..)) -> INTEGER(k) |
| 537 | DIGITS(INTEGER or REAL X(..)) -> scalar default INTEGER |
| 538 | EPSILON(REAL(k) X(..)) -> scalar REAL(k) |
| 539 | HUGE(INTEGER(k) X(..)) -> scalar INTEGER(k) |
| 540 | HUGE(REAL(k) X(..)) -> scalar of REAL(k) |
| 541 | KIND(intrinsic X(..)) -> scalar default INTEGER |
| 542 | MAXEXPONENT(REAL(k) X(..)) -> scalar default INTEGER |
| 543 | MINEXPONENT(REAL(k) X(..)) -> scalar default INTEGER |
| 544 | NEW_LINE(CHARACTER(k,n) A(..)) -> scalar CHARACTER(k,1) = CHAR(10) |
peter klausler | ad9aede | 2018-10-11 21:51:14 | [diff] [blame^] | 545 | PRECISION(REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER |
| 546 | RADIX(INTEGER(k) or REAL(k) X(..)) -> scalar default INTEGER, always 2 |
| 547 | RANGE(INTEGER(k) or REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 548 | TINY(REAL(k) X(..)) -> scalar REAL(k) |
| 549 | ``` |
| 550 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 551 | ## Bound and size inquiry intrinsic functions |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 552 | The results are scalar when `DIM` is present, and a vector of length=(co)rank(`(CO)ARRAY`) |
| 553 | when `DIM` is absent. |
| 554 | ``` |
| 555 | LBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 556 | LCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 557 | SIZE(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 558 | UBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 559 | UCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) |
| 560 | ``` |
| 561 | |
| 562 | Assumed-rank arrays may be used with `LBOUND`, `SIZE`, and `UBOUND`. |
| 563 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 564 | ## Object characteristic inquiry intrinsic functions |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 565 | ``` |
| 566 | ALLOCATED(any type ALLOCATABLE ARRAY) -> scalar default LOGICAL |
| 567 | ALLOCATED(any type ALLOCATABLE SCALAR) -> scalar default LOGICAL |
| 568 | ASSOCIATED(any type POINTER POINTER [, same type TARGET]) -> scalar default LOGICAL |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 569 | COSHAPE(COARRAY, KIND=KIND(0)) -> INTEGER(KIND) vector of length corank(COARRAY) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 570 | EXTENDS_TYPE_OF(A, MOLD) -> default LOGICAL |
| 571 | IS_CONTIGUOUS(any data ARRAY(..)) -> scalar default LOGICAL |
| 572 | PRESENT(OPTIONAL A) -> scalar default LOGICAL |
| 573 | RANK(any data A) -> scalar default INTEGER = 0 if A is scalar, SIZE(SHAPE(A)) if A is an array, rank if assumed-rank |
| 574 | SAME_TYPE_AS(A, B) -> scalar default LOGICAL |
peter klausler | bab1f67 | 2018-09-26 17:42:55 | [diff] [blame] | 575 | STORAGE_SIZE(any data A, KIND=KIND(0)) -> INTEGER(KIND) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 576 | ``` |
| 577 | The arguments to `EXTENDS_TYPE_OF` must be of extensible derived types or be unlimited polymorphic. |
| 578 | |
| 579 | An assumed-rank array may be used with `IS_CONTIGUOUS` and `RANK`. |
| 580 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 581 | # Intrinsic subroutines |
peter klausler | 970e746c | 2018-09-25 22:36:00 | [diff] [blame] | 582 | |
| 583 | (*TODO*: complete these descriptions) |
| 584 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 585 | ## One elemental intrinsic subroutine |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 586 | ``` |
| 587 | INTERFACE |
| 588 | SUBROUTINE MVBITS(FROM, FROMPOS, LEN, TO, TOPOS) |
| 589 | INTEGER(k1) :: FROM, TO |
| 590 | INTENT(IN) :: FROM |
| 591 | INTENT(INOUT) :: TO |
| 592 | INTEGER(k2), INTENT(IN) :: FROMPOS |
| 593 | INTEGER(k3), INTENT(IN) :: LEN |
| 594 | INTEGER(k4), INTENT(IN) :: TOPOS |
| 595 | END SUBROUTINE |
| 596 | END INTERFACE |
| 597 | ``` |
| 598 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 599 | ## Non-elemental intrinsic subroutines |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 600 | ``` |
| 601 | CALL CPU_TIME(REAL INTENT(OUT) TIME) |
| 602 | ``` |
| 603 | The kind of `TIME` is not specified in the standard. |
| 604 | |
| 605 | ``` |
peter klausler | ad9aede | 2018-10-11 21:51:14 | [diff] [blame^] | 606 | CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES]) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 607 | ``` |
| 608 | * All arguments are `OPTIONAL` and `INTENT(OUT)`. |
| 609 | * `DATE`, `TIME`, and `ZONE` are scalar default `CHARACTER`. |
| 610 | * `VALUES` is a vector of at least 8 elements of `INTEGER(KIND >= 2)`. |
| 611 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 612 | CALL EVENT_QUERY(EVENT, COUNT [, STAT]) |
| 613 | CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ]) |
| 614 | CALL GET_COMMAND([COMMAND, LENGTH, STATUS, ERRMSG ]) |
| 615 | CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS, ERRMSG ]) |
| 616 | CALL GET_ENVIRONMENT_VARIABLE(NAME [, VALUE, LENGTH, STATUS, TRIM_NAME, ERRMSG ]) |
| 617 | CALL MOVE_ALLOC(ALLOCATABLE INTENT(INOUT) FROM, ALLOCATABLE INTENT(OUT) TO [, STAT, ERRMSG ]) |
| 618 | CALL RANDOM_INIT(LOGICAL(k1) INTENT(IN) REPEATABLE, LOGICAL(k2) INTENT(IN) IMAGE_DISTINCT) |
| 619 | CALL RANDOM_NUMBER(REAL(k) INTENT(OUT) HARVEST(..)) |
| 620 | CALL RANDOM_SEED([SIZE, PUT, GET]) |
| 621 | CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX]) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 622 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 623 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 624 | ## Atomic intrinsic subroutines |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 625 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 626 | CALL ATOMIC_ADD(ATOM, VALUE [, STAT=]) |
| 627 | CALL ATOMIC_AND(ATOM, VALUE [, STAT=]) |
| 628 | CALL ATOMIC_CAS(ATOM, OLD, COMPARE, NEW [, STAT=]) |
| 629 | CALL ATOMIC_DEFINE(ATOM, VALUE [, STAT=]) |
| 630 | CALL ATOMIC_FETCH_ADD(ATOM, VALUE, OLD [, STAT=]) |
| 631 | CALL ATOMIC_FETCH_AND(ATOM, VALUE, OLD [, STAT=]) |
| 632 | CALL ATOMIC_FETCH_OR(ATOM, VALUE, OLD [, STAT=]) |
| 633 | CALL ATOMIC_FETCH_XOR(ATOM, VALUE, OLD [, STAT=]) |
| 634 | CALL ATOMIC_OR(ATOM, VALUE [, STAT=]) |
| 635 | CALL ATOMIC_REF(VALUE, ATOM [, STAT=]) |
| 636 | CALL ATOMIC_XOR(ATOM, VALUE [, STAT=]) |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 637 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 638 | |
peter klausler | e7c5a470 | 2018-09-25 22:23:01 | [diff] [blame] | 639 | ## Collective intrinsic subroutines |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 640 | ``` |
peter klausler | 3cecff6 | 2018-09-25 20:26:35 | [diff] [blame] | 641 | CALL CO_BROADCAST |
| 642 | CALL CO_MAX |
| 643 | CALL CO_MIN |
| 644 | CALL CO_REDUCE |
| 645 | CALL CO_SUM |
peter klausler | 9849cf5 | 2018-09-25 21:47:55 | [diff] [blame] | 646 | ``` |
peter klausler | 370c44a | 2018-09-25 23:59:41 | [diff] [blame] | 647 | |
| 648 | # Non-standard intrinsics |
| 649 | ## PGI |
| 650 | ``` |
| 651 | AND, OR, XOR |
| 652 | LSHIFT, RSHIFT, SHIFT |
| 653 | ZEXT, IZEXT |
| 654 | COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D |
| 655 | COMPL |
| 656 | DCMPLX |
| 657 | EQV, NEQV |
| 658 | INT8 |
| 659 | JINT, JNINT, KNINT |
| 660 | LOC |
| 661 | ``` |
| 662 | |
| 663 | ## Intel |
| 664 | ``` |
| 665 | DCMPLX(X,Y), QCMPLX(X,Y) |
| 666 | DREAL(DOUBLE COMPLEX A) -> DOUBLE PRECISION |
| 667 | DFLOAT, DREAL |
| 668 | QEXT, QFLOAT, QREAL |
| 669 | DNUM, INUM, JNUM, KNUM, QNUM, RNUM - scan value from string |
| 670 | ZEXT |
| 671 | RAN, RANF |
| 672 | ILEN(I) = BIT_SIZE(I) |
| 673 | SIZEOF |
| 674 | MCLOCK, SECNDS |
| 675 | COTAN(X) = 1.0/TAN(X) |
| 676 | COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COTAND - degrees |
| 677 | AND, OR, XOR |
| 678 | LSHIFT, RSHIFT |
| 679 | IBCHNG, ISHA, ISHC, ISHL, IXOR |
| 680 | IARG, IARGC, NARGS, NUMARG |
| 681 | BADDRESS, IADDR |
| 682 | CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, LOC |
| 683 | MALLOC |
| 684 | ``` |
peter klausler | 42b33da | 2018-09-29 00:02:11 | [diff] [blame] | 685 | |