blob: 51e30ba7163f1bca36ee92d981f08747fa812fbd [file] [log] [blame]
MLIR Teamf28e4df2018-11-01 14:26:001//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
2//
Mehdi Amini56222a02019-12-23 17:35:363// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
MLIR Teamf28e4df2018-11-01 14:26:006//
Mehdi Amini56222a02019-12-23 17:35:367//===----------------------------------------------------------------------===//
MLIR Teamf28e4df2018-11-01 14:26:008//
9// This file implements loop fusion.
10//
11//===----------------------------------------------------------------------===//
12
13#include "mlir/Analysis/AffineAnalysis.h"
Uday Bondhuguladfe07b72019-02-23 00:51:0814#include "mlir/Analysis/AffineStructures.h"
MLIR Teamf28e4df2018-11-01 14:26:0015#include "mlir/Analysis/LoopAnalysis.h"
MLIR Team3b692302018-12-17 17:57:1416#include "mlir/Analysis/Utils.h"
River Riddleffde9752019-08-20 22:36:0817#include "mlir/Dialect/AffineOps/AffineOps.h"
River Riddleba0fa922019-08-19 18:00:4718#include "mlir/Dialect/StandardOps/Ops.h"
MLIR Teamf28e4df2018-11-01 14:26:0019#include "mlir/IR/AffineExpr.h"
20#include "mlir/IR/AffineMap.h"
21#include "mlir/IR/Builders.h"
River Riddle48ccae22019-02-20 01:17:4622#include "mlir/Pass/Pass.h"
Andy Davisa560f2c2019-05-24 17:54:2223#include "mlir/Transforms/LoopFusionUtils.h"
MLIR Teamf28e4df2018-11-01 14:26:0024#include "mlir/Transforms/LoopUtils.h"
25#include "mlir/Transforms/Passes.h"
MLIR Teamc4237ae2019-01-18 16:56:2726#include "mlir/Transforms/Utils.h"
MLIR Teamf28e4df2018-11-01 14:26:0027#include "llvm/ADT/DenseMap.h"
MLIR Team3b692302018-12-17 17:57:1428#include "llvm/ADT/DenseSet.h"
29#include "llvm/ADT/SetVector.h"
MLIR Team4eef7952018-12-21 19:06:2330#include "llvm/Support/CommandLine.h"
MLIR Team38c2fe32019-01-14 19:26:2531#include "llvm/Support/Debug.h"
MLIR Team3b692302018-12-17 17:57:1432#include "llvm/Support/raw_ostream.h"
Uday Bondhugula864d9e02019-01-23 17:16:2433#include <iomanip>
Stella Laurenzo1a2ad062019-05-14 01:10:4834#include <sstream>
Nicolas Vasilache258e8d92019-05-03 18:07:3735#define DEBUG_TYPE "affine-loop-fusion"
MLIR Team38c2fe32019-01-14 19:26:2536
MLIR Team3b692302018-12-17 17:57:1437using llvm::SetVector;
MLIR Teamf28e4df2018-11-01 14:26:0038
39using namespace mlir;
40
River Riddle75c21e12019-01-26 06:14:0441static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
42
Uday Bondhugulace7e59532019-03-08 17:21:5243/// Disables fusion profitability check and fuses if valid. Ignore any
44/// additional (redundant) computation tolerance threshold
45/// that would have prevented fusion.
MLIR Teamc4237ae2019-01-18 16:56:2746static llvm::cl::opt<bool>
Uday Bondhugulaeee85362019-03-02 01:42:1347 clMaximalLoopFusion("fusion-maximal",
River Riddle75c21e12019-01-26 06:14:0448 llvm::cl::desc("Enables maximal loop fusion"),
49 llvm::cl::cat(clOptionsCategory));
Uday Bondhugula864d9e02019-01-23 17:16:2450
51/// A threshold in percent of additional computation allowed when fusing.
52static llvm::cl::opt<double> clFusionAddlComputeTolerance(
Uday Bondhugulaeee85362019-03-02 01:42:1353 "fusion-compute-tolerance",
Uday Bondhugulaa1dad3a2019-02-20 02:17:1954 llvm::cl::desc("Fractional increase in additional "
55 "computation tolerated while fusing"),
River Riddle75c21e12019-01-26 06:14:0456 llvm::cl::cat(clOptionsCategory));
MLIR Teamc4237ae2019-01-18 16:56:2757
Uday Bondhugula8be26272019-02-02 01:06:2258static llvm::cl::opt<unsigned> clFusionFastMemorySpace(
Uday Bondhugulaeee85362019-03-02 01:42:1359 "fusion-fast-mem-space",
Uday Bondhugula8be26272019-02-02 01:06:2260 llvm::cl::desc("Faster memory space number to promote fusion buffers to"),
61 llvm::cl::cat(clOptionsCategory));
62
Uday Bondhugulace7e59532019-03-08 17:21:5263// A local buffer of size less than or equal to this size is automatically
64// promoted to fast memory after producer-consumer fusion.
Uday Bondhugulad4b3ff12019-02-27 00:10:1965static llvm::cl::opt<unsigned long long> clFusionLocalBufThreshold(
Uday Bondhugulaeee85362019-03-02 01:42:1366 "fusion-local-buf-threshold",
Uday Bondhugulad4b3ff12019-02-27 00:10:1967 llvm::cl::desc("Threshold size (KiB) for promoting local buffers to fast "
Uday Bondhugula8be26272019-02-02 01:06:2268 "memory space"),
69 llvm::cl::cat(clOptionsCategory));
70
MLIR Teamf28e4df2018-11-01 14:26:0071namespace {
72
MLIR Team3b692302018-12-17 17:57:1473/// Loop fusion pass. This pass currently supports a greedy fusion policy,
74/// which fuses loop nests with single-writer/single-reader memref dependences
75/// with the goal of improving locality.
76
77// TODO(andydavis) Support fusion of source loop nests which write to multiple
78// memrefs, where each memref can have multiple users (if profitable).
MLIR Teamf28e4df2018-11-01 14:26:0079// TODO(andydavis) Extend this pass to check for fusion preventing dependences,
80// and add support for more general loop fusion algorithms.
MLIR Team3b692302018-12-17 17:57:1481
River Riddlec6c53442019-02-27 18:59:2982struct LoopFusion : public FunctionPass<LoopFusion> {
Uday Bondhugulace7e59532019-03-08 17:21:5283 LoopFusion(unsigned fastMemorySpace = 0, uint64_t localBufSizeThreshold = 0,
84 bool maximalFusion = false)
River Riddlec6c53442019-02-27 18:59:2985 : localBufSizeThreshold(localBufSizeThreshold),
Uday Bondhugulace7e59532019-03-08 17:21:5286 fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion) {}
MLIR Teamf28e4df2018-11-01 14:26:0087
River Riddleed5fe202019-02-28 22:50:4288 void runOnFunction() override;
Uday Bondhugula864d9e02019-01-23 17:16:2489
Uday Bondhugulad4b3ff12019-02-27 00:10:1990 // Any local buffers smaller than this size (in bytes) will be created in
Uday Bondhugula8be26272019-02-02 01:06:2291 // `fastMemorySpace` if provided.
Uday Bondhugulad4b3ff12019-02-27 00:10:1992 uint64_t localBufSizeThreshold;
Uday Bondhugula8be26272019-02-02 01:06:2293 Optional<unsigned> fastMemorySpace = None;
Uday Bondhugulace7e59532019-03-08 17:21:5294 // If true, ignore any additional (redundant) computation tolerance threshold
95 // that would have prevented fusion.
96 bool maximalFusion;
Uday Bondhugula8be26272019-02-02 01:06:2297
Uday Bondhugula864d9e02019-01-23 17:16:2498 // The amount of additional computation that is tolerated while fusing
99 // pair-wise as a fraction of the total computation.
100 constexpr static double kComputeToleranceThreshold = 0.30f;
MLIR Teamf28e4df2018-11-01 14:26:00101};
102
MLIR Teamf28e4df2018-11-01 14:26:00103} // end anonymous namespace
104
River Riddlef1b100c2019-09-13 20:33:46105std::unique_ptr<OpPassBase<FuncOp>>
Mehdi Amini926fb682019-08-13 02:12:42106mlir::createLoopFusionPass(unsigned fastMemorySpace,
107 uint64_t localBufSizeThreshold, bool maximalFusion) {
Jacques Pienaar79f53b02019-08-17 18:05:35108 return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
109 maximalFusion);
Uday Bondhugulad4b3ff12019-02-27 00:10:19110}
MLIR Teamf28e4df2018-11-01 14:26:00111
River Riddle2666b972019-12-18 18:46:16112// TODO(b/117228571) Replace when this is modeled through side-effects/op traits
113static bool isMemRefDereferencingOp(Operation &op) {
114 if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op) ||
115 isa<AffineDmaStartOp>(op) || isa<AffineDmaWaitOp>(op))
116 return true;
117 return false;
118}
119
MLIR Team3b692302018-12-17 17:57:14120namespace {
MLIR Teamf28e4df2018-11-01 14:26:00121
MLIR Team3b692302018-12-17 17:57:14122// LoopNestStateCollector walks loop nests and collects load and store
Chris Lattner456ad6a2018-12-29 00:05:35123// operations, and whether or not an IfInst was encountered in the loop nest.
River Riddlebf9c3812019-02-05 00:24:44124struct LoopNestStateCollector {
Chris Lattnerd9b5bc82019-03-25 02:53:05125 SmallVector<AffineForOp, 4> forOps;
River Riddle99b87c92019-03-27 21:02:02126 SmallVector<Operation *, 4> loadOpInsts;
127 SmallVector<Operation *, 4> storeOpInsts;
River Riddle75553832019-01-29 05:23:53128 bool hasNonForRegion = false;
MLIR Team3b692302018-12-17 17:57:14129
River Riddle99b87c92019-03-27 21:02:02130 void collect(Operation *opToWalk) {
131 opToWalk->walk([&](Operation *op) {
River Riddled5b60ee82019-05-12 01:59:54132 if (isa<AffineForOp>(op))
River Riddleadca3c22019-05-12 00:57:32133 forOps.push_back(cast<AffineForOp>(op));
River Riddle99b87c92019-03-27 21:02:02134 else if (op->getNumRegions() != 0)
River Riddlebf9c3812019-02-05 00:24:44135 hasNonForRegion = true;
Andy Davis2e1187d2019-07-03 17:35:03136 else if (isa<AffineLoadOp>(op))
River Riddle99b87c92019-03-27 21:02:02137 loadOpInsts.push_back(op);
Andy Davis2e1187d2019-07-03 17:35:03138 else if (isa<AffineStoreOp>(op))
River Riddle99b87c92019-03-27 21:02:02139 storeOpInsts.push_back(op);
River Riddlebf9c3812019-02-05 00:24:44140 });
MLIR Team3b692302018-12-17 17:57:14141 }
142};
143
MLIR Team6892ffb2018-12-20 04:42:55144// MemRefDependenceGraph is a graph data structure where graph nodes are
River Riddle8c443672019-07-09 23:17:55145// top-level operations in a FuncOp which contain load/store ops, and edges
MLIR Team6892ffb2018-12-20 04:42:55146// are memref dependences between the nodes.
Kazuaki Ishizaki8bfedb32019-10-20 07:11:03147// TODO(andydavis) Add a more flexible dependence graph representation.
MLIR Team6892ffb2018-12-20 04:42:55148// TODO(andydavis) Add a depth parameter to dependence graph construction.
149struct MemRefDependenceGraph {
150public:
151 // Node represents a node in the graph. A Node is either an entire loop nest
152 // rooted at the top level which contains loads/stores, or a top level
153 // load/store.
154 struct Node {
155 // The unique identifier of this node in the graph.
156 unsigned id;
Amit Sabne70a416d2019-04-09 16:17:40157 // The top-level statement which is (or contains) a load/store.
River Riddle99b87c92019-03-27 21:02:02158 Operation *op;
Chris Lattner5187cfc2018-12-28 05:21:41159 // List of load operations.
River Riddle99b87c92019-03-27 21:02:02160 SmallVector<Operation *, 4> loads;
Chris Lattner456ad6a2018-12-29 00:05:35161 // List of store op insts.
River Riddle99b87c92019-03-27 21:02:02162 SmallVector<Operation *, 4> stores;
163 Node(unsigned id, Operation *op) : id(id), op(op) {}
MLIR Team6892ffb2018-12-20 04:42:55164
165 // Returns the load op count for 'memref'.
River Riddle35807bc2019-12-23 05:59:55166 unsigned getLoadOpCount(ValuePtr memref) {
MLIR Team6892ffb2018-12-20 04:42:55167 unsigned loadOpCount = 0;
Chris Lattner456ad6a2018-12-29 00:05:35168 for (auto *loadOpInst : loads) {
Andy Davis2e1187d2019-07-03 17:35:03169 if (memref == cast<AffineLoadOp>(loadOpInst).getMemRef())
MLIR Team6892ffb2018-12-20 04:42:55170 ++loadOpCount;
171 }
172 return loadOpCount;
173 }
174
175 // Returns the store op count for 'memref'.
River Riddle35807bc2019-12-23 05:59:55176 unsigned getStoreOpCount(ValuePtr memref) {
MLIR Team6892ffb2018-12-20 04:42:55177 unsigned storeOpCount = 0;
Chris Lattner456ad6a2018-12-29 00:05:35178 for (auto *storeOpInst : stores) {
Andy Davis2e1187d2019-07-03 17:35:03179 if (memref == cast<AffineStoreOp>(storeOpInst).getMemRef())
MLIR Team6892ffb2018-12-20 04:42:55180 ++storeOpCount;
181 }
182 return storeOpCount;
183 }
MLIR Team58aa3832019-02-16 01:12:19184
MLIR Teamd038e342019-03-01 19:50:25185 // Returns all store ops in 'storeOps' which access 'memref'.
River Riddle35807bc2019-12-23 05:59:55186 void getStoreOpsForMemref(ValuePtr memref,
River Riddle99b87c92019-03-27 21:02:02187 SmallVectorImpl<Operation *> *storeOps) {
MLIR Team58aa3832019-02-16 01:12:19188 for (auto *storeOpInst : stores) {
Andy Davis2e1187d2019-07-03 17:35:03189 if (memref == cast<AffineStoreOp>(storeOpInst).getMemRef())
MLIR Team58aa3832019-02-16 01:12:19190 storeOps->push_back(storeOpInst);
191 }
192 }
MLIR Teamd038e342019-03-01 19:50:25193
194 // Returns all load ops in 'loadOps' which access 'memref'.
River Riddle35807bc2019-12-23 05:59:55195 void getLoadOpsForMemref(ValuePtr memref,
River Riddle99b87c92019-03-27 21:02:02196 SmallVectorImpl<Operation *> *loadOps) {
MLIR Teamd038e342019-03-01 19:50:25197 for (auto *loadOpInst : loads) {
Andy Davis2e1187d2019-07-03 17:35:03198 if (memref == cast<AffineLoadOp>(loadOpInst).getMemRef())
MLIR Teamd038e342019-03-01 19:50:25199 loadOps->push_back(loadOpInst);
200 }
201 }
202
203 // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
204 // has at least one load and store operation.
River Riddle35807bc2019-12-23 05:59:55205 void getLoadAndStoreMemrefSet(DenseSet<ValuePtr> *loadAndStoreMemrefSet) {
206 llvm::SmallDenseSet<ValuePtr, 2> loadMemrefs;
MLIR Teamd038e342019-03-01 19:50:25207 for (auto *loadOpInst : loads) {
Andy Davis2e1187d2019-07-03 17:35:03208 loadMemrefs.insert(cast<AffineLoadOp>(loadOpInst).getMemRef());
MLIR Teamd038e342019-03-01 19:50:25209 }
210 for (auto *storeOpInst : stores) {
River Riddle35807bc2019-12-23 05:59:55211 auto memref = cast<AffineStoreOp>(storeOpInst).getMemRef();
MLIR Teamd038e342019-03-01 19:50:25212 if (loadMemrefs.count(memref) > 0)
213 loadAndStoreMemrefSet->insert(memref);
214 }
215 }
MLIR Team6892ffb2018-12-20 04:42:55216 };
217
Kazuaki Ishizaki8bfedb32019-10-20 07:11:03218 // Edge represents a data dependence between nodes in the graph.
MLIR Team6892ffb2018-12-20 04:42:55219 struct Edge {
220 // The id of the node at the other end of the edge.
MLIR Team1e851912019-01-31 00:01:46221 // If this edge is stored in Edge = Node.inEdges[i], then
222 // 'Node.inEdges[i].id' is the identifier of the source node of the edge.
223 // If this edge is stored in Edge = Node.outEdges[i], then
224 // 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
MLIR Team6892ffb2018-12-20 04:42:55225 unsigned id;
MLIR Teama0f3db402019-01-29 17:36:41226 // The SSA value on which this edge represents a dependence.
227 // If the value is a memref, then the dependence is between graph nodes
228 // which contain accesses to the same memref 'value'. If the value is a
229 // non-memref value, then the dependence is between a graph node which
230 // defines an SSA value and another graph node which uses the SSA value
River Riddle99b87c92019-03-27 21:02:02231 // (e.g. a constant operation defining a value which is used inside a loop
MLIR Teama0f3db402019-01-29 17:36:41232 // nest).
River Riddle35807bc2019-12-23 05:59:55233 ValuePtr value;
MLIR Team6892ffb2018-12-20 04:42:55234 };
235
236 // Map from node id to Node.
237 DenseMap<unsigned, Node> nodes;
238 // Map from node id to list of input edges.
239 DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
240 // Map from node id to list of output edges.
241 DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
MLIR Teamc4237ae2019-01-18 16:56:27242 // Map from memref to a count on the dependence edges associated with that
243 // memref.
River Riddle35807bc2019-12-23 05:59:55244 DenseMap<ValuePtr, unsigned> memrefEdgeCount;
MLIR Teama0f3db402019-01-29 17:36:41245 // The next unique identifier to use for newly created graph nodes.
246 unsigned nextNodeId = 0;
MLIR Team6892ffb2018-12-20 04:42:55247
248 MemRefDependenceGraph() {}
249
250 // Initializes the dependence graph based on operations in 'f'.
251 // Returns true on success, false otherwise.
River Riddle8c443672019-07-09 23:17:55252 bool init(FuncOp f);
MLIR Team6892ffb2018-12-20 04:42:55253
254 // Returns the graph node for 'id'.
255 Node *getNode(unsigned id) {
256 auto it = nodes.find(id);
257 assert(it != nodes.end());
258 return &it->second;
259 }
260
MLIR Team9d30b362019-03-29 15:06:25261 // Returns the graph node for 'forOp'.
262 Node *getForOpNode(AffineForOp forOp) {
263 for (auto &idAndNode : nodes)
264 if (idAndNode.second.op == forOp.getOperation())
265 return &idAndNode.second;
266 return nullptr;
267 }
268
River Riddle99b87c92019-03-27 21:02:02269 // Adds a node with 'op' to the graph and returns its unique identifier.
270 unsigned addNode(Operation *op) {
271 Node node(nextNodeId++, op);
MLIR Teama0f3db402019-01-29 17:36:41272 nodes.insert({node.id, node});
273 return node.id;
274 }
275
MLIR Teamc4237ae2019-01-18 16:56:27276 // Remove node 'id' (and its associated edges) from graph.
277 void removeNode(unsigned id) {
278 // Remove each edge in 'inEdges[id]'.
279 if (inEdges.count(id) > 0) {
280 SmallVector<Edge, 2> oldInEdges = inEdges[id];
281 for (auto &inEdge : oldInEdges) {
MLIR Teama0f3db402019-01-29 17:36:41282 removeEdge(inEdge.id, id, inEdge.value);
MLIR Teamc4237ae2019-01-18 16:56:27283 }
284 }
285 // Remove each edge in 'outEdges[id]'.
286 if (outEdges.count(id) > 0) {
287 SmallVector<Edge, 2> oldOutEdges = outEdges[id];
288 for (auto &outEdge : oldOutEdges) {
MLIR Teama0f3db402019-01-29 17:36:41289 removeEdge(id, outEdge.id, outEdge.value);
MLIR Teamc4237ae2019-01-18 16:56:27290 }
291 }
292 // Erase remaining node state.
293 inEdges.erase(id);
294 outEdges.erase(id);
295 nodes.erase(id);
296 }
297
MLIR Teamd7c82442019-01-30 23:53:41298 // Returns true if node 'id' writes to any memref which escapes (or is an
299 // argument to) the function/block. Returns false otherwise.
300 bool writesToLiveInOrEscapingMemrefs(unsigned id) {
MLIR Team71495d52019-01-22 21:23:37301 Node *node = getNode(id);
302 for (auto *storeOpInst : node->stores) {
River Riddle35807bc2019-12-23 05:59:55303 auto memref = cast<AffineStoreOp>(storeOpInst).getMemRef();
River Riddle99b87c92019-03-27 21:02:02304 auto *op = memref->getDefiningOp();
MLIR Team58aa3832019-02-16 01:12:19305 // Return true if 'memref' is a block argument.
River Riddle99b87c92019-03-27 21:02:02306 if (!op)
MLIR Teamd7c82442019-01-30 23:53:41307 return true;
MLIR Team58aa3832019-02-16 01:12:19308 // Return true if any use of 'memref' escapes the function.
River Riddle8780d8d2019-05-18 18:09:07309 for (auto *user : memref->getUsers())
310 if (!isMemRefDereferencingOp(*user))
MLIR Teamd7c82442019-01-30 23:53:41311 return true;
MLIR Teamd7c82442019-01-30 23:53:41312 }
313 return false;
314 }
315
Diego Caballero34510552019-10-09 17:36:54316 // Returns the unique AffineStoreOp in `node` that meets all the following:
317 // *) store is the only one that writes to a function-local memref live out
318 // of `node`,
319 // *) store is not the source of a self-dependence on `node`.
320 // Otherwise, returns a null AffineStoreOp.
321 AffineStoreOp getUniqueOutgoingStore(Node *node) {
322 AffineStoreOp uniqueStore;
323
324 // Return null if `node` doesn't have any outgoing edges.
325 auto outEdgeIt = outEdges.find(node->id);
326 if (outEdgeIt == outEdges.end())
327 return nullptr;
328
329 const auto &nodeOutEdges = outEdgeIt->second;
330 for (auto *op : node->stores) {
331 auto storeOp = cast<AffineStoreOp>(op);
River Riddle35807bc2019-12-23 05:59:55332 auto memref = storeOp.getMemRef();
Diego Caballero34510552019-10-09 17:36:54333 // Skip this store if there are no dependences on its memref. This means
334 // that store either:
335 // *) writes to a memref that is only read within the same loop nest
336 // (self-dependence edges are not represented in graph at the moment),
337 // *) writes to a function live out memref (function parameter), or
338 // *) is dead.
339 if (llvm::all_of(nodeOutEdges, [=](const Edge &edge) {
340 return (edge.value != memref);
341 }))
342 continue;
343
344 if (uniqueStore)
345 // Found multiple stores to function-local live-out memrefs.
346 return nullptr;
347 // Found first store to function-local live-out memref.
348 uniqueStore = storeOp;
349 }
350
351 return uniqueStore;
352 }
353
MLIR Teamd7c82442019-01-30 23:53:41354 // Returns true if node 'id' can be removed from the graph. Returns false
355 // otherwise. A node can be removed from the graph iff the following
356 // conditions are met:
357 // *) The node does not write to any memref which escapes (or is a
358 // function/block argument).
359 // *) The node has no successors in the dependence graph.
360 bool canRemoveNode(unsigned id) {
361 if (writesToLiveInOrEscapingMemrefs(id))
362 return false;
363 Node *node = getNode(id);
364 for (auto *storeOpInst : node->stores) {
MLIR Teama0f3db402019-01-29 17:36:41365 // Return false if there exist out edges from 'id' on 'memref'.
Andy Davis2e1187d2019-07-03 17:35:03366 if (getOutEdgeCount(id, cast<AffineStoreOp>(storeOpInst).getMemRef()) > 0)
MLIR Teama0f3db402019-01-29 17:36:41367 return false;
MLIR Team71495d52019-01-22 21:23:37368 }
MLIR Teama0f3db402019-01-29 17:36:41369 return true;
MLIR Team71495d52019-01-22 21:23:37370 }
371
MLIR Teamd038e342019-03-01 19:50:25372 // Returns true iff there is an edge from node 'srcId' to node 'dstId' which
373 // is for 'value' if non-null, or for any value otherwise. Returns false
374 // otherwise.
River Riddle35807bc2019-12-23 05:59:55375 bool hasEdge(unsigned srcId, unsigned dstId, ValuePtr value = nullptr) {
MLIR Team27d067e2019-01-16 17:55:02376 if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
377 return false;
378 }
379 bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
MLIR Teamd038e342019-03-01 19:50:25380 return edge.id == dstId && (!value || edge.value == value);
MLIR Team27d067e2019-01-16 17:55:02381 });
382 bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
MLIR Teamd038e342019-03-01 19:50:25383 return edge.id == srcId && (!value || edge.value == value);
MLIR Team27d067e2019-01-16 17:55:02384 });
385 return hasOutEdge && hasInEdge;
386 }
387
MLIR Teama0f3db402019-01-29 17:36:41388 // Adds an edge from node 'srcId' to node 'dstId' for 'value'.
River Riddle35807bc2019-12-23 05:59:55389 void addEdge(unsigned srcId, unsigned dstId, ValuePtr value) {
MLIR Teama0f3db402019-01-29 17:36:41390 if (!hasEdge(srcId, dstId, value)) {
391 outEdges[srcId].push_back({dstId, value});
392 inEdges[dstId].push_back({srcId, value});
393 if (value->getType().isa<MemRefType>())
394 memrefEdgeCount[value]++;
MLIR Team27d067e2019-01-16 17:55:02395 }
MLIR Team6892ffb2018-12-20 04:42:55396 }
397
MLIR Teama0f3db402019-01-29 17:36:41398 // Removes an edge from node 'srcId' to node 'dstId' for 'value'.
River Riddle35807bc2019-12-23 05:59:55399 void removeEdge(unsigned srcId, unsigned dstId, ValuePtr value) {
MLIR Team6892ffb2018-12-20 04:42:55400 assert(inEdges.count(dstId) > 0);
401 assert(outEdges.count(srcId) > 0);
MLIR Teama0f3db402019-01-29 17:36:41402 if (value->getType().isa<MemRefType>()) {
403 assert(memrefEdgeCount.count(value) > 0);
404 memrefEdgeCount[value]--;
405 }
MLIR Team6892ffb2018-12-20 04:42:55406 // Remove 'srcId' from 'inEdges[dstId]'.
407 for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
MLIR Teama0f3db402019-01-29 17:36:41408 if ((*it).id == srcId && (*it).value == value) {
MLIR Team6892ffb2018-12-20 04:42:55409 inEdges[dstId].erase(it);
410 break;
411 }
412 }
413 // Remove 'dstId' from 'outEdges[srcId]'.
414 for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
MLIR Teama0f3db402019-01-29 17:36:41415 if ((*it).id == dstId && (*it).value == value) {
MLIR Team6892ffb2018-12-20 04:42:55416 outEdges[srcId].erase(it);
417 break;
418 }
419 }
420 }
421
MLIR Teamd038e342019-03-01 19:50:25422 // Returns true if there is a path in the dependence graph from node 'srcId'
423 // to node 'dstId'. Returns false otherwise.
424 bool hasDependencePath(unsigned srcId, unsigned dstId) {
425 // Worklist state is: <node-id, next-output-edge-index-to-visit>
426 SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
427 worklist.push_back({srcId, 0});
428 // Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
429 while (!worklist.empty()) {
430 auto &idAndIndex = worklist.back();
431 // Return true if we have reached 'dstId'.
432 if (idAndIndex.first == dstId)
433 return true;
434 // Pop and continue if node has no out edges, or if all out edges have
435 // already been visited.
436 if (outEdges.count(idAndIndex.first) == 0 ||
437 idAndIndex.second == outEdges[idAndIndex.first].size()) {
438 worklist.pop_back();
439 continue;
440 }
441 // Get graph edge to traverse.
442 Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
443 // Increment next output edge index for 'idAndIndex'.
444 ++idAndIndex.second;
445 // Add node at 'edge.id' to worklist.
446 worklist.push_back({edge.id, 0});
447 }
448 return false;
449 }
450
MLIR Teama0f3db402019-01-29 17:36:41451 // Returns the input edge count for node 'id' and 'memref' from src nodes
MLIR Teamd038e342019-03-01 19:50:25452 // which access 'memref' with a store operation.
River Riddle35807bc2019-12-23 05:59:55453 unsigned getIncomingMemRefAccesses(unsigned id, ValuePtr memref) {
MLIR Team6892ffb2018-12-20 04:42:55454 unsigned inEdgeCount = 0;
455 if (inEdges.count(id) > 0)
456 for (auto &inEdge : inEdges[id])
MLIR Teama0f3db402019-01-29 17:36:41457 if (inEdge.value == memref) {
458 Node *srcNode = getNode(inEdge.id);
459 // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
MLIR Teamd038e342019-03-01 19:50:25460 if (srcNode->getStoreOpCount(memref) > 0)
MLIR Teama0f3db402019-01-29 17:36:41461 ++inEdgeCount;
462 }
MLIR Team6892ffb2018-12-20 04:42:55463 return inEdgeCount;
464 }
465
MLIR Teamd038e342019-03-01 19:50:25466 // Returns the output edge count for node 'id' and 'memref' (if non-null),
467 // otherwise returns the total output edge count from node 'id'.
River Riddle35807bc2019-12-23 05:59:55468 unsigned getOutEdgeCount(unsigned id, ValuePtr memref = nullptr) {
MLIR Team6892ffb2018-12-20 04:42:55469 unsigned outEdgeCount = 0;
470 if (outEdges.count(id) > 0)
471 for (auto &outEdge : outEdges[id])
MLIR Teamd038e342019-03-01 19:50:25472 if (!memref || outEdge.value == memref)
MLIR Team6892ffb2018-12-20 04:42:55473 ++outEdgeCount;
474 return outEdgeCount;
475 }
476
River Riddle99b87c92019-03-27 21:02:02477 // Computes and returns an insertion point operation, before which the
MLIR Teama0f3db402019-01-29 17:36:41478 // the fused <srcId, dstId> loop nest can be inserted while preserving
479 // dependences. Returns nullptr if no such insertion point is found.
River Riddle99b87c92019-03-27 21:02:02480 Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
MLIR Team5c5739d2019-01-25 06:27:40481 if (outEdges.count(srcId) == 0)
River Riddle99b87c92019-03-27 21:02:02482 return getNode(dstId)->op;
MLIR Teama0f3db402019-01-29 17:36:41483
484 // Build set of insts in range (srcId, dstId) which depend on 'srcId'.
River Riddle99b87c92019-03-27 21:02:02485 SmallPtrSet<Operation *, 2> srcDepInsts;
MLIR Teama0f3db402019-01-29 17:36:41486 for (auto &outEdge : outEdges[srcId])
MLIR Teama78edcd2019-02-05 14:57:08487 if (outEdge.id != dstId)
River Riddle99b87c92019-03-27 21:02:02488 srcDepInsts.insert(getNode(outEdge.id)->op);
MLIR Teama0f3db402019-01-29 17:36:41489
490 // Build set of insts in range (srcId, dstId) on which 'dstId' depends.
River Riddle99b87c92019-03-27 21:02:02491 SmallPtrSet<Operation *, 2> dstDepInsts;
MLIR Teama0f3db402019-01-29 17:36:41492 for (auto &inEdge : inEdges[dstId])
MLIR Teama78edcd2019-02-05 14:57:08493 if (inEdge.id != srcId)
River Riddle99b87c92019-03-27 21:02:02494 dstDepInsts.insert(getNode(inEdge.id)->op);
MLIR Teama0f3db402019-01-29 17:36:41495
River Riddle99b87c92019-03-27 21:02:02496 Operation *srcNodeInst = getNode(srcId)->op;
497 Operation *dstNodeInst = getNode(dstId)->op;
MLIR Teama0f3db402019-01-29 17:36:41498
499 // Computing insertion point:
River Riddle99b87c92019-03-27 21:02:02500 // *) Walk all operation positions in Block operation list in the
501 // range (src, dst). For each operation 'op' visited in this search:
502 // *) Store in 'firstSrcDepPos' the first position where 'op' has a
MLIR Teama0f3db402019-01-29 17:36:41503 // dependence edge from 'srcNode'.
River Riddle99b87c92019-03-27 21:02:02504 // *) Store in 'lastDstDepPost' the last position where 'op' has a
MLIR Teama0f3db402019-01-29 17:36:41505 // dependence edge to 'dstNode'.
506 // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
River Riddle99b87c92019-03-27 21:02:02507 // operation insertion point (or return null pointer if no such
MLIR Teama0f3db402019-01-29 17:36:41508 // insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
River Riddle99b87c92019-03-27 21:02:02509 SmallVector<Operation *, 2> depInsts;
MLIR Teama0f3db402019-01-29 17:36:41510 Optional<unsigned> firstSrcDepPos;
511 Optional<unsigned> lastDstDepPos;
512 unsigned pos = 0;
513 for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
514 it != Block::iterator(dstNodeInst); ++it) {
River Riddle99b87c92019-03-27 21:02:02515 Operation *op = &(*it);
516 if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
MLIR Teama0f3db402019-01-29 17:36:41517 firstSrcDepPos = pos;
River Riddle99b87c92019-03-27 21:02:02518 if (dstDepInsts.count(op) > 0)
MLIR Teama0f3db402019-01-29 17:36:41519 lastDstDepPos = pos;
River Riddle99b87c92019-03-27 21:02:02520 depInsts.push_back(op);
MLIR Teama0f3db402019-01-29 17:36:41521 ++pos;
MLIR Team5c5739d2019-01-25 06:27:40522 }
MLIR Teama0f3db402019-01-29 17:36:41523
524 if (firstSrcDepPos.hasValue()) {
525 if (lastDstDepPos.hasValue()) {
526 if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) {
527 // No valid insertion point exists which preserves dependences.
528 return nullptr;
529 }
530 }
531 // Return the insertion point at 'firstSrcDepPos'.
532 return depInsts[firstSrcDepPos.getValue()];
533 }
534 // No dependence targets in range (or only dst deps in range), return
535 // 'dstNodInst' insertion point.
536 return dstNodeInst;
MLIR Team6892ffb2018-12-20 04:42:55537 }
538
MLIR Teama0f3db402019-01-29 17:36:41539 // Updates edge mappings from node 'srcId' to node 'dstId' after 'oldMemRef'
Andy Davis68a8da42019-11-18 19:20:03540 // has been replaced in node at 'dstId' by a private memref depending
541 // on the value of 'createPrivateMemRef'.
River Riddle35807bc2019-12-23 05:59:55542 void updateEdges(unsigned srcId, unsigned dstId, ValuePtr oldMemRef,
Andy Davis68a8da42019-11-18 19:20:03543 bool createPrivateMemRef) {
MLIR Team6892ffb2018-12-20 04:42:55544 // For each edge in 'inEdges[srcId]': add new edge remaping to 'dstId'.
545 if (inEdges.count(srcId) > 0) {
546 SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
547 for (auto &inEdge : oldInEdges) {
MLIR Teama0f3db402019-01-29 17:36:41548 // Add edge from 'inEdge.id' to 'dstId' if not for 'oldMemRef'.
549 if (inEdge.value != oldMemRef)
550 addEdge(inEdge.id, dstId, inEdge.value);
MLIR Team6892ffb2018-12-20 04:42:55551 }
552 }
MLIR Teamc4237ae2019-01-18 16:56:27553 // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
MLIR Team6892ffb2018-12-20 04:42:55554 if (outEdges.count(srcId) > 0) {
555 SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
556 for (auto &outEdge : oldOutEdges) {
MLIR Teamc4237ae2019-01-18 16:56:27557 // Remove any out edges from 'srcId' to 'dstId' across memrefs.
558 if (outEdge.id == dstId)
MLIR Teama0f3db402019-01-29 17:36:41559 removeEdge(srcId, outEdge.id, outEdge.value);
MLIR Team6892ffb2018-12-20 04:42:55560 }
561 }
MLIR Teama0f3db402019-01-29 17:36:41562 // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
563 // replaced by a private memref). These edges could come from nodes
564 // other than 'srcId' which were removed in the previous step.
Andy Davis68a8da42019-11-18 19:20:03565 if (inEdges.count(dstId) > 0 && createPrivateMemRef) {
MLIR Teama0f3db402019-01-29 17:36:41566 SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
567 for (auto &inEdge : oldInEdges)
568 if (inEdge.value == oldMemRef)
569 removeEdge(inEdge.id, dstId, inEdge.value);
570 }
MLIR Team6892ffb2018-12-20 04:42:55571 }
572
MLIR Teamd038e342019-03-01 19:50:25573 // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
574 // of sibling node 'sidId' into node 'dstId'.
575 void updateEdges(unsigned sibId, unsigned dstId) {
576 // For each edge in 'inEdges[sibId]':
577 // *) Add new edge from source node 'inEdge.id' to 'dstNode'.
578 // *) Remove edge from source node 'inEdge.id' to 'sibNode'.
579 if (inEdges.count(sibId) > 0) {
580 SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
581 for (auto &inEdge : oldInEdges) {
582 addEdge(inEdge.id, dstId, inEdge.value);
583 removeEdge(inEdge.id, sibId, inEdge.value);
584 }
585 }
586
587 // For each edge in 'outEdges[sibId]' to node 'id'
588 // *) Add new edge from 'dstId' to 'outEdge.id'.
589 // *) Remove edge from 'sibId' to 'outEdge.id'.
590 if (outEdges.count(sibId) > 0) {
591 SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
592 for (auto &outEdge : oldOutEdges) {
593 addEdge(dstId, outEdge.id, outEdge.value);
594 removeEdge(sibId, outEdge.id, outEdge.value);
595 }
596 }
597 }
598
MLIR Team6892ffb2018-12-20 04:42:55599 // Adds ops in 'loads' and 'stores' to node at 'id'.
River Riddle99b87c92019-03-27 21:02:02600 void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
601 const SmallVectorImpl<Operation *> &stores) {
MLIR Team6892ffb2018-12-20 04:42:55602 Node *node = getNode(id);
Chris Lattner456ad6a2018-12-29 00:05:35603 for (auto *loadOpInst : loads)
604 node->loads.push_back(loadOpInst);
605 for (auto *storeOpInst : stores)
606 node->stores.push_back(storeOpInst);
MLIR Team6892ffb2018-12-20 04:42:55607 }
608
MLIR Teamc4237ae2019-01-18 16:56:27609 void clearNodeLoadAndStores(unsigned id) {
610 Node *node = getNode(id);
611 node->loads.clear();
612 node->stores.clear();
613 }
614
MLIR Teamd038e342019-03-01 19:50:25615 // Calls 'callback' for each input edge incident to node 'id' which carries a
616 // memref dependence.
617 void forEachMemRefInputEdge(unsigned id,
618 const std::function<void(Edge)> &callback) {
619 if (inEdges.count(id) > 0)
620 forEachMemRefEdge(inEdges[id], callback);
621 }
Amit Sabne70a416d2019-04-09 16:17:40622
MLIR Teamd038e342019-03-01 19:50:25623 // Calls 'callback' for each output edge from node 'id' which carries a
624 // memref dependence.
625 void forEachMemRefOutputEdge(unsigned id,
626 const std::function<void(Edge)> &callback) {
627 if (outEdges.count(id) > 0)
628 forEachMemRefEdge(outEdges[id], callback);
629 }
Amit Sabne70a416d2019-04-09 16:17:40630
MLIR Teamd038e342019-03-01 19:50:25631 // Calls 'callback' for each edge in 'edges' which carries a memref
632 // dependence.
633 void forEachMemRefEdge(ArrayRef<Edge> edges,
634 const std::function<void(Edge)> &callback) {
635 for (auto &edge : edges) {
636 // Skip if 'edge' is not a memref dependence edge.
637 if (!edge.value->getType().isa<MemRefType>())
638 continue;
639 assert(nodes.count(edge.id) > 0);
640 // Skip if 'edge.id' is not a loop nest.
River Riddled5b60ee82019-05-12 01:59:54641 if (!isa<AffineForOp>(getNode(edge.id)->op))
MLIR Teamd038e342019-03-01 19:50:25642 continue;
643 // Visit current input edge 'edge'.
644 callback(edge);
645 }
646 }
647
MLIR Team6892ffb2018-12-20 04:42:55648 void print(raw_ostream &os) const {
649 os << "\nMemRefDependenceGraph\n";
650 os << "\nNodes:\n";
651 for (auto &idAndNode : nodes) {
652 os << "Node: " << idAndNode.first << "\n";
653 auto it = inEdges.find(idAndNode.first);
654 if (it != inEdges.end()) {
655 for (const auto &e : it->second)
MLIR Teama0f3db402019-01-29 17:36:41656 os << " InEdge: " << e.id << " " << e.value << "\n";
MLIR Team6892ffb2018-12-20 04:42:55657 }
658 it = outEdges.find(idAndNode.first);
659 if (it != outEdges.end()) {
660 for (const auto &e : it->second)
MLIR Teama0f3db402019-01-29 17:36:41661 os << " OutEdge: " << e.id << " " << e.value << "\n";
MLIR Team6892ffb2018-12-20 04:42:55662 }
663 }
664 }
665 void dump() const { print(llvm::errs()); }
666};
667
River Riddle2666b972019-12-18 18:46:16668} // end anonymous namespace
669
Kazuaki Ishizaki8bfedb32019-10-20 07:11:03670// Initializes the data dependence graph by walking operations in 'f'.
MLIR Team6892ffb2018-12-20 04:42:55671// Assigns each node in the graph a node id based on program order in 'f'.
Chris Lattner315a4662018-12-28 21:07:39672// TODO(andydavis) Add support for taking a Block arg to construct the
MLIR Team6892ffb2018-12-20 04:42:55673// dependence graph at a different depth.
River Riddle8c443672019-07-09 23:17:55674bool MemRefDependenceGraph::init(FuncOp f) {
River Riddle35807bc2019-12-23 05:59:55675 DenseMap<ValuePtr, SetVector<unsigned>> memrefAccesses;
Chris Lattnerdffc5892018-12-29 23:33:43676
677 // TODO: support multi-block functions.
Chris Lattner46ade282019-03-26 01:02:49678 if (f.getBlocks().size() != 1)
Chris Lattnerdffc5892018-12-29 23:33:43679 return false;
680
River Riddle99b87c92019-03-27 21:02:02681 DenseMap<Operation *, unsigned> forToNodeMap;
682 for (auto &op : f.front()) {
River Riddlec5ecf992019-05-11 22:56:50683 if (auto forOp = dyn_cast<AffineForOp>(op)) {
River Riddle5052bd82019-02-02 00:42:18684 // Create graph node 'id' to represent top-level 'forOp' and record
MLIR Team6892ffb2018-12-20 04:42:55685 // all loads and store accesses it contains.
686 LoopNestStateCollector collector;
River Riddle99b87c92019-03-27 21:02:02687 collector.collect(&op);
River Riddle832567b2019-03-25 17:14:34688 // Return false if a non 'affine.for' region was found (not currently
689 // supported).
River Riddle75553832019-01-29 05:23:53690 if (collector.hasNonForRegion)
MLIR Team6892ffb2018-12-20 04:42:55691 return false;
River Riddle99b87c92019-03-27 21:02:02692 Node node(nextNodeId++, &op);
Chris Lattner456ad6a2018-12-29 00:05:35693 for (auto *opInst : collector.loadOpInsts) {
694 node.loads.push_back(opInst);
River Riddle35807bc2019-12-23 05:59:55695 auto memref = cast<AffineLoadOp>(opInst).getMemRef();
MLIR Team6892ffb2018-12-20 04:42:55696 memrefAccesses[memref].insert(node.id);
697 }
Chris Lattner456ad6a2018-12-29 00:05:35698 for (auto *opInst : collector.storeOpInsts) {
699 node.stores.push_back(opInst);
River Riddle35807bc2019-12-23 05:59:55700 auto memref = cast<AffineStoreOp>(opInst).getMemRef();
MLIR Team6892ffb2018-12-20 04:42:55701 memrefAccesses[memref].insert(node.id);
702 }
River Riddle99b87c92019-03-27 21:02:02703 forToNodeMap[&op] = node.id;
MLIR Team6892ffb2018-12-20 04:42:55704 nodes.insert({node.id, node});
Andy Davis2e1187d2019-07-03 17:35:03705 } else if (auto loadOp = dyn_cast<AffineLoadOp>(op)) {
River Riddleb4992772019-02-04 18:38:47706 // Create graph node for top-level load op.
River Riddle99b87c92019-03-27 21:02:02707 Node node(nextNodeId++, &op);
708 node.loads.push_back(&op);
River Riddle35807bc2019-12-23 05:59:55709 auto memref = cast<AffineLoadOp>(op).getMemRef();
River Riddleb4992772019-02-04 18:38:47710 memrefAccesses[memref].insert(node.id);
711 nodes.insert({node.id, node});
Andy Davis2e1187d2019-07-03 17:35:03712 } else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
River Riddleb4992772019-02-04 18:38:47713 // Create graph node for top-level store op.
River Riddle99b87c92019-03-27 21:02:02714 Node node(nextNodeId++, &op);
715 node.stores.push_back(&op);
River Riddle35807bc2019-12-23 05:59:55716 auto memref = cast<AffineStoreOp>(op).getMemRef();
River Riddleb4992772019-02-04 18:38:47717 memrefAccesses[memref].insert(node.id);
718 nodes.insert({node.id, node});
River Riddle99b87c92019-03-27 21:02:02719 } else if (op.getNumRegions() != 0) {
River Riddleb4992772019-02-04 18:38:47720 // Return false if another region is found (not currently supported).
721 return false;
River Riddle99b87c92019-03-27 21:02:02722 } else if (op.getNumResults() > 0 && !op.use_empty()) {
River Riddleb4992772019-02-04 18:38:47723 // Create graph node for top-level producer of SSA values, which
724 // could be used by loop nest nodes.
River Riddle99b87c92019-03-27 21:02:02725 Node node(nextNodeId++, &op);
River Riddleb4992772019-02-04 18:38:47726 nodes.insert({node.id, node});
MLIR Teama0f3db402019-01-29 17:36:41727 }
728 }
729
730 // Add dependence edges between nodes which produce SSA values and their
731 // users.
732 for (auto &idAndNode : nodes) {
733 const Node &node = idAndNode.second;
734 if (!node.loads.empty() || !node.stores.empty())
735 continue;
River Riddle99b87c92019-03-27 21:02:02736 auto *opInst = node.op;
River Riddle35807bc2019-12-23 05:59:55737 for (auto value : opInst->getResults()) {
River Riddle8780d8d2019-05-18 18:09:07738 for (auto *user : value->getUsers()) {
Chris Lattnerd9b5bc82019-03-25 02:53:05739 SmallVector<AffineForOp, 4> loops;
River Riddle8780d8d2019-05-18 18:09:07740 getLoopIVs(*user, &loops);
MLIR Teama0f3db402019-01-29 17:36:41741 if (loops.empty())
742 continue;
River Riddlef9d91532019-03-27 00:05:09743 assert(forToNodeMap.count(loops[0].getOperation()) > 0);
744 unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
MLIR Teama0f3db402019-01-29 17:36:41745 addEdge(node.id, userLoopNestId, value);
MLIR Team6892ffb2018-12-20 04:42:55746 }
747 }
MLIR Team6892ffb2018-12-20 04:42:55748 }
749
750 // Walk memref access lists and add graph edges between dependent nodes.
751 for (auto &memrefAndList : memrefAccesses) {
752 unsigned n = memrefAndList.second.size();
753 for (unsigned i = 0; i < n; ++i) {
754 unsigned srcId = memrefAndList.second[i];
755 bool srcHasStore =
756 getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
757 for (unsigned j = i + 1; j < n; ++j) {
758 unsigned dstId = memrefAndList.second[j];
759 bool dstHasStore =
760 getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
761 if (srcHasStore || dstHasStore)
762 addEdge(srcId, dstId, memrefAndList.first);
763 }
764 }
765 }
766 return true;
767}
768
MLIR Team27d067e2019-01-16 17:55:02769// Removes load operations from 'srcLoads' which operate on 'memref', and
770// adds them to 'dstLoads'.
River Riddle35807bc2019-12-23 05:59:55771static void moveLoadsAccessingMemrefTo(ValuePtr memref,
River Riddle99b87c92019-03-27 21:02:02772 SmallVectorImpl<Operation *> *srcLoads,
773 SmallVectorImpl<Operation *> *dstLoads) {
MLIR Team27d067e2019-01-16 17:55:02774 dstLoads->clear();
River Riddle99b87c92019-03-27 21:02:02775 SmallVector<Operation *, 4> srcLoadsToKeep;
MLIR Team27d067e2019-01-16 17:55:02776 for (auto *load : *srcLoads) {
Andy Davis2e1187d2019-07-03 17:35:03777 if (cast<AffineLoadOp>(load).getMemRef() == memref)
MLIR Team27d067e2019-01-16 17:55:02778 dstLoads->push_back(load);
779 else
780 srcLoadsToKeep.push_back(load);
MLIR Team38c2fe32019-01-14 19:26:25781 }
MLIR Team27d067e2019-01-16 17:55:02782 srcLoads->swap(srcLoadsToKeep);
MLIR Team38c2fe32019-01-14 19:26:25783}
784
MLIR Team27d067e2019-01-16 17:55:02785// Returns the innermost common loop depth for the set of operations in 'ops'.
River Riddle99b87c92019-03-27 21:02:02786static unsigned getInnermostCommonLoopDepth(ArrayRef<Operation *> ops) {
MLIR Team27d067e2019-01-16 17:55:02787 unsigned numOps = ops.size();
788 assert(numOps > 0);
789
Chris Lattnerd9b5bc82019-03-25 02:53:05790 std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
MLIR Team27d067e2019-01-16 17:55:02791 unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
792 for (unsigned i = 0; i < numOps; ++i) {
793 getLoopIVs(*ops[i], &loops[i]);
794 loopDepthLimit =
795 std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
MLIR Team38c2fe32019-01-14 19:26:25796 }
MLIR Team27d067e2019-01-16 17:55:02797
798 unsigned loopDepth = 0;
799 for (unsigned d = 0; d < loopDepthLimit; ++d) {
800 unsigned i;
801 for (i = 1; i < numOps; ++i) {
River Riddle5052bd82019-02-02 00:42:18802 if (loops[i - 1][d] != loops[i][d])
MLIR Team27d067e2019-01-16 17:55:02803 break;
MLIR Team27d067e2019-01-16 17:55:02804 }
805 if (i != numOps)
806 break;
807 ++loopDepth;
808 }
809 return loopDepth;
MLIR Team38c2fe32019-01-14 19:26:25810}
811
MLIR Teamd7c82442019-01-30 23:53:41812// Returns the maximum loop depth at which no dependences between 'loadOpInsts'
813// and 'storeOpInsts' are satisfied.
River Riddle99b87c92019-03-27 21:02:02814static unsigned getMaxLoopDepth(ArrayRef<Operation *> loadOpInsts,
815 ArrayRef<Operation *> storeOpInsts) {
MLIR Teamd7c82442019-01-30 23:53:41816 // Merge loads and stores into the same array.
River Riddle99b87c92019-03-27 21:02:02817 SmallVector<Operation *, 2> ops(loadOpInsts.begin(), loadOpInsts.end());
MLIR Teamd7c82442019-01-30 23:53:41818 ops.append(storeOpInsts.begin(), storeOpInsts.end());
819
820 // Compute the innermost common loop depth for loads and stores.
821 unsigned loopDepth = getInnermostCommonLoopDepth(ops);
822
823 // Return common loop depth for loads if there are no store ops.
824 if (storeOpInsts.empty())
825 return loopDepth;
826
827 // Check dependences on all pairs of ops in 'ops' and store the minimum
828 // loop depth at which a dependence is satisfied.
829 for (unsigned i = 0, e = ops.size(); i < e; ++i) {
830 auto *srcOpInst = ops[i];
831 MemRefAccess srcAccess(srcOpInst);
832 for (unsigned j = 0; j < e; ++j) {
833 auto *dstOpInst = ops[j];
834 MemRefAccess dstAccess(dstOpInst);
835
836 unsigned numCommonLoops =
837 getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst);
838 for (unsigned d = 1; d <= numCommonLoops + 1; ++d) {
839 FlatAffineConstraints dependenceConstraints;
840 // TODO(andydavis) Cache dependence analysis results, check cache here.
Andy Davise33e36f2019-06-10 17:50:08841 DependenceResult result = checkMemrefAccessDependence(
842 srcAccess, dstAccess, d, &dependenceConstraints,
843 /*dependenceComponents=*/nullptr);
844 if (hasDependence(result)) {
MLIR Teamd7c82442019-01-30 23:53:41845 // Store minimum loop depth and break because we want the min 'd' at
846 // which there is a dependence.
847 loopDepth = std::min(loopDepth, d - 1);
848 break;
849 }
850 }
851 }
852 }
853 return loopDepth;
854}
855
MLIR Team8f5f2c72019-02-15 17:32:18856// Sinks all sequential loops to the innermost levels (while preserving
857// relative order among them) and moves all parallel loops to the
858// outermost (while again preserving relative order among them).
859// This can increase the loop depth at which we can fuse a slice, since we are
860// pushing loop carried dependence to a greater depth in the loop nest.
861static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
River Riddled5b60ee82019-05-12 01:59:54862 assert(isa<AffineForOp>(node->op));
Andy Davis90d40232019-05-13 13:57:56863 AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
864 node->op = newRootForOp.getOperation();
MLIR Team8f5f2c72019-02-15 17:32:18865}
866
Uday Bondhugula8be26272019-02-02 01:06:22867// TODO(mlir-team): improve/complete this when we have target data.
River Riddle2666b972019-12-18 18:46:16868static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
Uday Bondhugula8be26272019-02-02 01:06:22869 auto elementType = memRefType.getElementType();
870
871 unsigned sizeInBits;
872 if (elementType.isIntOrFloat()) {
873 sizeInBits = elementType.getIntOrFloatBitWidth();
874 } else {
875 auto vectorType = elementType.cast<VectorType>();
876 sizeInBits =
877 vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
878 }
879 return llvm::divideCeil(sizeInBits, 8);
880}
881
MLIR Teamc4237ae2019-01-18 16:56:27882// Creates and returns a private (single-user) memref for fused loop rooted
River Riddle5052bd82019-02-02 00:42:18883// at 'forOp', with (potentially reduced) memref size based on the
Uday Bondhugula94a03f82019-01-22 21:58:52884// MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
885// TODO(bondhugula): consider refactoring the common code from generateDma and
886// this one.
River Riddle35807bc2019-12-23 05:59:55887static ValuePtr createPrivateMemRef(AffineForOp forOp,
888 Operation *srcStoreOpInst,
889 unsigned dstLoopDepth,
890 Optional<unsigned> fastMemorySpace,
891 uint64_t localBufSizeThreshold) {
River Riddlef9d91532019-03-27 00:05:09892 auto *forInst = forOp.getOperation();
River Riddle5052bd82019-02-02 00:42:18893
894 // Create builder to insert alloc op just before 'forOp'.
River Riddlef1b848e2019-06-05 02:18:23895 OpBuilder b(forInst);
MLIR Teamc4237ae2019-01-18 16:56:27896 // Builder to create constants at the top level.
River Riddlece502af2019-07-08 18:20:26897 OpBuilder top(forInst->getParentOfType<FuncOp>().getBody());
MLIR Teamc4237ae2019-01-18 16:56:27898 // Create new memref type based on slice bounds.
River Riddle35807bc2019-12-23 05:59:55899 auto oldMemRef = cast<AffineStoreOp>(srcStoreOpInst).getMemRef();
MLIR Teamc4237ae2019-01-18 16:56:27900 auto oldMemRefType = oldMemRef->getType().cast<MemRefType>();
901 unsigned rank = oldMemRefType.getRank();
902
Uday Bondhugula94a03f82019-01-22 21:58:52903 // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
Uday Bondhugula0f504142019-02-04 21:48:44904 MemRefRegion region(srcStoreOpInst->getLoc());
River Riddle1e55ae12019-03-08 06:14:47905 bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
MLIR Teamd42ef782019-03-04 19:01:25906 (void)validRegion;
907 assert(validRegion && "unexpected memref region failure");
River Riddle6859f332019-01-23 22:39:45908 SmallVector<int64_t, 4> newShape;
MLIR Teamc4237ae2019-01-18 16:56:27909 std::vector<SmallVector<int64_t, 4>> lbs;
Uday Bondhugula94a03f82019-01-22 21:58:52910 SmallVector<int64_t, 8> lbDivisors;
MLIR Teamc4237ae2019-01-18 16:56:27911 lbs.reserve(rank);
912 // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
Uday Bondhugula94a03f82019-01-22 21:58:52913 // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
MLIR Teamc4237ae2019-01-18 16:56:27914 Optional<int64_t> numElements =
Uday Bondhugula0f504142019-02-04 21:48:44915 region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
Uday Bondhugula8be26272019-02-02 01:06:22916 assert(numElements.hasValue() &&
917 "non-constant number of elts in local buffer");
MLIR Teamc4237ae2019-01-18 16:56:27918
Uday Bondhugula0f504142019-02-04 21:48:44919 const FlatAffineConstraints *cst = region.getConstraints();
Kazuaki Ishizaki8bfedb32019-10-20 07:11:03920 // 'outerIVs' holds the values that this memory region is symbolic/parametric
Uday Bondhugula94a03f82019-01-22 21:58:52921 // on; this would correspond to loop IVs surrounding the level at which the
922 // slice is being materialized.
River Riddle35807bc2019-12-23 05:59:55923 SmallVector<ValuePtr, 8> outerIVs;
Uday Bondhugula94a03f82019-01-22 21:58:52924 cst->getIdValues(rank, cst->getNumIds(), &outerIVs);
925
926 // Build 'rank' AffineExprs from MemRefRegion 'lbs'
MLIR Teamc4237ae2019-01-18 16:56:27927 SmallVector<AffineExpr, 4> offsets;
928 offsets.reserve(rank);
929 for (unsigned d = 0; d < rank; ++d) {
Uday Bondhugula94a03f82019-01-22 21:58:52930 assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
931
MLIR Teamc4237ae2019-01-18 16:56:27932 AffineExpr offset = top.getAffineConstantExpr(0);
933 for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
934 offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
935 }
Uday Bondhugula94a03f82019-01-22 21:58:52936 assert(lbDivisors[d] > 0);
937 offset =
938 (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
MLIR Teamc4237ae2019-01-18 16:56:27939 offsets.push_back(offset);
940 }
941
942 // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
943 // by 'srcStoreOpInst'.
Uday Bondhugula8be26272019-02-02 01:06:22944 uint64_t bufSize =
945 getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue();
946 unsigned newMemSpace;
Uday Bondhugulad4b3ff12019-02-27 00:10:19947 if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) {
Uday Bondhugula8be26272019-02-02 01:06:22948 newMemSpace = fastMemorySpace.getValue();
949 } else {
950 newMemSpace = oldMemRefType.getMemorySpace();
951 }
River Riddle2acc2202019-10-18 03:08:01952 auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
953 {}, newMemSpace);
MLIR Teamc4237ae2019-01-18 16:56:27954 // Gather alloc operands for the dynamic dimensions of the memref.
River Riddle35807bc2019-12-23 05:59:55955 SmallVector<ValuePtr, 4> allocOperands;
MLIR Teamc4237ae2019-01-18 16:56:27956 unsigned dynamicDimCount = 0;
957 for (auto dimSize : oldMemRefType.getShape()) {
958 if (dimSize == -1)
959 allocOperands.push_back(
River Riddleaf1abcc2019-03-25 18:13:31960 top.create<DimOp>(forOp.getLoc(), oldMemRef, dynamicDimCount++));
MLIR Teamc4237ae2019-01-18 16:56:27961 }
962
River Riddle5052bd82019-02-02 00:42:18963 // Create new private memref for fused loop 'forOp'.
MLIR Teama0f3db402019-01-29 17:36:41964 // TODO(andydavis) Create/move alloc ops for private memrefs closer to their
965 // consumer loop nests to reduce their live range. Currently they are added
966 // at the beginning of the function, because loop nests can be reordered
967 // during the fusion pass.
River Riddle35807bc2019-12-23 05:59:55968 ValuePtr newMemRef =
River Riddleaf1abcc2019-03-25 18:13:31969 top.create<AllocOp>(forOp.getLoc(), newMemRefType, allocOperands);
MLIR Teamc4237ae2019-01-18 16:56:27970
971 // Build an AffineMap to remap access functions based on lower bound offsets.
972 SmallVector<AffineExpr, 4> remapExprs;
973 remapExprs.reserve(rank);
974 unsigned zeroOffsetCount = 0;
975 for (unsigned i = 0; i < rank; i++) {
976 if (auto constExpr = offsets[i].dyn_cast<AffineConstantExpr>())
977 if (constExpr.getValue() == 0)
978 ++zeroOffsetCount;
Uday Bondhugula94a03f82019-01-22 21:58:52979 auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
980
981 auto remapExpr =
982 simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
983 remapExprs.push_back(remapExpr);
MLIR Teamc4237ae2019-01-18 16:56:27984 }
MLIR Team5a91b982019-05-29 21:56:41985 auto indexRemap = zeroOffsetCount == rank
986 ? AffineMap()
River Riddle2acc2202019-10-18 03:08:01987 : AffineMap::get(outerIVs.size() + rank, 0, remapExprs);
MLIR Teamc4237ae2019-01-18 16:56:27988 // Replace all users of 'oldMemRef' with 'newMemRef'.
Uday Bondhugulaaa2cee92019-08-28 00:56:25989 LogicalResult res =
Uday Bondhugula94a03f82019-01-22 21:58:52990 replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
991 /*extraOperands=*/outerIVs,
Uday Bondhugula727a50a2019-09-18 18:25:33992 /*symbolOperands=*/{},
River Riddleaf1abcc2019-03-25 18:13:31993 /*domInstFilter=*/&*forOp.getBody()->begin());
Uday Bondhugulaaa2cee92019-08-28 00:56:25994 assert(succeeded(res) &&
995 "replaceAllMemrefUsesWith should always succeed here");
996 (void)res;
MLIR Teamc4237ae2019-01-18 16:56:27997 return newMemRef;
998}
999
Diego Caballero34510552019-10-09 17:36:541000// Checks if node 'srcId' can be safely fused into node 'dstId'. Node 'srcId'
1001// may write to multiple memrefs but it is required that only one of them,
Diego Caballero330d1ff2019-12-03 14:09:211002// 'srcLiveOutStoreOp', has output edges.
Diego Caballero34510552019-10-09 17:36:541003// Returns true if 'dstNode's read/write region to 'memref' is a super set of
Diego Caballero330d1ff2019-12-03 14:09:211004// 'srcNode's write region to 'memref' and 'srcId' has only one output edge.
MLIR Team58aa3832019-02-16 01:12:191005// TODO(andydavis) Generalize this to handle more live in/out cases.
1006static bool canFuseSrcWhichWritesToLiveOut(unsigned srcId, unsigned dstId,
Diego Caballero34510552019-10-09 17:36:541007 AffineStoreOp srcLiveOutStoreOp,
MLIR Team58aa3832019-02-16 01:12:191008 MemRefDependenceGraph *mdg) {
Diego Caballero34510552019-10-09 17:36:541009 assert(srcLiveOutStoreOp && "Expected a valid store op");
MLIR Team58aa3832019-02-16 01:12:191010 auto *dstNode = mdg->getNode(dstId);
River Riddle35807bc2019-12-23 05:59:551011 ValuePtr memref = srcLiveOutStoreOp.getMemRef();
Diego Caballero330d1ff2019-12-03 14:09:211012 // Return false if 'srcNode' has more than one output edge on 'memref'.
1013 if (mdg->getOutEdgeCount(srcId, memref) > 1)
1014 return false;
MLIR Team58aa3832019-02-16 01:12:191015
Diego Caballero34510552019-10-09 17:36:541016 // Compute MemRefRegion 'srcWriteRegion' for 'srcStoreOp' on 'memref'.
1017 MemRefRegion srcWriteRegion(srcLiveOutStoreOp.getLoc());
1018 if (failed(srcWriteRegion.compute(srcLiveOutStoreOp, /*loopDepth=*/0))) {
MLIR Teamd42ef782019-03-04 19:01:251019 LLVM_DEBUG(llvm::dbgs()
1020 << "Unable to compute MemRefRegion for source operation\n.");
1021 return false;
1022 }
MLIR Team58aa3832019-02-16 01:12:191023 SmallVector<int64_t, 4> srcShape;
1024 // Query 'srcWriteRegion' for 'srcShape' and 'srcNumElements'.
Diego Caballero34510552019-10-09 17:36:541025 // by 'srcStoreOp' at depth 'dstLoopDepth'.
MLIR Team58aa3832019-02-16 01:12:191026 Optional<int64_t> srcNumElements =
1027 srcWriteRegion.getConstantBoundingSizeAndShape(&srcShape);
1028 if (!srcNumElements.hasValue())
1029 return false;
1030
Andy Davis7c1fc9e2019-04-02 13:37:401031 // Compute MemRefRegion 'dstRegion' for 'dstStore/LoadOpInst' on 'memref'.
MLIR Team9d9675f2019-03-28 21:54:491032 // TODO(andydavis) Compute 'unionboundingbox' of all write regions (one for
1033 // each store op in 'dstStoreOps').
Andy Davis7c1fc9e2019-04-02 13:37:401034 SmallVector<Operation *, 2> dstStoreOps;
1035 dstNode->getStoreOpsForMemref(memref, &dstStoreOps);
1036 SmallVector<Operation *, 2> dstLoadOps;
1037 dstNode->getLoadOpsForMemref(memref, &dstLoadOps);
1038
1039 auto *dstOpInst = dstStoreOps.empty() ? dstLoadOps[0] : dstStoreOps[0];
1040 MemRefRegion dstRegion(dstOpInst->getLoc());
1041 if (failed(dstRegion.compute(dstOpInst, /*loopDepth=*/0))) {
MLIR Teamd42ef782019-03-04 19:01:251042 LLVM_DEBUG(llvm::dbgs()
1043 << "Unable to compute MemRefRegion for dest operation\n.");
1044 return false;
1045 }
MLIR Team58aa3832019-02-16 01:12:191046 SmallVector<int64_t, 4> dstShape;
Andy Davis7c1fc9e2019-04-02 13:37:401047 // Query 'dstRegion' for 'dstShape' and 'dstNumElements'.
1048 // by 'dstOpInst' at depth 'dstLoopDepth'.
MLIR Team58aa3832019-02-16 01:12:191049 Optional<int64_t> dstNumElements =
Andy Davis7c1fc9e2019-04-02 13:37:401050 dstRegion.getConstantBoundingSizeAndShape(&dstShape);
MLIR Team58aa3832019-02-16 01:12:191051 if (!dstNumElements.hasValue())
1052 return false;
1053
1054 // Return false if write region is not a superset of 'srcNodes' write
1055 // region to 'memref'.
1056 // TODO(andydavis) Check the shape and lower bounds here too.
1057 if (srcNumElements != dstNumElements)
1058 return false;
1059 return true;
1060}
1061
MLIR Team27d067e2019-01-16 17:55:021062// Checks the profitability of fusing a backwards slice of the loop nest
MLIR Teamd7c82442019-01-30 23:53:411063// surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
MLIR Teamd038e342019-03-01 19:50:251064// The argument 'srcStoreOpInst' is used to calculate the storage reduction on
1065// the memref being produced and consumed, which is an input to the cost model.
Kazuaki Ishizaki8bfedb32019-10-20 07:11:031066// For producer-consumer fusion, 'srcStoreOpInst' will be the same as
MLIR Teamd038e342019-03-01 19:50:251067// 'srcOpInst', as we are slicing w.r.t to that producer.
1068// For input-reuse fusion, 'srcOpInst' will be the src loop nest LoadOp which
1069// reads from the same memref as dst loop nest load ops, and 'srcStoreOpInst'
1070// will be the unique store op in the src node, which will be used to check
1071// that the write region is the same after input-reuse fusion.
Uday Bondhugulab4a14432019-01-26 00:00:501072// Returns true if it is profitable to fuse the candidate loop nests. Returns
1073// false otherwise. `dstLoopDepth` is set to the most profitable depth at which
1074// to materialize the source loop nest slice.
MLIR Team38c2fe32019-01-14 19:26:251075// The profitability model executes the following steps:
MLIR Team27d067e2019-01-16 17:55:021076// *) Computes the backward computation slice at 'srcOpInst'. This
1077// computation slice of the loop nest surrounding 'srcOpInst' is
MLIR Team38c2fe32019-01-14 19:26:251078// represented by modified src loop bounds in 'sliceState', which are
MLIR Team27d067e2019-01-16 17:55:021079// functions of loop IVs in the loop nest surrounding 'srcOpInst'.
MLIR Team38c2fe32019-01-14 19:26:251080// *) Computes the cost of unfused src/dst loop nests (currently the cost of a
1081// loop nest is the total number of dynamic operation instances in the loop
1082// nest).
1083// *) Computes the cost of fusing a slice of the src loop nest into the dst
MLIR Team27d067e2019-01-16 17:55:021084// loop nest at various values of dst loop depth, attempting to fuse
Kazuaki Ishizaki8bfedb32019-10-20 07:11:031085// the largest computation slice at the maximal dst loop depth (closest to
1086// the load) to minimize reuse distance and potentially enable subsequent
MLIR Team27d067e2019-01-16 17:55:021087// load/store forwarding.
MLIR Teamd7c82442019-01-30 23:53:411088// NOTE: If the dst loop nest includes multiple loads in 'dstLoadOpInsts' for
MLIR Team27d067e2019-01-16 17:55:021089// the same memref as is written by 'srcOpInst', then the union of slice
1090// loop bounds is used to compute the slice and associated slice cost.
Uday Bondhugulab4a14432019-01-26 00:00:501091// NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
MLIR Team38c2fe32019-01-14 19:26:251092// nest, at which the src computation slice is inserted/fused.
MLIR Team27d067e2019-01-16 17:55:021093// NOTE: We attempt to maximize the dst loop depth, but there are cases
1094// where a particular setting for 'dstLoopNest' might fuse an unsliced
MLIR Team38c2fe32019-01-14 19:26:251095// loop (within the src computation slice) at a depth which results in
Kazuaki Ishizaki8bfedb32019-10-20 07:11:031096// excessive recomputation (see unit tests for examples).
MLIR Team38c2fe32019-01-14 19:26:251097// *) Compares the total cost of the unfused loop nests to the min cost fused
1098// loop nest computed in the previous step, and returns true if the latter
1099// is lower.
River Riddle99b87c92019-03-27 21:02:021100static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
1101 ArrayRef<Operation *> dstLoadOpInsts,
1102 ArrayRef<Operation *> dstStoreOpInsts,
MLIR Team38c2fe32019-01-14 19:26:251103 ComputationSliceState *sliceState,
Uday Bondhugulace7e59532019-03-08 17:21:521104 unsigned *dstLoopDepth, bool maximalFusion) {
Uday Bondhugula06d21d92019-01-25 01:01:491105 LLVM_DEBUG({
1106 llvm::dbgs() << "Checking whether fusion is profitable between:\n";
Uday Bondhugulaa1dad3a2019-02-20 02:17:191107 llvm::dbgs() << " " << *srcOpInst << " and \n";
MLIR Teamd7c82442019-01-30 23:53:411108 for (auto dstOpInst : dstLoadOpInsts) {
Uday Bondhugulaa1dad3a2019-02-20 02:17:191109 llvm::dbgs() << " " << *dstOpInst << "\n";
Uday Bondhugula06d21d92019-01-25 01:01:491110 };
1111 });
Uday Bondhugula864d9e02019-01-23 17:16:241112
MLIR Team38c2fe32019-01-14 19:26:251113 // Compute cost of sliced and unsliced src loop nest.
Chris Lattnerd9b5bc82019-03-25 02:53:051114 SmallVector<AffineForOp, 4> srcLoopIVs;
MLIR Team27d067e2019-01-16 17:55:021115 getLoopIVs(*srcOpInst, &srcLoopIVs);
MLIR Team38c2fe32019-01-14 19:26:251116 unsigned numSrcLoopIVs = srcLoopIVs.size();
1117
1118 // Walk src loop nest and collect stats.
1119 LoopNestStats srcLoopNestStats;
Andy Davis59b68142019-06-18 15:52:091120 if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
MLIR Team38c2fe32019-01-14 19:26:251121 return false;
Andy Davis59b68142019-06-18 15:52:091122
MLIR Team38c2fe32019-01-14 19:26:251123 // Compute cost of dst loop nest.
Chris Lattnerd9b5bc82019-03-25 02:53:051124 SmallVector<AffineForOp, 4> dstLoopIVs;
MLIR Teamd7c82442019-01-30 23:53:411125 getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
MLIR Team38c2fe32019-01-14 19:26:251126
1127 LoopNestStats dstLoopNestStats;
Andy Davis59b68142019-06-18 15:52:091128 if (!getLoopNestStats(dstLoopIVs[0], &dstLoopNestStats))
MLIR Team38c2fe32019-01-14 19:26:251129 return false;
1130
MLIR Teamd7c82442019-01-30 23:53:411131 // Compute the maximum loop depth at which we can can insert the src slice
MLIR Teamd038e342019-03-01 19:50:251132 // and still satisfy dest loop nest dependences, for producer-consumer fusion.
1133 unsigned maxDstLoopDepth =
1134 (srcOpInst == srcStoreOpInst)
1135 ? getMaxLoopDepth(dstLoadOpInsts, dstStoreOpInsts)
1136 : dstLoopIVs.size();
MLIR Teamc1ff9e82019-03-06 04:33:301137 if (maxDstLoopDepth == 0) {
1138 LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxDstLoopDepth == 0 .\n");
MLIR Team27d067e2019-01-16 17:55:021139 return false;
MLIR Teamc1ff9e82019-03-06 04:33:301140 }
MLIR Team27d067e2019-01-16 17:55:021141
1142 // Search for min cost value for 'dstLoopDepth'. At each value of
1143 // 'dstLoopDepth' from 'maxDstLoopDepth' to '1', compute computation slice
1144 // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
1145 // of these bounds). Next the union slice bounds are used to calculate
1146 // the cost of the slice and the cost of the slice inserted into the dst
1147 // loop nest at 'dstLoopDepth'.
Uday Bondhugula864d9e02019-01-23 17:16:241148 uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
MLIR Teamd038e342019-03-01 19:50:251149 double maxStorageReduction = 0.0;
Uday Bondhugula864d9e02019-01-23 17:16:241150 Optional<uint64_t> sliceMemEstimate = None;
1151
MLIR Team27d067e2019-01-16 17:55:021152 SmallVector<ComputationSliceState, 4> sliceStates;
1153 sliceStates.resize(maxDstLoopDepth);
Uday Bondhugula864d9e02019-01-23 17:16:241154 // The best loop depth at which to materialize the slice.
1155 Optional<unsigned> bestDstLoopDepth = None;
1156
1157 // Compute op instance count for the src loop nest without iteration slicing.
Andy Davis59b68142019-06-18 15:52:091158 uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
Uday Bondhugula864d9e02019-01-23 17:16:241159
MLIR Teamb9dde912019-02-06 19:01:101160 // Compute src loop nest write region size.
MLIR Teamd038e342019-03-01 19:50:251161 MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
River Riddle1e55ae12019-03-08 06:14:471162 if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
MLIR Teamd42ef782019-03-04 19:01:251163 LLVM_DEBUG(llvm::dbgs()
River Riddle99b87c92019-03-27 21:02:021164 << "Unable to compute MemRefRegion for source operation\n.");
MLIR Teamd42ef782019-03-04 19:01:251165 return false;
1166 }
1167
MLIR Teamb9dde912019-02-06 19:01:101168 Optional<int64_t> maybeSrcWriteRegionSizeBytes =
1169 srcWriteRegion.getRegionSize();
1170 if (!maybeSrcWriteRegionSizeBytes.hasValue())
1171 return false;
1172 int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue();
1173
Uday Bondhugula864d9e02019-01-23 17:16:241174 // Compute op instance count for the src loop nest.
Andy Davis59b68142019-06-18 15:52:091175 uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], dstLoopNestStats);
MLIR Team27d067e2019-01-16 17:55:021176
MLIR Teamb9dde912019-02-06 19:01:101177 // Evaluate all depth choices for materializing the slice in the destination
1178 // loop nest.
MLIR Team27d067e2019-01-16 17:55:021179 for (unsigned i = maxDstLoopDepth; i >= 1; --i) {
MLIR Teamc1ff9e82019-03-06 04:33:301180 // Compute the union of slice bounds of all ops in 'dstLoadOpInsts'.
Andy Davis1de0f972019-05-29 21:02:141181 if (failed(mlir::computeSliceUnion({srcOpInst}, dstLoadOpInsts,
Andy Davis898cf0e2019-06-17 16:59:351182 /*loopDepth=*/i,
1183 /*numCommonLoops=*/0,
1184 /*isBackwardSlice=*/true,
Andy Davis1de0f972019-05-29 21:02:141185 &sliceStates[i - 1]))) {
MLIR Teamc1ff9e82019-03-06 04:33:301186 LLVM_DEBUG(llvm::dbgs()
Andy Davis1de0f972019-05-29 21:02:141187 << "computeSliceUnion failed for loopDepth: " << i << "\n");
MLIR Teamc1ff9e82019-03-06 04:33:301188 continue;
MLIR Team38c2fe32019-01-14 19:26:251189 }
MLIR Teamc1ff9e82019-03-06 04:33:301190
Andy Davis59b68142019-06-18 15:52:091191 int64_t fusedLoopNestComputeCost;
1192 if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstLoopIVs[0],
1193 dstLoopNestStats, &sliceStates[i - 1],
1194 &fusedLoopNestComputeCost)) {
1195 LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
Uday Bondhugula864d9e02019-01-23 17:16:241196 continue;
MLIR Teamc1ff9e82019-03-06 04:33:301197 }
Uday Bondhugula864d9e02019-01-23 17:16:241198
Uday Bondhugula864d9e02019-01-23 17:16:241199 double additionalComputeFraction =
1200 fusedLoopNestComputeCost /
1201 (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1202 1;
1203
Amit Sabne70a416d2019-04-09 16:17:401204 // Determine what the slice write MemRefRegion would be, if the src loop
MLIR Teamb9dde912019-02-06 19:01:101205 // nest slice 'sliceStates[i - 1]' were to be inserted into the dst loop
1206 // nest at loop depth 'i'
MLIR Teamd038e342019-03-01 19:50:251207 MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
River Riddle1e55ae12019-03-08 06:14:471208 if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
1209 &sliceStates[i - 1]))) {
MLIR Teamc1ff9e82019-03-06 04:33:301210 LLVM_DEBUG(llvm::dbgs()
1211 << "Failed to compute slice write region at loopDepth: " << i
1212 << "\n");
MLIR Teamd42ef782019-03-04 19:01:251213 continue;
MLIR Teamc1ff9e82019-03-06 04:33:301214 }
MLIR Teamd42ef782019-03-04 19:01:251215
MLIR Teamb9dde912019-02-06 19:01:101216 Optional<int64_t> maybeSliceWriteRegionSizeBytes =
1217 sliceWriteRegion.getRegionSize();
1218 if (!maybeSliceWriteRegionSizeBytes.hasValue() ||
MLIR Teamc1ff9e82019-03-06 04:33:301219 maybeSliceWriteRegionSizeBytes.getValue() == 0) {
1220 LLVM_DEBUG(llvm::dbgs()
1221 << "Failed to get slice write region size at loopDepth: " << i
1222 << "\n");
MLIR Teamb9dde912019-02-06 19:01:101223 continue;
MLIR Teamc1ff9e82019-03-06 04:33:301224 }
MLIR Teamb9dde912019-02-06 19:01:101225 int64_t sliceWriteRegionSizeBytes =
1226 maybeSliceWriteRegionSizeBytes.getValue();
1227
MLIR Teamd038e342019-03-01 19:50:251228 // If we are fusing for reuse, check that write regions remain the same.
1229 // TODO(andydavis) Write region check should check sizes and offsets in
1230 // each dimension, so that we are sure they are covering the same memref
1231 // region. Also, move this out to a isMemRefRegionSuperSet helper function.
1232 if (srcOpInst != srcStoreOpInst &&
1233 sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
1234 continue;
1235
MLIR Teamb9dde912019-02-06 19:01:101236 double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
1237 static_cast<double>(sliceWriteRegionSizeBytes);
Uday Bondhugula864d9e02019-01-23 17:16:241238
Uday Bondhugula06d21d92019-01-25 01:01:491239 LLVM_DEBUG({
1240 std::stringstream msg;
1241 msg << " evaluating fusion profitability at depth : " << i << "\n"
Uday Bondhugulad4b3ff12019-02-27 00:10:191242 << std::fixed << std::setprecision(2)
1243 << " additional compute fraction: "
Uday Bondhugula06d21d92019-01-25 01:01:491244 << 100.0 * additionalComputeFraction << "%\n"
1245 << " storage reduction factor: " << storageReduction << "x\n"
1246 << " fused nest cost: " << fusedLoopNestComputeCost << "\n"
Uday Bondhugulaa1dad3a2019-02-20 02:17:191247 << " src write region size: " << srcWriteRegionSizeBytes << "\n"
1248 << " slice write region size: " << sliceWriteRegionSizeBytes
1249 << "\n";
Uday Bondhugula06d21d92019-01-25 01:01:491250 llvm::dbgs() << msg.str();
1251 });
Uday Bondhugula864d9e02019-01-23 17:16:241252
1253 double computeToleranceThreshold =
1254 clFusionAddlComputeTolerance.getNumOccurrences() > 0
1255 ? clFusionAddlComputeTolerance
1256 : LoopFusion::kComputeToleranceThreshold;
1257
1258 // TODO(b/123247369): This is a placeholder cost model.
1259 // Among all choices that add an acceptable amount of redundant computation
1260 // (as per computeToleranceThreshold), we will simply pick the one that
1261 // reduces the intermediary size the most.
1262 if ((storageReduction > maxStorageReduction) &&
Uday Bondhugulace7e59532019-03-08 17:21:521263 (maximalFusion ||
Uday Bondhugula864d9e02019-01-23 17:16:241264 (additionalComputeFraction < computeToleranceThreshold))) {
1265 maxStorageReduction = storageReduction;
MLIR Team27d067e2019-01-16 17:55:021266 bestDstLoopDepth = i;
Uday Bondhugula864d9e02019-01-23 17:16:241267 minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
MLIR Teamb9dde912019-02-06 19:01:101268 sliceMemEstimate = sliceWriteRegionSizeBytes;
MLIR Team38c2fe32019-01-14 19:26:251269 }
1270 }
1271
Uday Bondhugula864d9e02019-01-23 17:16:241272 // A simple cost model: fuse if it reduces the memory footprint. If
1273 // -maximal-fusion is set, fuse nevertheless.
MLIR Team38c2fe32019-01-14 19:26:251274
Uday Bondhugulace7e59532019-03-08 17:21:521275 if (!maximalFusion && !bestDstLoopDepth.hasValue()) {
Uday Bondhugulaa1dad3a2019-02-20 02:17:191276 LLVM_DEBUG(
1277 llvm::dbgs()
1278 << "All fusion choices involve more than the threshold amount of "
1279 "redundant computation; NOT fusing.\n");
MLIR Team38c2fe32019-01-14 19:26:251280 return false;
Uday Bondhugula864d9e02019-01-23 17:16:241281 }
1282
MLIR Teamd42ef782019-03-04 19:01:251283 if (!bestDstLoopDepth.hasValue()) {
1284 LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
1285 return false;
1286 }
Uday Bondhugula864d9e02019-01-23 17:16:241287
1288 // Set dstLoopDepth based on best values from search.
1289 *dstLoopDepth = bestDstLoopDepth.getValue();
1290
1291 LLVM_DEBUG(
Uday Bondhugula06d21d92019-01-25 01:01:491292 llvm::dbgs() << " LoopFusion fusion stats:"
1293 << "\n best loop depth: " << bestDstLoopDepth
Uday Bondhugula864d9e02019-01-23 17:16:241294 << "\n src loop nest compute cost: " << srcLoopNestCost
1295 << "\n dst loop nest compute cost: " << dstLoopNestCost
1296 << "\n fused loop nest compute cost: "
1297 << minFusedLoopNestComputeCost << "\n");
1298
River Riddle5052bd82019-02-02 00:42:181299 auto dstMemSize = getMemoryFootprintBytes(dstLoopIVs[0]);
1300 auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
Uday Bondhugula864d9e02019-01-23 17:16:241301
1302 Optional<double> storageReduction = None;
1303
Uday Bondhugulace7e59532019-03-08 17:21:521304 if (!maximalFusion) {
Uday Bondhugula864d9e02019-01-23 17:16:241305 if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
1306 LLVM_DEBUG(
1307 llvm::dbgs()
1308 << " fusion memory benefit cannot be evaluated; NOT fusing.\n");
1309 return false;
1310 }
1311
1312 auto srcMemSizeVal = srcMemSize.getValue();
1313 auto dstMemSizeVal = dstMemSize.getValue();
1314
1315 assert(sliceMemEstimate.hasValue() && "expected value");
Uday Bondhugula864d9e02019-01-23 17:16:241316 auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();
1317
1318 LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n"
1319 << " dst mem: " << dstMemSizeVal << "\n"
1320 << " fused mem: " << fusedMem << "\n"
1321 << " slice mem: " << sliceMemEstimate << "\n");
1322
Jacques Pienaar2fe8ae42019-05-04 02:48:571323 if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
Uday Bondhugula864d9e02019-01-23 17:16:241324 LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
1325 return false;
1326 }
1327 storageReduction =
1328 100.0 *
1329 (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
1330 }
1331
1332 double additionalComputeFraction =
1333 100.0 * (minFusedLoopNestComputeCost /
1334 (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1335 1);
MLIR Team5c5739d2019-01-25 06:27:401336 (void)additionalComputeFraction;
Uday Bondhugula06d21d92019-01-25 01:01:491337 LLVM_DEBUG({
1338 std::stringstream msg;
1339 msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
MLIR Team8564b272019-02-22 15:48:591340 << std::setprecision(2) << additionalComputeFraction
Uday Bondhugula06d21d92019-01-25 01:01:491341 << "% redundant computation and a ";
1342 msg << (storageReduction.hasValue()
1343 ? std::to_string(storageReduction.getValue())
1344 : "<unknown>");
1345 msg << "% storage reduction.\n";
1346 llvm::dbgs() << msg.str();
1347 });
Uday Bondhugula864d9e02019-01-23 17:16:241348
MLIR Team27d067e2019-01-16 17:55:021349 // Update return parameter 'sliceState' with 'bestSliceState'.
Uday Bondhugula864d9e02019-01-23 17:16:241350 ComputationSliceState *bestSliceState = &sliceStates[*dstLoopDepth - 1];
MLIR Team27d067e2019-01-16 17:55:021351 sliceState->lbs = bestSliceState->lbs;
1352 sliceState->ubs = bestSliceState->ubs;
1353 sliceState->lbOperands = bestSliceState->lbOperands;
1354 sliceState->ubOperands = bestSliceState->ubOperands;
Uday Bondhugula864d9e02019-01-23 17:16:241355
MLIR Team27d067e2019-01-16 17:55:021356 // Canonicalize slice bound affine maps.
MLIR Team38c2fe32019-01-14 19:26:251357 for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
Nicolas Vasilache0e7a8a92019-01-26 18:41:171358 if (sliceState->lbs[i] != AffineMap()) {
MLIR Team27d067e2019-01-16 17:55:021359 canonicalizeMapAndOperands(&sliceState->lbs[i],
1360 &sliceState->lbOperands[i]);
1361 }
Nicolas Vasilache0e7a8a92019-01-26 18:41:171362 if (sliceState->ubs[i] != AffineMap()) {
MLIR Team27d067e2019-01-16 17:55:021363 canonicalizeMapAndOperands(&sliceState->ubs[i],
1364 &sliceState->ubOperands[i]);
MLIR Team38c2fe32019-01-14 19:26:251365 }
1366 }
1367 return true;
1368}
1369
River Riddle2666b972019-12-18 18:46:161370namespace {
1371
MLIR Teamd038e342019-03-01 19:50:251372// GreedyFusion greedily fuses loop nests which have a producer/consumer or
1373// input-reuse relationship on a memref, with the goal of improving locality.
MLIR Teamf28e4df2018-11-01 14:26:001374//
MLIR Teamd038e342019-03-01 19:50:251375// The steps of the producer-consumer fusion algorithm are as follows:
MLIR Team3b692302018-12-17 17:57:141376//
MLIR Team6892ffb2018-12-20 04:42:551377// *) A worklist is initialized with node ids from the dependence graph.
1378// *) For each node id in the worklist:
Amit Sabne70a416d2019-04-09 16:17:401379// *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
River Riddle5052bd82019-02-02 00:42:181380// candidate destination AffineForOp into which fusion will be attempted.
1381// *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
MLIR Team3b692302018-12-17 17:57:141382// *) For each LoadOp in 'dstLoadOps' do:
Amit Sabne70a416d2019-04-09 16:17:401383// *) Look up dependent loop nests which have a single store op to the same
MLIR Teamd038e342019-03-01 19:50:251384// memref.
1385// *) Check if dependences would be violated by the fusion.
MLIR Team6892ffb2018-12-20 04:42:551386// *) Get a computation slice of 'srcLoopNest', which adjusts its loop
MLIR Team3b692302018-12-17 17:57:141387// bounds to be functions of 'dstLoopNest' IVs and symbols.
1388// *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
MLIR Teamd038e342019-03-01 19:50:251389// at a loop depth determined by the cost model in 'isFusionProfitable'.
River Riddle99b87c92019-03-27 21:02:021390// *) Add the newly fused load/store operations to the state,
Amit Sabne70a416d2019-04-09 16:17:401391// and also add newly fused load ops to 'dstLoopOps' to be considered
MLIR Team3b692302018-12-17 17:57:141392// as fusion dst load ops in another iteration.
1393// *) Remove old src loop nest and its associated state.
1394//
MLIR Teamd038e342019-03-01 19:50:251395// The steps of the input-reuse fusion algorithm are as follows:
1396//
1397// *) Initialize 'worklist' with node ids from the dependence graph.
1398// *) For each 'dstNode' in the worklist:
1399// *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
1400// loads from the same memref, but which has no dependence paths to/from.
1401// *) Get a computation slice of 'sibLoopNest', which adjusts its loop
1402// bounds to be functions of 'dstLoopNest' IVs and symbols.
1403// *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
1404// at a loop depth determined by the cost model in 'isFusionProfitable'.
1405// This function also checks that the memref write region of 'sibLoopNest',
1406// is preserved in the fused loop nest.
1407// *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
1408//
River Riddle99b87c92019-03-27 21:02:021409// Given a graph where top-level operations are vertices in the set 'V' and
MLIR Team3b692302018-12-17 17:57:141410// edges in the set 'E' are dependences between vertices, this algorithm
MLIR Team6892ffb2018-12-20 04:42:551411// takes O(V) time for initialization, and has runtime O(V + E).
MLIR Team3b692302018-12-17 17:57:141412//
MLIR Team6892ffb2018-12-20 04:42:551413// This greedy algorithm is not 'maximal' due to the current restriction of
1414// fusing along single producer consumer edges, but there is a TODO to fix this.
MLIR Team3b692302018-12-17 17:57:141415//
1416// TODO(andydavis) Experiment with other fusion policies.
MLIR Team6892ffb2018-12-20 04:42:551417struct GreedyFusion {
1418public:
MLIR Teamd038e342019-03-01 19:50:251419 // The data dependence graph to traverse during fusion.
MLIR Team6892ffb2018-12-20 04:42:551420 MemRefDependenceGraph *mdg;
MLIR Teamd038e342019-03-01 19:50:251421 // Worklist of graph nodes visited during the fusion pass.
MLIR Teama78edcd2019-02-05 14:57:081422 SmallVector<unsigned, 8> worklist;
MLIR Teamd038e342019-03-01 19:50:251423 // Set of graph nodes which are present on the worklist.
MLIR Teama78edcd2019-02-05 14:57:081424 llvm::SmallDenseSet<unsigned, 16> worklistSet;
MLIR Teamd038e342019-03-01 19:50:251425 // Parameter for local buffer size threshold.
1426 unsigned localBufSizeThreshold;
1427 // Parameter for fast memory space.
1428 Optional<unsigned> fastMemorySpace;
Uday Bondhugulace7e59532019-03-08 17:21:521429 // If true, ignore any additional (redundant) computation tolerance threshold
1430 // that would have prevented fusion.
1431 bool maximalFusion;
MLIR Teamf28e4df2018-11-01 14:26:001432
MLIR Teamd038e342019-03-01 19:50:251433 using Node = MemRefDependenceGraph::Node;
1434
1435 GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
Uday Bondhugulace7e59532019-03-08 17:21:521436 Optional<unsigned> fastMemorySpace, bool maximalFusion)
MLIR Teamd038e342019-03-01 19:50:251437 : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
Uday Bondhugulace7e59532019-03-08 17:21:521438 fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion) {}
MLIR Teamd038e342019-03-01 19:50:251439
1440 // Initializes 'worklist' with nodes from 'mdg'
1441 void init() {
MLIR Teama78edcd2019-02-05 14:57:081442 // TODO(andydavis) Add a priority queue for prioritizing nodes by different
1443 // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
MLIR Teamd038e342019-03-01 19:50:251444 worklist.clear();
1445 worklistSet.clear();
1446 for (auto &idAndNode : mdg->nodes) {
1447 const Node &node = idAndNode.second;
1448 worklist.push_back(node.id);
1449 worklistSet.insert(node.id);
1450 }
MLIR Team6892ffb2018-12-20 04:42:551451 }
MLIR Team3b692302018-12-17 17:57:141452
MLIR Teamd038e342019-03-01 19:50:251453 // Run the GreedyFusion pass.
1454 // *) First pass through the nodes fuses single-use producer nodes into their
1455 // unique consumer.
1456 // *) Second pass fuses sibling nodes which share no dependence edges.
1457 // *) Third pass fuses any remaining producer nodes into their users.
1458 void run() {
MLIR Teamc1ff9e82019-03-06 04:33:301459 // TODO(andydavis) Run this repeatedly until a fixed-point is reached.
MLIR Teamd038e342019-03-01 19:50:251460 fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
1461 fuseSiblingNodes();
1462 fuseProducerConsumerNodes(
1463 /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
1464 eraseUnusedMemRefAllocations();
1465 }
1466
1467 void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
1468 init();
MLIR Team3b692302018-12-17 17:57:141469 while (!worklist.empty()) {
MLIR Team6892ffb2018-12-20 04:42:551470 unsigned dstId = worklist.back();
MLIR Team3b692302018-12-17 17:57:141471 worklist.pop_back();
MLIR Teama78edcd2019-02-05 14:57:081472 worklistSet.erase(dstId);
1473
MLIR Team6892ffb2018-12-20 04:42:551474 // Skip if this node was removed (fused into another node).
1475 if (mdg->nodes.count(dstId) == 0)
MLIR Team3b692302018-12-17 17:57:141476 continue;
MLIR Team6892ffb2018-12-20 04:42:551477 // Get 'dstNode' into which to attempt fusion.
1478 auto *dstNode = mdg->getNode(dstId);
1479 // Skip if 'dstNode' is not a loop nest.
River Riddled5b60ee82019-05-12 01:59:541480 if (!isa<AffineForOp>(dstNode->op))
MLIR Team3b692302018-12-17 17:57:141481 continue;
MLIR Team8f5f2c72019-02-15 17:32:181482 // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
1483 // while preserving relative order. This can increase the maximum loop
1484 // depth at which we can fuse a slice of a producer loop nest into a
1485 // consumer loop nest.
1486 sinkSequentialLoops(dstNode);
MLIR Team3b692302018-12-17 17:57:141487
River Riddle99b87c92019-03-27 21:02:021488 SmallVector<Operation *, 4> loads = dstNode->loads;
1489 SmallVector<Operation *, 4> dstLoadOpInsts;
River Riddle35807bc2019-12-23 05:59:551490 DenseSet<ValuePtr> visitedMemrefs;
MLIR Team6892ffb2018-12-20 04:42:551491 while (!loads.empty()) {
MLIR Team27d067e2019-01-16 17:55:021492 // Get memref of load on top of the stack.
River Riddle35807bc2019-12-23 05:59:551493 auto memref = cast<AffineLoadOp>(loads.back()).getMemRef();
MLIR Teamc4237ae2019-01-18 16:56:271494 if (visitedMemrefs.count(memref) > 0)
1495 continue;
1496 visitedMemrefs.insert(memref);
MLIR Team27d067e2019-01-16 17:55:021497 // Move all loads in 'loads' accessing 'memref' to 'dstLoadOpInsts'.
1498 moveLoadsAccessingMemrefTo(memref, &loads, &dstLoadOpInsts);
MLIR Team6892ffb2018-12-20 04:42:551499 // Skip if no input edges along which to fuse.
1500 if (mdg->inEdges.count(dstId) == 0)
MLIR Team3b692302018-12-17 17:57:141501 continue;
Amit Sabne70a416d2019-04-09 16:17:401502 // Iterate through in-edges for 'dstId' and src node id for any
MLIR Team1e851912019-01-31 00:01:461503 // edges on 'memref'.
1504 SmallVector<unsigned, 2> srcNodeIds;
MLIR Team6892ffb2018-12-20 04:42:551505 for (auto &srcEdge : mdg->inEdges[dstId]) {
1506 // Skip 'srcEdge' if not for 'memref'.
MLIR Teama0f3db402019-01-29 17:36:411507 if (srcEdge.value != memref)
MLIR Team6892ffb2018-12-20 04:42:551508 continue;
MLIR Team1e851912019-01-31 00:01:461509 srcNodeIds.push_back(srcEdge.id);
1510 }
1511 for (unsigned srcId : srcNodeIds) {
1512 // Skip if this node was removed (fused into another node).
1513 if (mdg->nodes.count(srcId) == 0)
1514 continue;
1515 // Get 'srcNode' from which to attempt fusion into 'dstNode'.
1516 auto *srcNode = mdg->getNode(srcId);
MLIR Team6892ffb2018-12-20 04:42:551517 // Skip if 'srcNode' is not a loop nest.
River Riddled5b60ee82019-05-12 01:59:541518 if (!isa<AffineForOp>(srcNode->op))
MLIR Team6892ffb2018-12-20 04:42:551519 continue;
Diego Caballero34510552019-10-09 17:36:541520 // Skip if 'srcNode' has more than one live-out store to a
1521 // function-local memref.
1522 // TODO(andydavis) Support more generic multi-output src loop nests
1523 // fusion.
1524 auto srcStoreOp = mdg->getUniqueOutgoingStore(srcNode);
Andy Davis68a8da42019-11-18 19:20:031525 if (!srcStoreOp) {
1526 // Get the src store op at the deepest loop depth.
1527 // We will use 'LoopFusionUtils::canFuseLoops' to check fusion
1528 // feasibility for loops with multiple stores.
1529 unsigned maxLoopDepth = 0;
1530 for (auto *op : srcNode->stores) {
1531 auto storeOp = cast<AffineStoreOp>(op);
1532 if (storeOp.getMemRef() != memref) {
1533 srcStoreOp = nullptr;
1534 break;
1535 }
1536 unsigned loopDepth = getNestingDepth(*storeOp);
1537 if (loopDepth > maxLoopDepth) {
1538 maxLoopDepth = loopDepth;
1539 srcStoreOp = storeOp;
1540 }
1541 }
1542 if (!srcStoreOp)
1543 continue;
1544 }
1545
Diego Caballero34510552019-10-09 17:36:541546 // Unique outgoing store found must write to 'memref' since 'memref'
1547 // is the one that established the producer-consumer relationship
1548 // between 'srcNode' and 'dstNode'.
1549 assert(srcStoreOp.getMemRef() == memref &&
1550 "Found store to unexpected memref");
Uday Bondhugula864d9e02019-01-23 17:16:241551
MLIR Team58aa3832019-02-16 01:12:191552 // Skip if 'srcNode' writes to any live in or escaping memrefs,
1553 // and cannot be fused.
1554 bool writesToLiveInOrOut =
1555 mdg->writesToLiveInOrEscapingMemrefs(srcNode->id);
1556 if (writesToLiveInOrOut &&
Diego Caballero34510552019-10-09 17:36:541557 !canFuseSrcWhichWritesToLiveOut(srcId, dstId, srcStoreOp, mdg))
MLIR Teamd7c82442019-01-30 23:53:411558 continue;
1559
Kazuaki Ishizaki84a61822019-12-06 13:58:591560 // Don't create a private memref if 'writesToLiveInOrOut'.
Andy Davis68a8da42019-11-18 19:20:031561 bool createPrivateMemref = !writesToLiveInOrOut;
Kazuaki Ishizaki84a61822019-12-06 13:58:591562 // Don't create a private memref if 'srcNode' has in edges on
1563 // 'memref', or if 'dstNode' has out edges on 'memref'.
Andy Davis68a8da42019-11-18 19:20:031564 if (mdg->getIncomingMemRefAccesses(srcNode->id, memref) > 0 ||
1565 mdg->getOutEdgeCount(dstNode->id, memref) > 0) {
1566 createPrivateMemref = false;
1567 }
1568
MLIR Teamd038e342019-03-01 19:50:251569 // Skip if 'srcNode' out edge count on 'memref' > 'maxSrcUserCount'.
1570 if (mdg->getOutEdgeCount(srcNode->id, memref) > maxSrcUserCount)
1571 continue;
1572
River Riddle99b87c92019-03-27 21:02:021573 // Compute an operation list insertion point for the fused loop
MLIR Teama0f3db402019-01-29 17:36:411574 // nest which preserves dependences.
River Riddle99b87c92019-03-27 21:02:021575 Operation *insertPointInst =
MLIR Teama78edcd2019-02-05 14:57:081576 mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
MLIR Teama0f3db402019-01-29 17:36:411577 if (insertPointInst == nullptr)
MLIR Team6892ffb2018-12-20 04:42:551578 continue;
Uday Bondhugula864d9e02019-01-23 17:16:241579
Andy Davis68a8da42019-11-18 19:20:031580 // Compute the innermost common loop depth for dstNode loads/stores.
1581 SmallVector<Operation *, 2> dstOps(dstNode->loads.begin(),
1582 dstNode->loads.end());
1583 dstOps.append(dstNode->stores.begin(), dstNode->stores.end());
1584 unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstOps);
1585 // Check the feasibility of fusing src loop nest into dst loop nest
1586 // at loop depths in range [1, dstLoopDepthTest].
1587 // TODO(andydavis) Use slice union computation and union of memref
1588 // read/write regions to cost model and fusion.
1589 bool canFuse = false;
1590 for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1591 ComputationSliceState sliceUnion;
1592 FusionResult result = mlir::canFuseLoops(
1593 cast<AffineForOp>(srcNode->op), cast<AffineForOp>(dstNode->op),
1594 /*dstLoopDepth=*/i, &sliceUnion);
1595 if (result.value == FusionResult::Success)
1596 canFuse = true;
1597 }
1598
1599 // Skip if fusion is not feasible at all loop depths.
1600 if (!canFuse)
1601 continue;
1602
MLIR Teamd7c82442019-01-30 23:53:411603 // Gather 'dstNode' store ops to 'memref'.
River Riddle99b87c92019-03-27 21:02:021604 SmallVector<Operation *, 2> dstStoreOpInsts;
MLIR Teamd7c82442019-01-30 23:53:411605 for (auto *storeOpInst : dstNode->stores)
Andy Davis2e1187d2019-07-03 17:35:031606 if (cast<AffineStoreOp>(storeOpInst).getMemRef() == memref)
MLIR Teamd7c82442019-01-30 23:53:411607 dstStoreOpInsts.push_back(storeOpInst);
1608
Uday Bondhugulab4a14432019-01-26 00:00:501609 unsigned bestDstLoopDepth;
MLIR Team38c2fe32019-01-14 19:26:251610 mlir::ComputationSliceState sliceState;
MLIR Teama0f3db402019-01-29 17:36:411611 // Check if fusion would be profitable.
Diego Caballero34510552019-10-09 17:36:541612 if (!isFusionProfitable(srcStoreOp, srcStoreOp, dstLoadOpInsts,
1613 dstStoreOpInsts, &sliceState,
Uday Bondhugulace7e59532019-03-08 17:21:521614 &bestDstLoopDepth, maximalFusion))
MLIR Team38c2fe32019-01-14 19:26:251615 continue;
Andy Davis68a8da42019-11-18 19:20:031616
MLIR Team6892ffb2018-12-20 04:42:551617 // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
River Riddle5052bd82019-02-02 00:42:181618 auto sliceLoopNest = mlir::insertBackwardComputationSlice(
Diego Caballero34510552019-10-09 17:36:541619 srcStoreOp, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
Chris Lattnerd9b5bc82019-03-25 02:53:051620 if (sliceLoopNest) {
River Riddleaf1abcc2019-03-25 18:13:311621 LLVM_DEBUG(llvm::dbgs() << "\tslice loop nest:\n"
River Riddlef9d91532019-03-27 00:05:091622 << *sliceLoopNest.getOperation() << "\n");
River Riddle5052bd82019-02-02 00:42:181623 // Move 'dstAffineForOp' before 'insertPointInst' if needed.
River Riddleadca3c22019-05-12 00:57:321624 auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
River Riddlef9d91532019-03-27 00:05:091625 if (insertPointInst != dstAffineForOp.getOperation()) {
1626 dstAffineForOp.getOperation()->moveBefore(insertPointInst);
MLIR Teama0f3db402019-01-29 17:36:411627 }
MLIR Teamc4237ae2019-01-18 16:56:271628 // Update edges between 'srcNode' and 'dstNode'.
Andy Davis68a8da42019-11-18 19:20:031629 mdg->updateEdges(srcNode->id, dstNode->id, memref,
1630 createPrivateMemref);
MLIR Teamc4237ae2019-01-18 16:56:271631
1632 // Collect slice loop stats.
1633 LoopNestStateCollector sliceCollector;
River Riddlef9d91532019-03-27 00:05:091634 sliceCollector.collect(sliceLoopNest.getOperation());
MLIR Teamc4237ae2019-01-18 16:56:271635 // Promote single iteration slice loops to single IV value.
River Riddle5052bd82019-02-02 00:42:181636 for (auto forOp : sliceCollector.forOps) {
1637 promoteIfSingleIteration(forOp);
MLIR Team6892ffb2018-12-20 04:42:551638 }
Andy Davis68a8da42019-11-18 19:20:031639 if (createPrivateMemref) {
MLIR Team58aa3832019-02-16 01:12:191640 // Create private memref for 'memref' in 'dstAffineForOp'.
River Riddle99b87c92019-03-27 21:02:021641 SmallVector<Operation *, 4> storesForMemref;
MLIR Team58aa3832019-02-16 01:12:191642 for (auto *storeOpInst : sliceCollector.storeOpInsts) {
Andy Davis2e1187d2019-07-03 17:35:031643 if (cast<AffineStoreOp>(storeOpInst).getMemRef() == memref)
MLIR Team58aa3832019-02-16 01:12:191644 storesForMemref.push_back(storeOpInst);
1645 }
Andy Davis68a8da42019-11-18 19:20:031646 // TODO(andydavis) Use union of memref write regions to compute
1647 // private memref footprint.
River Riddle35807bc2019-12-23 05:59:551648 auto newMemRef = createPrivateMemRef(
MLIR Team58aa3832019-02-16 01:12:191649 dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
1650 fastMemorySpace, localBufSizeThreshold);
1651 visitedMemrefs.insert(newMemRef);
1652 // Create new node in dependence graph for 'newMemRef' alloc op.
1653 unsigned newMemRefNodeId =
River Riddlef9d91532019-03-27 00:05:091654 mdg->addNode(newMemRef->getDefiningOp());
MLIR Team58aa3832019-02-16 01:12:191655 // Add edge from 'newMemRef' node to dstNode.
1656 mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
MLIR Teamc4237ae2019-01-18 16:56:271657 }
MLIR Teamc4237ae2019-01-18 16:56:271658
Kazuaki Ishizaki8bfedb32019-10-20 07:11:031659 // Collect dst loop stats after memref privatization transformation.
MLIR Teamc4237ae2019-01-18 16:56:271660 LoopNestStateCollector dstLoopCollector;
River Riddlef9d91532019-03-27 00:05:091661 dstLoopCollector.collect(dstAffineForOp.getOperation());
MLIR Teamc4237ae2019-01-18 16:56:271662
1663 // Add new load ops to current Node load op list 'loads' to
1664 // continue fusing based on new operands.
1665 for (auto *loadOpInst : dstLoopCollector.loadOpInsts) {
River Riddle35807bc2019-12-23 05:59:551666 auto loadMemRef = cast<AffineLoadOp>(loadOpInst).getMemRef();
MLIR Teamc4237ae2019-01-18 16:56:271667 if (visitedMemrefs.count(loadMemRef) == 0)
1668 loads.push_back(loadOpInst);
1669 }
1670
Amit Sabne70a416d2019-04-09 16:17:401671 // Clear and add back loads and stores.
MLIR Teamc4237ae2019-01-18 16:56:271672 mdg->clearNodeLoadAndStores(dstNode->id);
1673 mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
1674 dstLoopCollector.storeOpInsts);
MLIR Team71495d52019-01-22 21:23:371675 // Remove old src loop nest if it no longer has outgoing dependence
Amit Sabne70a416d2019-04-09 16:17:401676 // edges, and if it does not write to a memref which escapes the
MLIR Team58aa3832019-02-16 01:12:191677 // function. If 'writesToLiveInOrOut' is true, then 'srcNode' has
1678 // been fused into 'dstNode' and write region of 'dstNode' covers
1679 // the write region of 'srcNode', and 'srcNode' has no other users
1680 // so it is safe to remove.
1681 if (writesToLiveInOrOut || mdg->canRemoveNode(srcNode->id)) {
MLIR Teamc4237ae2019-01-18 16:56:271682 mdg->removeNode(srcNode->id);
River Riddle99b87c92019-03-27 21:02:021683 srcNode->op->erase();
MLIR Teama78edcd2019-02-05 14:57:081684 } else {
1685 // Add remaining users of 'oldMemRef' back on the worklist (if not
1686 // already there), as its replacement with a local/private memref
1687 // has reduced dependences on 'oldMemRef' which may have created
1688 // new fusion opportunities.
1689 if (mdg->outEdges.count(srcNode->id) > 0) {
1690 SmallVector<MemRefDependenceGraph::Edge, 2> oldOutEdges =
1691 mdg->outEdges[srcNode->id];
1692 for (auto &outEdge : oldOutEdges) {
1693 if (outEdge.value == memref &&
1694 worklistSet.count(outEdge.id) == 0) {
1695 worklist.push_back(outEdge.id);
1696 worklistSet.insert(outEdge.id);
1697 }
1698 }
1699 }
MLIR Teamc4237ae2019-01-18 16:56:271700 }
MLIR Team3b692302018-12-17 17:57:141701 }
MLIR Team3b692302018-12-17 17:57:141702 }
1703 }
1704 }
MLIR Teamd038e342019-03-01 19:50:251705 }
1706
1707 // Visits each node in the graph, and for each node, attempts to fuse it with
1708 // its sibling nodes (nodes which share a parent, but no dependence edges).
1709 void fuseSiblingNodes() {
1710 init();
1711 while (!worklist.empty()) {
1712 unsigned dstId = worklist.back();
1713 worklist.pop_back();
1714 worklistSet.erase(dstId);
1715
1716 // Skip if this node was removed (fused into another node).
1717 if (mdg->nodes.count(dstId) == 0)
1718 continue;
1719 // Get 'dstNode' into which to attempt fusion.
1720 auto *dstNode = mdg->getNode(dstId);
1721 // Skip if 'dstNode' is not a loop nest.
River Riddled5b60ee82019-05-12 01:59:541722 if (!isa<AffineForOp>(dstNode->op))
MLIR Teamd038e342019-03-01 19:50:251723 continue;
1724 // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
1725 fuseWithSiblingNodes(dstNode);
1726 }
1727 }
1728
1729 // Attempt to fuse 'dstNode' with sibling nodes in the graph.
1730 void fuseWithSiblingNodes(Node *dstNode) {
1731 DenseSet<unsigned> visitedSibNodeIds;
River Riddle35807bc2019-12-23 05:59:551732 std::pair<unsigned, ValuePtr> idAndMemref;
MLIR Teamd038e342019-03-01 19:50:251733 while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
1734 unsigned sibId = idAndMemref.first;
River Riddle35807bc2019-12-23 05:59:551735 ValuePtr memref = idAndMemref.second;
MLIR Teamd038e342019-03-01 19:50:251736 // TODO(andydavis) Check that 'sibStoreOpInst' post-dominates all other
1737 // stores to the same memref in 'sibNode' loop nest.
1738 auto *sibNode = mdg->getNode(sibId);
River Riddle99b87c92019-03-27 21:02:021739 // Compute an operation list insertion point for the fused loop
MLIR Teamd038e342019-03-01 19:50:251740 // nest which preserves dependences.
River Riddle99b87c92019-03-27 21:02:021741 assert(sibNode->op->getBlock() == dstNode->op->getBlock());
1742 Operation *insertPointInst =
1743 sibNode->op->isBeforeInBlock(dstNode->op)
MLIR Teamd038e342019-03-01 19:50:251744 ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
1745 : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
1746 if (insertPointInst == nullptr)
1747 continue;
1748
1749 // Check if fusion would be profitable and at what depth.
1750
1751 // Get unique 'sibNode' load op to 'memref'.
River Riddle99b87c92019-03-27 21:02:021752 SmallVector<Operation *, 2> sibLoadOpInsts;
MLIR Teamd038e342019-03-01 19:50:251753 sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
1754 // Currently findSiblingNodeToFuse searches for siblings with one load.
1755 assert(sibLoadOpInsts.size() == 1);
River Riddle99b87c92019-03-27 21:02:021756 Operation *sibLoadOpInst = sibLoadOpInsts[0];
MLIR Teamd038e342019-03-01 19:50:251757 assert(!sibNode->stores.empty());
1758 // TODO(andydavis) Choose the store which postdominates all other stores.
1759 auto *sibStoreOpInst = sibNode->stores.back();
1760
1761 // Gather 'dstNode' load ops to 'memref'.
River Riddle99b87c92019-03-27 21:02:021762 SmallVector<Operation *, 2> dstLoadOpInsts;
MLIR Teamd038e342019-03-01 19:50:251763 dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
1764
1765 // Gather 'dstNode' store ops to 'memref'.
River Riddle99b87c92019-03-27 21:02:021766 SmallVector<Operation *, 2> dstStoreOpInsts;
MLIR Teamd038e342019-03-01 19:50:251767 dstNode->getStoreOpsForMemref(memref, &dstStoreOpInsts);
1768
1769 unsigned bestDstLoopDepth;
1770 mlir::ComputationSliceState sliceState;
1771
1772 // Check if fusion would be profitable.
1773 if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstLoadOpInsts,
Uday Bondhugulace7e59532019-03-08 17:21:521774 dstStoreOpInsts, &sliceState, &bestDstLoopDepth,
1775 maximalFusion))
MLIR Teamd038e342019-03-01 19:50:251776 continue;
1777
1778 // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
1779 auto sliceLoopNest = mlir::insertBackwardComputationSlice(
1780 sibLoadOpInst, dstLoadOpInsts[0], bestDstLoopDepth, &sliceState);
1781 if (sliceLoopNest != nullptr) {
River Riddleadca3c22019-05-12 00:57:321782 auto dstForInst = cast<AffineForOp>(dstNode->op);
River Riddle99b87c92019-03-27 21:02:021783 // Update operation position of fused loop nest (if needed).
River Riddlef9d91532019-03-27 00:05:091784 if (insertPointInst != dstForInst.getOperation()) {
1785 dstForInst.getOperation()->moveBefore(insertPointInst);
MLIR Teamd038e342019-03-01 19:50:251786 }
1787 // Update data dependence graph state post fusion.
1788 updateStateAfterSiblingFusion(sliceLoopNest, sibNode, dstNode);
1789 }
1790 }
1791 }
1792
MLIR Team9d30b362019-03-29 15:06:251793 // Searches function argument uses and the graph from 'dstNode' looking for a
1794 // fusion candidate sibling node which shares no dependences with 'dstNode'
1795 // but which loads from the same memref. Returns true and sets
1796 // 'idAndMemrefToFuse' on success. Returns false otherwise.
MLIR Teamd038e342019-03-01 19:50:251797 bool findSiblingNodeToFuse(Node *dstNode,
1798 DenseSet<unsigned> *visitedSibNodeIds,
River Riddle35807bc2019-12-23 05:59:551799 std::pair<unsigned, ValuePtr> *idAndMemrefToFuse) {
MLIR Team9d30b362019-03-29 15:06:251800 // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
1801 // on 'memref'.
River Riddle35807bc2019-12-23 05:59:551802 auto canFuseWithSibNode = [&](Node *sibNode, ValuePtr memref) {
MLIR Team9d30b362019-03-29 15:06:251803 // Skip if 'outEdge' is not a read-after-write dependence.
1804 // TODO(andydavis) Remove restrict to single load op restriction.
1805 if (sibNode->getLoadOpCount(memref) != 1)
1806 return false;
1807 // Skip if there exists a path of dependent edges between
1808 // 'sibNode' and 'dstNode'.
1809 if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
1810 mdg->hasDependencePath(dstNode->id, sibNode->id))
1811 return false;
1812 // Skip sib node if it loads to (and stores from) the same memref on
1813 // which it also has an input dependence edge.
River Riddle35807bc2019-12-23 05:59:551814 DenseSet<ValuePtr> loadAndStoreMemrefSet;
MLIR Team9d30b362019-03-29 15:06:251815 sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
River Riddle35807bc2019-12-23 05:59:551816 if (llvm::any_of(loadAndStoreMemrefSet, [=](ValuePtr memref) {
MLIR Team9d30b362019-03-29 15:06:251817 return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
1818 }))
1819 return false;
1820
1821 // Check that all stores are to the same memref.
River Riddle35807bc2019-12-23 05:59:551822 DenseSet<ValuePtr> storeMemrefs;
MLIR Team9d30b362019-03-29 15:06:251823 for (auto *storeOpInst : sibNode->stores) {
Andy Davis2e1187d2019-07-03 17:35:031824 storeMemrefs.insert(cast<AffineStoreOp>(storeOpInst).getMemRef());
MLIR Team9d30b362019-03-29 15:06:251825 }
1826 if (storeMemrefs.size() != 1)
1827 return false;
1828 return true;
1829 };
1830
1831 // Search for siblings which load the same memref function argument.
River Riddlece502af2019-07-08 18:20:261832 auto fn = dstNode->op->getParentOfType<FuncOp>();
River Riddle54cd6a72019-07-01 17:29:091833 for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
1834 for (auto *user : fn.getArgument(i)->getUsers()) {
Andy Davis2e1187d2019-07-03 17:35:031835 if (auto loadOp = dyn_cast<AffineLoadOp>(user)) {
MLIR Team9d30b362019-03-29 15:06:251836 // Gather loops surrounding 'use'.
1837 SmallVector<AffineForOp, 4> loops;
River Riddle8780d8d2019-05-18 18:09:071838 getLoopIVs(*user, &loops);
MLIR Team9d30b362019-03-29 15:06:251839 // Skip 'use' if it is not within a loop nest.
1840 if (loops.empty())
1841 continue;
1842 Node *sibNode = mdg->getForOpNode(loops[0]);
1843 assert(sibNode != nullptr);
1844 // Skip 'use' if it not a sibling to 'dstNode'.
1845 if (sibNode->id == dstNode->id)
1846 continue;
1847 // Skip 'use' if it has been visited.
1848 if (visitedSibNodeIds->count(sibNode->id) > 0)
1849 continue;
1850 // Skip 'use' if it does not load from the same memref as 'dstNode'.
River Riddle35807bc2019-12-23 05:59:551851 auto memref = loadOp.getMemRef();
MLIR Team9d30b362019-03-29 15:06:251852 if (dstNode->getLoadOpCount(memref) == 0)
1853 continue;
1854 // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1855 if (canFuseWithSibNode(sibNode, memref)) {
1856 visitedSibNodeIds->insert(sibNode->id);
1857 idAndMemrefToFuse->first = sibNode->id;
1858 idAndMemrefToFuse->second = memref;
1859 return true;
1860 }
1861 }
1862 }
1863 }
1864
1865 // Search for siblings by following edges through an intermediate src node.
MLIR Teamd038e342019-03-01 19:50:251866 // Collect candidate 'dstNode' input edges in 'inEdges'.
1867 SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
1868 mdg->forEachMemRefInputEdge(
1869 dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
1870 // Add 'inEdge' if it is a read-after-write dependence.
1871 if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
1872 mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
1873 inEdges.push_back(inEdge);
1874 });
1875
1876 // Search for sibling nodes to fuse by visiting output edges from each input
1877 // edge in 'inEdges'.
1878 for (auto &inEdge : inEdges) {
1879 // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
1880 SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
1881 mdg->forEachMemRefOutputEdge(
1882 inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
1883 unsigned sibNodeId = outEdge.id;
1884 if (visitedSibNodeIds->count(sibNodeId) > 0)
1885 return;
1886 // Skip output edge if not a sibling using the same memref.
1887 if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
1888 return;
1889 auto *sibNode = mdg->getNode(sibNodeId);
River Riddled5b60ee82019-05-12 01:59:541890 if (!isa<AffineForOp>(sibNode->op))
MLIR Teamd038e342019-03-01 19:50:251891 return;
MLIR Team9d30b362019-03-29 15:06:251892 // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1893 if (canFuseWithSibNode(sibNode, outEdge.value)) {
1894 // Add candidate 'outEdge' to sibling node.
1895 outEdges.push_back(outEdge);
MLIR Teamd038e342019-03-01 19:50:251896 }
MLIR Teamd038e342019-03-01 19:50:251897 });
1898
1899 // Add first candidate if any were returned.
1900 if (!outEdges.empty()) {
1901 visitedSibNodeIds->insert(outEdges[0].id);
1902 idAndMemrefToFuse->first = outEdges[0].id;
1903 idAndMemrefToFuse->second = outEdges[0].value;
1904 return true;
1905 }
1906 }
1907 return false;
1908 }
1909
Chris Lattnerd9b5bc82019-03-25 02:53:051910 void updateStateAfterSiblingFusion(AffineForOp sliceLoopNest, Node *sibNode,
1911 Node *dstNode) {
MLIR Teamd038e342019-03-01 19:50:251912 // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
1913 mdg->updateEdges(sibNode->id, dstNode->id);
1914
1915 // Collect slice loop stats.
1916 LoopNestStateCollector sliceCollector;
River Riddlef9d91532019-03-27 00:05:091917 sliceCollector.collect(sliceLoopNest.getOperation());
MLIR Teamd038e342019-03-01 19:50:251918 // Promote single iteration slice loops to single IV value.
1919 for (auto forOp : sliceCollector.forOps) {
1920 promoteIfSingleIteration(forOp);
1921 }
1922
Kazuaki Ishizaki8bfedb32019-10-20 07:11:031923 // Collect dst loop stats after memref privatization transformation.
River Riddleadca3c22019-05-12 00:57:321924 auto dstForInst = cast<AffineForOp>(dstNode->op);
MLIR Teamd038e342019-03-01 19:50:251925 LoopNestStateCollector dstLoopCollector;
River Riddlef9d91532019-03-27 00:05:091926 dstLoopCollector.collect(dstForInst.getOperation());
MLIR Teamd038e342019-03-01 19:50:251927 // Clear and add back loads and stores
1928 mdg->clearNodeLoadAndStores(dstNode->id);
1929 mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
1930 dstLoopCollector.storeOpInsts);
1931 // Remove old sibling loop nest if it no longer has outgoing dependence
1932 // edges, and it does not write to a memref which escapes the
1933 // function.
1934 if (mdg->getOutEdgeCount(sibNode->id) == 0) {
1935 mdg->removeNode(sibNode->id);
River Riddleadca3c22019-05-12 00:57:321936 sibNode->op->erase();
MLIR Teamd038e342019-03-01 19:50:251937 }
1938 }
1939
1940 // Clean up any allocs with no users.
1941 void eraseUnusedMemRefAllocations() {
MLIR Teamc4237ae2019-01-18 16:56:271942 for (auto &pair : mdg->memrefEdgeCount) {
1943 if (pair.second > 0)
1944 continue;
River Riddle35807bc2019-12-23 05:59:551945 auto memref = pair.first;
River Riddle99b87c92019-03-27 21:02:021946 // Skip if there exist other uses (return operation or function calls).
MLIR Team71495d52019-01-22 21:23:371947 if (!memref->use_empty())
1948 continue;
MLIR Teamc4237ae2019-01-18 16:56:271949 // Use list expected to match the dep graph info.
River Riddle99b87c92019-03-27 21:02:021950 auto *op = memref->getDefiningOp();
River Riddle1423acc2019-04-23 21:38:261951 if (isa_and_nonnull<AllocOp>(op))
River Riddle99b87c92019-03-27 21:02:021952 op->erase();
MLIR Teamc4237ae2019-01-18 16:56:271953 }
MLIR Teamf28e4df2018-11-01 14:26:001954 }
MLIR Team3b692302018-12-17 17:57:141955};
1956
1957} // end anonymous namespace
MLIR Teamf28e4df2018-11-01 14:26:001958
River Riddleed5fe202019-02-28 22:50:421959void LoopFusion::runOnFunction() {
Uday Bondhugulad4b3ff12019-02-27 00:10:191960 // Override if a command line argument was provided.
Uday Bondhugula8be26272019-02-02 01:06:221961 if (clFusionFastMemorySpace.getNumOccurrences() > 0) {
1962 fastMemorySpace = clFusionFastMemorySpace.getValue();
1963 }
1964
Uday Bondhugulad4b3ff12019-02-27 00:10:191965 // Override if a command line argument was provided.
1966 if (clFusionLocalBufThreshold.getNumOccurrences() > 0) {
1967 localBufSizeThreshold = clFusionLocalBufThreshold * 1024;
1968 }
1969
Uday Bondhugulace7e59532019-03-08 17:21:521970 if (clMaximalLoopFusion.getNumOccurrences() > 0)
1971 maximalFusion = clMaximalLoopFusion;
1972
MLIR Team6892ffb2018-12-20 04:42:551973 MemRefDependenceGraph g;
Uday Bondhugula02af8c22019-03-05 23:05:341974 if (g.init(getFunction()))
Uday Bondhugulace7e59532019-03-08 17:21:521975 GreedyFusion(&g, localBufSizeThreshold, fastMemorySpace, maximalFusion)
1976 .run();
MLIR Teamf28e4df2018-11-01 14:26:001977}
Jacques Pienaar6f0fb222018-11-07 02:34:181978
Nicolas Vasilache258e8d92019-05-03 18:07:371979static PassRegistration<LoopFusion> pass("affine-loop-fusion",
1980 "Fuse loop nests");