
Anomaly Detection
文章平均质量分 82
本专栏主要整理了异常检测的相关论文。
UnknownBody
AI博士,最近一直follow大模型相关论文,每日会更新学术界论文的进展。
展开
-
AD-LLM: Benchmarking Large Language Models for Anomaly Detection
异常检测(AD)是一项重要的机器学习任务,具有许多实际用途,包括欺诈检测、医疗诊断和工业监控。在自然语言处理(NLP)中,AD有助于检测垃圾邮件、错误信息和异常用户活动等问题。尽管大型语言模型(LLMs)对文本生成和摘要等任务产生了强烈的影响,但它们在AD中的潜力还没有得到足够的研究。本文介绍了AD-LLM,这是第一个评估LLM如何帮助NLP异常检测的基准。我们研究了三个关键任务:(i)零样本检测,使用LLM的预训练知识在没有特定任务训练的情况下执行AD;原创 2025-01-07 16:29:57 · 260 阅读 · 0 评论 -
AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models
检测动态图的异常边缘旨在识别明显偏离正常模式的边缘,并可应用于各种领域,例如网络安全、金融交易和 AIOps。随着时间的推移,异常边缘的类型不断涌现,每种类型的标记异常样本都很少。当前方法要么旨在检测随机插入的边缘,要么需要足够的标记数据进行模型训练,这损害了它们在实际应用中的适用性。在本文中,我们通过配合大型语言模型 (LLM) 中编码的丰富知识来研究这个问题,并提出了一种方法,即 AnomalyLLM。原创 2024-09-17 11:24:12 · 359 阅读 · 0 评论 -
LARGE LANGUAGE MODELS FOR FORECASTING AND ANOMALY DETECTION: A SYSTEMATIC LITERATURE REVIEW
这篇系统的文献综述全面考察了大型语言模型(LLM)在预测和异常检测中的应用,强调了研究的现状、固有挑战和未来的发展方向。LLM在解析和分析广泛的数据集以识别模式、预测未来事件和检测各个领域的异常行为方面表现出了巨大的潜力。然而,这篇综述确定了阻碍其更广泛采用和有效性的几个关键挑战,包括对庞大历史数据集的依赖、不同背景下的可推广性问题、模型幻觉现象、模型知识边界内的局限性以及所需的大量计算资源。原创 2024-04-12 16:46:51 · 332 阅读 · 0 评论 -
风控模型算法
金融公司风控模型与算法整理原创 2022-12-26 17:01:20 · 1846 阅读 · 1 评论 -
Artificial intelligence based anomaly detection of energy consumption in buildings
本文是对《Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives》的翻译。基于人工智能的建筑能耗异常检测:综述、当前趋势和新观点摘要1. 引言2. 异常检测方法的回顾2.1 回顾2.1.1 非监督检测(U)2.1.2 监督检测(S)2.1.3 集成方法(E)2.1.4 特征提取(F)2.1.5 混合学习(原创 2022-10-08 16:36:50 · 946 阅读 · 0 评论 -
Self-Supervised Anomaly Detection A Survey and Outlook
在过去几年中,异常检测是机器学习的一个子领域,主要关注罕见事件的检测,随着深度学习模型的空前增长,异常检测得到了极大的改进。最近,自监督学习的出现引发了新的异常检测算法的发展,其精度大大超过了最先进的水平。本文旨在回顾自监督异常检测的现有方法。我们介绍了常用方法的技术细节,并讨论了它们的优缺点。我们还将这些模型的性能与其他最先进的异常检测模型进行了比较。最后,我们讨论了改进现有算法的各种新方向。原创 2022-08-29 15:50:31 · 1062 阅读 · 0 评论 -
Deep Learning for Anomaly Detection: A Review
本文是对《Deep Learning for Anomaly Detection: A Review》的翻译。深度学习进行异常检测:综述摘要1 引言2 异常检测:问题复杂性和挑战2.1 主要问题复杂性2.2 深度异常检测面临的主要挑战3 解决深度异常检测的挑战3.1 前言3.2 深度异常检测的分类4 用于特征提取的深度学习5 常态性的特征表示学习5.1 特征学习的一般常态5.2 异常度量独立特征学习6 端到端异常得分学习6.1 排序模型6.2 先验驱动模型6.3 软最大似然模型6.4 端到端一类分类7 算原创 2022-08-23 17:53:12 · 1134 阅读 · 0 评论 -
Revisiting Time Series Outlier Detection: Definitions and Benchmarks
摘要1 引言2 背景3 回顾离群定义和合成标准3.1 序列数据中的行为3.2 细化连续离群值定义3.2.1 点离群3.2.2 模式离群3.3 合成离群值4 基准实验4.1 数据集描述4.2 序列数据离群检测算法4.3 结果与分析5 讨论6 结论时间序列离群点检测在过去十年中得到了广泛的研究,提出了许多先进的算法。尽管做出了这些努力,但很少有研究调查我们应该如何对现有算法进行基准测试。特别是,使用合成数据集进行评估已成为文献中的常见做法,因此,有一个通用的综合标准来对算法进行基准测试至关重要。原创 2022-08-22 15:06:52 · 1131 阅读 · 0 评论